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Lipkin-Nogami method at finite temperature in the static-path approximation
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An approximate particle number projection at finite temperature using the Lipkin-Nogami method
in the context of the static-path approximation is proposed. The numerical evaluation, performed
in a simple degenerate 2Q-level model, shows that the present approach can improve the standard
unprojected static-path approximation and is superior to the usual prescription based on classical

thermodynamics.
PACS number(s): 21.60.Jz, 21.10.Ma

I. INTRODUCTION

Fluctuations play an especially important role in hot
finite nuclear systems. A significant effort has been made
during recent years to take into account quantal and sta-
tistical fluctuations in the mean-field [1-7]. The use of
symmetry-breaking density operators induces quantum
fluctuations in related conserved quantities. In the case
of the particle number operator the symmetry-violating
inner states are the BCS wave functions and the quan-
tal fluctuations are characterized by the fluctuations of
the gauge angle. Therefore quantal effects can be taken
into account by employing various kinds of projection
methods [3,8]. Statistical fluctuations increase as grow-
ing temperature and to deal with them, the average quan-
tities such as the average pairing gap, the energy, etc.,
have been used instead of their most probable value [1,2].
The averaging procedure has been usually performed as-
suming the isothermal probability distribution for the
considered physical quantity from the Landau theory of
phase transitions in infinite systems [9]. The integration
is taken over the phase volume as in the classical limit.
So far only a few approaches considering both quantal
and statistical fluctuations in the mean-field of hot nuclei
have been performed. Among them we point out Ref. [7],
where the Lipkin-Nogami (LN) method [10] is extended
to finite temperature so that the quantal effects arising
from the particle number fluctuations can be tractable
in the finite-temperature BCS formalism (FT-BCS). Al-
though the LN-method is an approximate number projec-
tion, it allows one to incorporate properly the exchange
terms together with the second-order effects caused by
the particle number fluctuations in a very simple man-

*On leave from the Department of Theoretical and Compu-
tational Physics, INST, Vietnam Atomic Energy Commission,
Hanoi, Vietnam. Present address: Istituto Nazionale di Fisica
Nucleare, Sezione di Catania, I 95129 Catania Corso Italia 57,
Italy.

fOn leave from Departamento de Fisica, Universidad Na-
cional de La Plata, Argentina.

ner.

Recently, an effective way to go beyond the finite-
temperature Hartree theory, which enables one to in-
clude microscopically the fluctuations of the mean-field
itself, has been developed within the framework of the
static-path approximation (SPA) [11-16] to the path in-
tegral representation of the partition function [17]. By
expanding the effective action as a power series around
the average of temperature-independent paths (the static
path), the integration is carried out over all static paths
and, therefore, sums over fluctuations of the mean-field.
The main disadvantage of the SPA is the omission of the
Fock terms [11]. Moreover, the grand canonical partition
function, calculated in the SPA, neglects as well quantal
effects connected with the particle number fluctuations.

In the present paper we suggest an approach based
on the finite temperature LN method (FT-LN method)
[7] to incorporate simultaneously both types of fluctua-
tions within the SPA. Based on the advantage of the LN
method we believe that we can eliminate the shortcom-
ings of the standard SPA without making the usual SPA
calculation procedure more complicated.

In Sec. II the approximated partition function based
on the FT-LN method within the SPA framework is con-
structed. Section III discusses the relation between the
averaging procedure in the SPA and the traditional one
from the statistical theory of phase transitions. Section
IV presents the calculations for the energy, pairing gap,
and the level density in the 20 level degenerate model,
where the comparison with the results within the stan-
dard SPA framework [12] and those based on the statis-
tical theory of phase transitions [1,2] is discussed. Some
conclusions are drawn in Sec. V.

II. FT-LN METHOD IN THE SPA CONTEXT
A. SPA partition function
As we shall consider the influence of the particle num-

ber uncertainty together with statistical fluctuations, it
is sufficient to work with the pairing Hamiltonian

H=H,-GP*P, (1)

606 ©1993 The American Physical Society



47 LIPKIN-NOGAMI METHOD AT FINITE TEMPERATUREIN ... 607

where Hj is the single-particle Hamiltonian determined
from the single-particle spectrum {E?} of a realistic po-
tential and P is the operator annihilating a pair of parti-
cles. A generalization including the separable multipole
(p-h) and (p-p) residual interactions should be straight-
forward in a standard way. However, the calculations
performed in Refs. [7,18] have shown that accounting the
quadrupole vibration could give a sensitive contribution
to the coefficient for the increase of the level density only
at moderate temperature.
The grand partition function has the form [19]

Z(B,)) = Trexp[—B(H — AN)] (2)

and the thermodynamic potential is defined as

Q(IB’A) = "‘:3_1 IDZ(ﬂ,)\), (3)

where N is the particle number operator, A is the chem-
ical potential, and f is the inverse temperature.

