The Global Anomaly Matching in the higher-dimensional \mathbb{CP}^1 Model Takuya Furusawa (TITech/RIKEN) TF & M. Hongo, PRB. 101, 155113 (2020) (arXiv:2001.07373) KEK-Keio-YITP joint seminar (online)., May., 2020

1. Introduction

2. $\Re \times U(1)_M$ anomaly in 2+1D

3. $\Re \times (\mathbb{Z}_n)_M$ anomaly in 2+1D

4. 3+1D generalization & finite-temperature phase diagram

Outline

CP¹ Model $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da$

 $(1+1)D \mathbb{CP}^1$ model: asymptotic freedom $\sim (3+1)DQCD$

(Connected via compactification w/ twisted boundary condition) Yamazaki (2017), Yamazaki, Yonekura (2017), Wan, Wang, Zheng (2018), Yamazaki, Yonekura (2019)

z: 2-component scalar, a:dynamical U(1) gauge field

CP¹ Model $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da$

z: 2-component scalar, a:dynamical U(1) gauge field

Cond. mat. motivation: QFT for anti-ferromagnets

$z \sigma_z \sim n_{\alpha}$

Gauge inv. combination ~ spin operator

CP¹ Model $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da$

1+1D: Haldane conjecture

2+1D: Unconventional critical point

3+1D: Neel - U(1) spin liquid transition

- z: 2-component scalar, a:dynamical U(1) gauge field
- Cond. mat. motivation: QFT for anti-ferromagnets Haldane (1983)
 - Deconfined quantum critical point (DQCP) Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

DQCP & Competing order Deconfined quantum critical point VBS phase

Neel phase

$2+1D \mathbb{CP}^1 \mod 1$

Competing order is explained by 't Hooft anomaly in \mathbb{CP}^1 model Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

$Z[A + \delta_{\theta} A] = Z[A]$

't Hooft (1980), Frishman, Schwimmer, Banks, Yankielowicz (1981), Coleman, Grossman (1982)

G: global symmetry, A: background gauge field

$Z[A + \delta_{\theta} A] = Z[A]e^{i\mathscr{A}[\theta, A]} \left(\mathscr{A}[\theta, A] \neq \delta_{\theta} S[A]\right)$

Classic: Chiral symmetry in QCD Recent: Discrete & higher-form symmetries

't Hooft (1980), Frishman, Schwimmer, Banks, Yankielowicz (1981), Coleman, Grossman (1982)

G: global symmetry, A: background gauge field

't Hooft anomaly

Anomaly Matching Argument The 't Hooft anomaly is RG-invariant. Anomaly at $UV \Rightarrow$ The same anomaly at IR Consistency condition on IR behaviors!!

't Hooft (1980), Frishman, Schwimmer, Banks, Yankielowicz (1981), Coleman, Grossman (1982)

Anomaly Matching Argument The 't Hooft anomaly is RG-invariant. Anomaly at $UV \Rightarrow$ The same anomaly at IR Consistency condition on IR behaviors!! Unique gapped Degenerated Gapless E Egap

't Hooft (1980), Frishman, Schwimmer, Banks, Yankielowicz (1981), Coleman, Grossman (1982)

Anomaly Matching Argument The 't Hooft anomaly is RG-invariant. Anomaly at $UV \Rightarrow$ The same anomaly at IR Consistency condition on IR behaviors!! Unique gapped Gapless Degenerated

't Hooft (1980), Frishman, Schwimmer, Banks, Yankielowicz (1981), Coleman, Grossman (1982)

Spontaneous symmetry breaking **Topological order** Gapless

Global symmetries in \mathbb{CP}^1 model (1) Flavor symmetry $SU(2)/\mathbb{Z}_2 = SO(3)_{spin}$ $z(x) \rightarrow Uz(x)$ $U \in SU(2)$ $\mathbb{Z}_2 = \{\pm \mathbb{I}_2\}$ is redundant. (2) Reflection symmetry (TR) \mathcal{R} $z(x) \rightarrow i\sigma^2 z^* (R_\mu \cdot x)$ $(R_1 = \text{diag}(-1,1,1))$ (3) Magnetic symmetry $U(1)_M$

Two mixed anomalies

Competing order in anti-ferromagnets

Anomalies in $2+1D \mathbb{CP}^1$

Metlitski, Thorngren (2018),

Komargodski, Sulejmanpasic, Unsal (2018),

Komargodski, Sharon, Thorngren, Zhou, (2019).

