Title: QCD meets Quantum Information Science -- Thermalization of Gauge Theories from their Entanglement Spectrum
Date: Nov 14, 2022
Time: 10:00 - 11:00
Speaker: Prof. Niklas Mueller
Affiliation: Univ. of Washington
Abstract: The possibility to simulate quantum many-body systems with digital quantum computers and analog devices is an exciting opportunity for high energy and nuclear physics. One example is Entanglement Structure (ES), first explored in the context of non-Abelian fractional quantum Hall states, but largely unexplored for gauge theories and high energy and nuclear physics. ES is crucial e.g., to understand thermalization of the quark gluon plasma in ultra-relativistic heavy ion collisions, or the structure of QCD bound states in deeply inelastic scattering (DIS) at the future Electron-Ion Collider. To illustrate this, I will show how I used Entanglement Structure and Entanglement Tomography to gain insight into quantum thermalization of strongly-coupled gauge theories, which proceeds in characteristic stages and reveals quantum phenomena remarkably similar to their classical counterparts: chaos, turbulence and universality.