Replacing the exponential in Eq. (2) by the Trotter
product of L time slices and expressing the exponential
on each slice as an integral over the one-body Hamil-
tonian using the Hubbard-Stratonovich transformation
[20], the functional representation of the partition func-
tion (2) has been obtained [11]. Performing now the in-
tegration over the averages ¢ and ¢* of pairing fields ¢(t)
and ¢*(t) over the interval 83, one ends up with the SPA
to the partition function [12]:

ZspA(ﬂ, /\) = %ﬂ/exp [_IHCé*] Trexp[—,@]:,,’]dc d¢*
(4)
B =Hy—GPy—(*P—CPT - AN, (5)

where Py = %—(]\7 — Q) with Q being half the number of
states in the single-particle space.

Parametrizing the pairing fields as ¢ = A exp(i¢), one
obtains the SPA partition function in a form of an inte-
gral over A [12]

Zsra(8,3) = G [ expl-ARspa(6, 1 A)JAdA

(6)

QSPA(ﬂ? A5 A) = (‘E[>

A2

= E% — )\ —e =

;( i 61) + G

2
-3 Zln[l + exp(—p¢;)) (7)
1
with N being the number of particles, ¢ =
v/ (Ei‘j — A)? 4 A? the quasiparticle energy, S the quasi-
particle entropy, and

ZEO [1 _E A =" tanh(% ﬁe,)} - A?%/G. (8)

1
—AN - =8
g

Equation (6) just contains the thermodynamic probability

Pspa(B, A, A) = exp[—(Qspa (B8, A, A)] 9)

but it differs from the usual adiabatic thermodynamlc
partition function by the presence of the prefactor G,B,
which affects the energy evaluation, and the metric AdA
instead of dA, which has been used so far in the ther-
modynamic average [1,2]. In the mean time before we
return to this question in Secs. III and IV, let us notice
that when the pairing field  is given by its self—con51stent
value ¢ = G(P), the energy (H) (8) is equivalent to
the usual FT-BCS energy (without Fock terms), with the
pairing gap A defined from the FT-BCS equations [19].
The SPA becomes ezact in the high temperature limit.
With this overview of the SPA we are now going to
modify it to approximately eliminate the particle number
fluctuations and incorporate the Fock terms.

B. FT-LN partition function based on SPA.
Energy and level density

In Ref. [7] by extending the LN method to finite tem-
perature, it has been shown that the thermodynamic
potential of type (7), with the gap A, calculated self-
consistently from the FT-BCS like equations, changes
under the influence of particle number fluctuations as

QN = QBcs — )\2AN2 (10)

In the RHS of Eq. (10) Qpcs is the FT-BCS thermody-
namic potential, including Fock terms calculated by the
LN method (see below), and A\,AN? are the corrections
due to the particle number fluctuations in the FT-LN
method with the coefficient A; and the particle number
fluctuations AN? = (N?2) — N2 derived explicitly in the

where FT-BCS in Ref. [7] as
J
}\2 22 f(ﬁ’ 61.)/6 (11)
A2y, f(Be)/€ + [y (Bi — N f(B, &) /€l]? + [X; sech?(38e:)][3; £(B,€5) /€3]
AN? = ANZp + AN, (12)
N
where ANZ. and ANZ, are the quantal and statistical
QF SF q ANZ. =2 TR — Y\2(1 — 0. A2 /.2

parts of the particle number fluctuations AN? respec- SF ; nil (B = A) (1= ni) + 7 /€, (14)
tively with
ANZp = A? 1—2n;)/e2, 13

QF Zz:( i)/€; (13) f(B,€:;) = tanh(3e;) — 2 Be;sech?(1Be;) (15)
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and n; being the quasiparticle occupation number
n; = [1 + exp(Be;)] 1. (16)

The reason for the identification with ANZp and ANZg
has already been discussed in Refs. [4,7] and we will not
repeat it here.