Two mixed anomalies

$[SU(2)/\mathbb{Z}_2]_F \times \mathscr{R} \times U(1)_M$

(See the above Refs.)

Anomalies in $2+10 \mathbb{CP}^{1}$

Metlitski, Thorngren (2018),

Komargodski, Sulejmanpasic, Unsal (2018),

Komargodski, Sharon, Thorngren, Zhou, (2019).

This talk!!

Furusawa, Hongo (2020)

Nontriviality w/o flavor symmetry!

1. Introduction

2. $\Re \times U(1)_M$ anomaly in 2+1D

3. $\Re \times (\mathbb{Z}_n)_M$ anomaly in 2+1D

4. 3+1D generalization & finite-temperature phase diagram

Outline

Magnetic symmetry $U(1)_M$ Conserved current: $J_M^{\mu} = \frac{i}{2\pi} \epsilon^{\mu\nu\rho} \partial_{\nu} a_{\rho} \left(= \star \frac{i}{2\pi} da \right)$

Generator: $Q_M = \frac{i}{2\pi} \int_{\mathbb{R}^2} e^{ij} \partial_i a_j$

Charged object: Monopole instanton *M*

A CARACTER AND A CARACTER

Magnetic flux

Gauging $U(1)_M$ = adding via minimal coupling Gauge field for R?

 $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da$

$\mathbb{R}_{\tau} \times S_x^1 \times S_v^1$

 $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da$

Gauging $U(1)_M$ = adding via minimal coupling Gauge field for \Re ? = Twisted boundary condition by \Re

Gauging $U(1)_M$ = adding via minimal coupling Gauge field for \Re ? = Twisted boundary condition by \Re $\mathbb{R}_{\tau} \times S_x^1 \times S_v^1$ $\mathbb{R}_{\tau} \times \mathbb{RP}_{x}^{2}$ ัน 1 X

 $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da$

Gauging $U(1)_M$ = adding via minimal coupling Gauge field for \Re ? = Twisted boundary condition by \Re $\mathbb{R}_{\tau} \times S_x^1 \times S_v^1$ $\mathbb{R}_{\tau} \times \mathbb{RP}_{xy}^2$ $da = \pi$ ัน 1 Half-monopole inside RP2 X

$\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da$

$\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da$

Gauging $U(1)_M$ = adding via minimal coupling Gauge field for \Re ? = Twisted boundary condition by \Re $\mathbb{R}_{\tau} \times S_x^1 \times S_v^1$ $\mathbb{R}_{\tau} \times \mathbb{RP}_{x_{y}}^{2}$ $\int_{\mathbb{RP}^2} da = \pi = \int_{\mathbb{RP}^2} \pi w_2$ ัน 1 2nd Stiefel-Whitney class X.

Sulejmanpasic, Tanizaki (2018),

 $U(1)_M$ gauge transformation $K \to K + d\Lambda$

Inconsistency on $\mathbb{R}_{\tau} \times \mathbb{RP}_{xv}^2$ $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2\varrho^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da$ $Z_{\mathbb{CP}^1}[w_2, K] \to Z_{\mathbb{CP}^1}[w_2, K] e^{\frac{i}{2\pi}\int d\Lambda \wedge \pi w_2}$

 $\mathscr{R} \times \mathrm{U}(1)_{M}$ anomaly

Ingappablity w/o flavor symmetry $SO(3)_{spin}$ -breaking but \mathscr{R} -preserving perturbations: Easy-plane Dzyaloshinskii-Moriya $V(n^{\alpha}) = \sum \mu^{\alpha} n^{\alpha} n^{\alpha} + \sum \kappa_{i}^{\alpha} \epsilon^{\alpha\beta\gamma} n^{\beta} (\partial_{i} n^{\gamma} + (\kappa_{i} \times n)^{\gamma}).$ α, β, γ X $n^{\alpha} = z^{\dagger} \sigma^{\alpha} z$ $\mathcal{R}_D \, \operatorname{U}(1)_M^{[D-3]}$