The single-particle energies in the LN method are
renormalized by the exchange terms and by the correc-
tions due to the particle number fluctuations ~ 4\yv?
as

E; = E? + (422 — G)v?

1 _E;,—
+560—,

2

Ani [1 - Eie_ A tanh(%—ﬂei) y (17)
i

where the thermal average has been done in the FT-HFB
approximation using Wick’s theorem [8,19)] for the ensem-
ble average.

In practice the calculations in the FT-BCS have been
usually performed without the last terms in Eq. (17).
The numerical evaluations performed in heavy nuclei [6,7]
have also shown that this ~ Gn; part of the exchange en-
ergy gives a negligibly small contribution to the excita-
tion energy and the level density. In the model case con-
sidered in Sec. IV this part gives no contribution. On the
other hand, the presence of the terms ~ 4\,v2 nearly sup-
presses the self-energy correction due to the part ~ Gv?
of the exchange terms, which is also an important fact
for the accuracy of the method at high temperatures (see
Sec. IV). This merit of the LN method allows one to ap-
proximately set E; ~ E?, as a result of the cancellation
of the exchange terms ~ Gv? by the effect due to the
particle number fluctuations (the terms ~ 4Xpv2).

Based on this advantage of the LN method, we now
modify the SPA thermodynamic potential (7) in such
a way that both effects from the exchange terms and
from the particle number fluctuations are simultaneously
taken into account. Namely, we define the modified SPA
thermodynamic potential Qpn(spa) (6, A, A) as in Eq. (9),
where the gap A plays the role of the integration param-
eter in the integral of the type (6). We use the subscript
LN(SPA) to denote quantities calculated in the SPA in-
cluding LN corrections.

Thus, we define

2 o0
Zinpa)(ByA) = =B | Puneseay(8, M, A)AdA
G Jo

(18)

where the probability Prx(spa) (6, A, A) has the form (9)
containing the thermodynamic potential Qpnspa) de-
fined similarly to Eq. (10)

Qun(spa) = Qspa — M2 AN? + (H,). (19)

In Eq. (19) we use the abbreviation (H,) to denote the
contribution of the exchange terms (with the LN renor-
malization) consisting of the part ~ (43 — G)v? and the
part ~ Gn; discussed above.

Equations (18) and (19) are the central point of our
postulation, in which we attempt to encompass the ex-
change terms together with the effects of second order

in the particle number operator N, charaterized by the
particle number fluctuations AN? (12), in the FT-LN.

The energy E of the system can be deduced from the
grand partition function Z as [9,19]

dlnZ

oB
The level density p, which is the inverse Laplace trans-
form of the grand partition function [21,22], is evalu-

ated by means of the saddle-point approximation for one-
component system as

p(N,E) = Z(8,\) explB(E — AN)|/2nvD (21

at the saddle points for the energy [Eq.(20)] and the par-
ticle number N

O0lnZ
N= on (22)
In Eq. (21) D is the 2 x 2 determinant of the second
derivative matrix 82Z(z)/8z;0z; with z = (8, B)).

E=- +AN. (20)

III. THERMODYNAMIC AND SPA AVERAGES

So far fluctuations in nuclear systems at finite tempera-
ture have been treated as fluctuations of thermodynamic
quantities, which are assumed to behave classically. The
calculations then have been considerably simplified by
applying the results of the Landau theory of phase tran-
sitions [9]. Thus, the mean value of a quantity, related
to the order parameter O, is expressed through the func-
tional Q(0O), which is the thermodynamic potential cor-
responding to the distribution of this quantity by

(©) = 5 [ Oexpl-pa0)Id0, (23)
where
N = / exp[—BR(O)]dO. (24)

Using Egs. (23) and (24) for calculating the thermody-
namic average pairing gap (A) with the thermodynamic
probability (9), the expression

(A) = / APspa (B, A, A)dA / / Pspa (8, A, A)dA

(25)

has been employed in the literature for the thermody-
namic average gap (cf. Refs. [1,2]) and the average en-
ergy has been calculated as a function of this thermody-
namic average gap. Consequently, in the FT-LN method
one can define the LN average gap (A) from Eq. (25),
where the probability Pspa(8,A,A) (9) should be re-
placed by Pun(spa) (8, A, A) with the thermodynamic po-
tential QLN(SPA) (ﬂ, )\, A) defined by Eq (19) [7]

The range of applicability of these equations has been
discussed thoroughly in Refs. [9,23]. The quantal effects
are neglected [9]. Moreover, the averaging (25) is defined
in an ad hoc macroscopic manner with no direct relation
to physical observables. Nevertheless the merit of ac-
counting for the statistical fluctuations in the form (25)
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in hot finite systems is the qualitative smoothing of the
phase transition from superfluid to normal in the region
of critical temperature T, and the fact that the average
gap (A) does not vanish even at T > T, [1,2].