	$\mathrm{PSU}(2)_F$	$\mathcal{R}_1(\sim \mathcal{T})$	\mathcal{R}_2	\mathcal{R}_3 $\cdot \cdot$
$\mu^{\alpha=x}$	$\rightarrow \mathrm{O}(2)_x$	\bigcirc	\bigcirc	\bigcirc · ·
$\kappa_{i=2}^{lpha=x}$	$\rightarrow \mathrm{O}(2)_x$	\bigcirc	×	\bigcirc · ·

No unique gapped ground state with $\mathscr{R} \times U(1)_M$

1. Introduction

2. $\Re \times U(1)_M$ anomaly in 2+1D

3. $\Re \times (\mathbb{Z}_n)_M$ anomaly in 2+1D

4. 3+1D generalization & finite-temperature phase diagram

Outline

At the lattice scale, because of the spin Berry phase.

Magnetic symmetry \sim Site-centered rotation

Monopoles are charged under site-centered rotation Haldane (1988)

Square lattice

At the lattice scale, because of the spin Berry phase.

Magnetic symmetry \sim Site-centered rotation

Skyrmions are charged under site-centered rotation Haldane (1988)

Square lattice

At the lattice scale, because of the spin Berry phase.

Magnetic symmetry \sim Site-centered rotation

- Skyrmions are charged under site-centered rotation Haldane (1988)

Honeycomb attice

n=

14/25

At the lattice scale, because of the spin Berry phase.

Magnetic symmetry \sim Site-centered rotation

2-monopole event

Skyrmions are charged under site-centered rotation Haldane (1988)

lattice

$\mathscr{R} \times (\mathbb{Z}_n)_M$ Anomaly Replace *K* by \mathbb{Z}_n gauge field K_n . $(nK_n = dH)$

Replace *K* by \mathbb{Z}_n gauge field K_n . $(nK_n = dH)$

$\Re \times (\mathbb{Z}_n)_M$ Anomaly

$(\mathbb{Z}_n)_M$ gauge transformation: $K_n \to K_n + d\Lambda$, $H \to H + n\Lambda$ $Z_{\mathbb{CP}^1}[w_2, K_n] \to Z_{\mathbb{CP}^1}[w_2, K_n] e^{\frac{i}{2\pi}\int d\Lambda \wedge \pi w_2}$

Replace *K* by \mathbb{Z}_n gauge field K_n . $(nK_n = dH)$ $(\mathbb{Z}_n)_M$ gauge transformation: $K_n \to K_n + d\Lambda$, $H \to H + n\Lambda$ $Z_{\mathbb{CP}^1}[w_2, K_n] \to Z_{\mathbb{CP}^1}[w_2, K_n] e^{\frac{i}{2\pi}\int d\Lambda \wedge \pi w_2}$

Local counter term:

 $\frac{i}{2\pi} \int dH \wedge \pi w_2 \to \frac{i}{2\pi} \left[dH \wedge \pi w_2 + \frac{in}{2\pi} \left[dA \wedge \pi w_2 \right]^2 \right] \left[dA \wedge \pi w_2 \right]^2 \left[dA$

$\Re \times (\mathbb{Z}_n)_M$ Anomaly

Odd n : anomaly absent (honeycomb, …)

$\mathcal{L}_{\mathbb{CP}^1[W_2, \Lambda_n]} \to \mathcal{L}_{\mathbb{CP}^1[W_2, \Lambda_n]} \mathcal{L}_{\pi'}$ Local counter term:

- Even n : anomaly present (square, rectangular, …)

$\mathscr{R} \times (\mathbb{Z}_n)_M$ Anomaly on Lattice

Spin 1/2

R ~ *T* anomaly (Kramars doublet)

Haldane chain

1+1D Spin 1 system No anomaly

$\mathscr{R} \times (\mathbb{Z}_n)_M$ Anomaly on Lattice^{16/25}

Spin 1/2

R~T anomaly (Kramars doublet)

Can we construct the spin 1/2 systems without the anomaly??