The SPA, on the contrary, is a solid microscopic ap-
proach, which is exact in the limit T' — oo [11]. However

the second order in the particle number operator in the
standard SPA.

The SPA energy, calculated from Eq. (20), can be ex-
pressed in a form containing the energy (ﬂ ). Making use
of Eq. (6), the derivative in the RHS of Eq. (20) leads to

there is a discrepancy between the energy calculated in Espa = _Mﬂi +AN =& — 1 , (26)
the standard SPA and the exact one at low temperature oB B
[12] due to the missing of Fock terms and of the effect of  where
|
le ] N lo o]
E= / (H)Pspa (B, A, A)AdA// Pspa(B, A, A)AdA . (27)
0 0

It is apparent that & and E(a), which is the energy

(H) (8), calculated by replacing A by the mean value
(A) (25) of the pairing gap, do not coincide. However
Eqgs. (26) and (27) show that fluctuations of the mean
field in the SPA also include the statistical fluctuations
in the sense of the classical thermodynamic with a new
metric AdA instead of dA.

Applying the FT-LN method in the SPA context, we
perform in fact an approzimate particle number projec-
tion at finite temperature, which also includes the effect
of Fock terms. Therefore, by treating the particle number
fluctuations following Eqs. (18)-(19), we believe that we
can improve the standard SPA. In short, both quantal
and statistical fluctuations are encompassed in an ap-
proach, which still gives the accurate high-temperature
limit.

IV. NUMERICAL RESULTS

In order to check the present FT-LN approach in the
SPA context, we calculate the energy, pairing gap, and
energy level density in an exactly soluble model with a
single j shell, which is half filled by N = ) particles inter-
acting via a monopole pairing force (the 2Q degenerate
model with A = —%"- and € = A). This model has been
employed in Ref. [12] when the SPA was used for the first
time to treat fluctuations in finite nuclear systems. The
exact result for the energy is given by diagonalizing the
monopole pairing Hamiltonian in the seniority scheme
(3,8] and the pairing gap is expressed as [3]

A(B) = vV-GE(p). (28)

The SPA partition function Zgpa [Egs. (6) and (7)] in
this model takes the simple form, obtained in Ref. [12],
with

A2
Ospa(B A A) = = - N(A+4)

2N
5 In[1 + exp(—B4A)] . (29)
The Fock terms in this simple model are reduced to
~ Gvf = %G’ because the part ~ Gn; vanishes. There-
fore, accounting for only the exchange terms in this model
leads to a constant shift down of the SPA energy by %G,

which makes incorrect the high-temperature limit.
The LN corrections from Egs. (10)—(19) have the sim-
ple expression in this case

A2 = %co‘ch(%,@A) , (30)
AN? = N(1 — 2n + 2n?), (31)
n=[1+exp(BA)]7", (32)
BA2AN? = BA coth(BA). (33)

The determinant in Eq. (21) with these corrections can
be calculated based on the expressions, derived in Ap-
pendix B of Ref. [7].

The results discussed below have been obtained with
the same set of values (G = 0.1 MeV, N = 20), used in
Ref. [12].

The energies Espa, ELNsPa): E(a), and E( &) are plot-
ted in comparison with the exact one Feyxact as func-
tions of temperature in Fig. 1. With the LN corrections,
the SPA energy (dotted curve) is significantly improved
(dashed curve) and the discrepancy with the exact result
(solid curve) is nearly eliminated. We notice that there is
still a shortcoming at very low (near zero) temperatures
due to the prefactor oc 8! in the definition of the SPA
partition function (6), which leads to a negative specific
heat [12]. This problem could be solved by recourse to a
definition of the energy as a trace of the product of the
Hamiltonian and the density operator avoiding the pres-
ence of this prefactor as has been done in our previous
paper [24] (cf. Ref. [15]), but we will not dwell upon it
here. In the region of the critical temperature T, of phase
transition the LN corrections give an overestimation as
compared to the SPA energy. However the SPA energies
(with and without the LN corrections) are always closer
to the exact energy as compared to the thermodynamic
average ones E(,) (dot-dashed curve) and E 5, (double-
dot—dashed curve). Although the thermodynamic aver-
age energies correspond to positive specific heats at very
low temperatures, they are not accurate in the temper-
ature region of phase transition and especially at high
temperatures.