Rule: We must keep the site-centered rotation. Furusawa, Hongo (2020)

Haldane chain

1+1D Spin 1 system No anomaly

$\mathscr{R} \times (\mathbb{Z}_n)_M$ Anomaly on Lattice

Spin 1/2

R~T anomaly (Kramars doublet)

Rectangular (\mathbb{Z}_2)

Anomalous

Haldane chain

1+1D Spin 1 system No anomaly

$\mathscr{R} \times (\mathbb{Z}_n)_M$ Anomaly on Lattice

Spin 1/2

R~T anomaly (Kramars doublet)

Square (\mathbb{Z}_4)

Anomalous

Haldane chain

1+1D Spin 1 system No anomaly

$\mathscr{R} \times (\mathbb{Z}_n)_M$ Anomaly on Lattice^{16/25}

Spin 1/2

R~T anomaly (Kramars doubl

Honeycomb (\mathbb{Z}_3)

Not anomalous

Haldane chain

1+1D Spin 1 system No anomaly

Rotation center

- 1×3 ~ 1

Spin 1/2

$\mathcal{P} \sim \mathcal{T}$ anomaly

Consitent with $\mathscr{R} \times (\mathbb{Z}_n)_M$ anomaly. It should be present at the lattice scale.

Not anomalous

1. Introduction

2. $\Re \times U(1)_M$ anomaly in 2+1D

3. $\Re \times (\mathbb{Z}_n)_M$ anomaly in 2+1D

4. 3+1D generalization & finite-temperature phase diagram

Outline

Magnetic symmetry in 3+1D 2+1D 3+1D $U(1)_{M}^{[1]}$ $J_{M}^{\mu} = \frac{i}{2\pi} \epsilon^{\mu\nu\rho} \partial_{\nu} a_{\rho} \longrightarrow J_{M}^{\mu\nu} = \frac{i}{2\pi} \epsilon^{\mu\nu\rho\eta} \partial_{\rho} a_{\eta}$

Monopole

Gaiotto, Kapustin, Seiberg, Willett (2015)

Magnetic loop ('t Hooft loop)

(1)Adding via minimal coupling

Gaiotto, Kapustin, Seiberg, Willett (2015)

 $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da$

2-form gauge field

(2) Twisted boundary condition by \mathcal{R}

Sulejmanpasic, Tanizaki (2018,) Furusawa, Hongo (2020)

 $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da$

(1)Adding via minimal coupling

2-form gauge field

 $da = \pi w_2$ $\mathbf{J}\mathbb{R}\mathbb{P}^2$ $\mathbf{J}\mathbb{RP}^2$

 $U(1)_{M}^{[1]}$ gauge transformation $K \to K + d\Lambda$

Furusawa, Hongo (2020)

Inconsistency on $\mathbb{R}_{\tau} \times \mathbb{R}_{x} \times \mathbb{RP}_{yz}^{2}$ $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2\varrho^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da$ $Z_{\mathbb{CP}^1}[w_2, K] \to Z_{\mathbb{CP}^1}[w_2, K] e^{\frac{i}{2\pi} \int d\Lambda \wedge \pi w_2}$

$\mathscr{R} \times \mathrm{U}(1)_{M}^{[1]}$ anomaly

Fate of anomalies at finite T

Circle compactification.

Anomalies w/ 0-form symm.

Anomalies w/ 1-form symm. \Rightarrow Must be nontrivial.

Gaiotto, Kapustin, Komargodski, Seiberg (2017), Komargodski, Sulejmanpasic, Unsal (2018) Shimizu, Yonekura (2018), Tanizaki, Kikuchi, Misumi, Sakai (2018), Yonekura(2019), Furusawa, Hongo (2020)

\Rightarrow Can be trivial.

1-form symmetry at finite T At finite T, two types of magnetic loops (1) time-like loop particle B \mathbb{R}^3 $T \rightarrow \infty$

(2) space-like loop

Decomposition of the gauge field: $K = K^{(2)} + \frac{d\tau}{\beta} \wedge K^{(1)}$

space-like loop

Inconsistency on $S_{\tau}^1 \times \mathbb{R}_x \times \mathbb{RP}_{yz}^2$ $\left[\left| (d - ia)z \right|^2 + V(\left| z \right|^2) + \frac{1}{2\varrho^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da \right]$

$U(1)_M$ gauge transformations: $K^{(1)} \rightarrow K^{(1)} + d\Lambda^{(1)}$

 $\Re \times U(1)_M$ anomaly at finite T (See also our paper for $PSU(N) \times U(1)_M^{[1]}$ anomaly at finite T)

Inconsistency on $S_{\tau}^1 \times \mathbb{R}_x \times \mathbb{RP}_{y_z}^2$ $\int |(d - ia)z|^2 + V(|z|^2) + \frac{1}{2g^2} da \wedge \star da + \frac{i}{2\pi} K \wedge da$

 $Z_{\mathbb{CP}^1}[w_2, K] \to Z_{\mathbb{CP}^1}[w_2, K] e^{\frac{i}{2\pi} \int d\Lambda^{(1)} \wedge \pi w_2}$

Finite-T phase diagram

Anomalies at finite $T \Rightarrow No trivial phase at any T$

Finite-T phase diagram Anomalies at finite $T \Rightarrow No trivial phase at any T$ * Typical phases: Neel phase & U(1) spin liquid phase (Coulomb)

(Higgs) SSB of \mathscr{R} [or SO(3)_{spin}]

>vacuum degeneracy [NG bosons]

SSB of $U(1)_M^{[1]}$ Dynamical gauge boson (c.f. Hidden-local symm.)

Finite-T phase diagram (Coulomb) (Higgs)

Anomalies at finite $T \Rightarrow No trivial phase at any T$ * Typical phases: Neel phase & U(1) spin liquid phase

Finite-T phase diagram Anomalies at finite $T \Rightarrow No trivial phase at any T$ * Typical phases: Neel phase & U(1) spin liquid phase (Coulomb) (Higgs)

Breaks at T_{Nèel}

Caution: $3+1D \mathbb{CP}^1$ model is cutoff theory w/ Λ_{cutoff} .

Realizes at T_{Mag} .

Finite-T phase diagram Anomalies at finite $T \Rightarrow No trivial phase at any T$ * Typical phases: Neel phase & U(1) spin liquid phase

Caution: $3+1D \mathbb{CP}^1$ model is cutoff theory w/ Λ_{cutoff} .

Finite-T phase diagram

Anomalies at finite $T \Rightarrow No trivial phase at any T$ * Typical phases: Neel phase & U(1) spin liquid phase

Caution: $3+1D \mathbb{CP}^1$ model is cutoff theory w/ Λ_{cutoff} .

Phase diagram in the Large-N limit

The $\mathscr{R} \times U(1)_{M}^{[1]}$ anomaly for even N.

Consistent with anomaly matching!! 2nd order direct transition.

Summary

Anomalies in \mathbb{CP}^1 model in 2+1D & 3+1D are studied: $\mathscr{R} \times U(1)_M$ anomaly in \mathbb{CP}^1 model in 2+1D Ingappability w/o flavor symmetry. $\mathscr{R} \times (\mathbb{Z}_n)_M$ anomaly present for even n/ not for odd n. 1-form magnetic symmetry in 3+1D $\Rightarrow \mathscr{R} \times U(1)_M$ anomalies in 3+1D 3+1D anomalies at any T. => Constraint on the finite-T phase diagram

Backup slides

Dirac quantization on \mathbb{RP}^2 Boundary condition: $\phi(\theta + \pi) = (i\sigma^2)e^{i\eta(\theta)}\phi^*(\theta)$ $a_{\theta}(\theta + \pi) = -a_{\theta}(\theta) + \partial_{\theta}\eta(\theta)$ A constraint on $\eta(\theta)$: $\phi(\theta + 2\pi) = (i\sigma^2)e^{i\eta(\theta + \pi)}\phi^*(\theta + \pi)$ $= (i\sigma^2)e^{i\eta(\theta+\pi)}(i\sigma^2)e^{-i\eta(\theta)}\phi(\theta)$ Fractional Dirac quantization: $\int_{\mathbb{RP}^2} da = \int_0^{\pi} \left[a_{\theta}(\theta + \pi) + a_{\theta}(\theta) \right] = \int_0^{\pi} \partial_{\theta} \eta(\theta) = \pi \pmod{2\pi}$

 $\eta(\theta + \pi) - \eta(\theta) \in \pi + 2\pi\mathbb{Z}$