The temperature dependence of coefficient A2 [Egs.
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FIG.1. Energy as a function of the temperature in the de-

generate 2Q2-level model. The solid curve corresponds to the
exact calculation in the seniority scheme, the dotted curve to
the SPA, the dashed curve to the LN method in the SPA con-
text [LN(SPA)], the dot-dashed curve to the thermodynamic
average in the FT-BCS (E(a)) and the double-dot—dashed
to the thermodynamic average in the FT-BCS with the LN
corrections (E(z,).

(11) and (30)] begins at low temperatures with nearly
constant value equal to 0.25 (Fig. 2) so as the term
x (4\2 — G) in Eq. (17) is completely suppressed. It
leads to rather accurate values for energies at low tem-
peratures in both thermodynamic and SPA approaches,
when the LN corrections are included. At the same time
accounting for only the Fock terms in the SPA in this
special case shifts down the SPA energy at zero tempera-
ture only from —10 to —10.5 MeV and this shift (by —0.5
MeV) is independent of the temperature. Therefore such
simple accounting of the Fock terms in the SPA leads to
an incorrect result even in this simple model case. The
exchange terms must be included together with the LN
corrections within the SPA, because they correspond to
effects of the same order. The LN corrections practically
cancel this incorrect Fock shift in the energy at high tem-
peratures.

The average energy € (27) is not accurate at finite tem-
perature (Fig. 3). Therefore by comparing the results ob-
tained in the SPA and those from the primitive applica-

0.08
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5 005
L

= 004
&

~< 003

0.02

0.01

0

0.2 0.4 0.6 0.8 1 1.2 1.4
T, MeV
FIG. 2. Coefficient A2 as a function of the temperature in

the degenerate 2Q-level model.

E, MeV

T, MeV

FIG. 3. Thermodynamic average energy £ (27) as a func-
tion of the temperature in the degenerate 2Q-level model.
The solid curve corresponds to the exact calculation in the
seniority scheme, the dot-dashed curve to £ from Eq. (27),
the double-dot—dashed curve to £ with the LN corrections.
For a comparison the energies E(ay and E 4, from Fig. 1 are
reproduced, which are denoted here by the dotted and dashed
curves respectively.

tion of the Landau theory of phase transition to finite nu-
clear systems [Egs. (25) and (27)], we have demonstrated
that the thermal average in hot finite nuclear systems
cannot be understood as the average (25) or (27) even in
this simple degenerate model. In this sense the modified
SPA proposed in the present paper is a candidate, which
can treat the thermal (quantal and statistical) fluctua-
tions better.

The pairing gap reaches the exact value in the LN
method at low temperatures in both thermodynamic and
SPA contexts (Fig. 4). At high temperatures only SPA
pairing gaps (with or without LN corrections taken into
account) are close to the exact result. It is noteworthy
to stress again that the LN method is, nevertheless, only
an approrimate number projection, containing up to the
second order in the power-series expansion over the parti-
cle number operator N [10]. The accuracy of the method
is determined, strictly speaking, by the assumption that
the saddle point in the projected integration is sharply
pronounced. In the nuclear superfluid model, this means

0.2 0.4 0.6 0.8 1 1.2 1.4
T, MeV

FIG. 4. Pairing gap versus temperature. The various
curves correspond to different approximations as in Fig. 1.
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E, MeV

FIG. 5. Logarithm of the level density as a function of the
energy in the degenerate 2Q2-level model. See caption to Fig.
1.

that the quantal part AN%F (12) of particle number fluc-
tuations is assumed to be large compared with unity [25].
In the temperature region near the critical point T, and
higher, this condition is rather poor (see Refs. [6,7]) and
an expansion with higher orders of N would be required.

The logarithm of the energy level density calculated
within the SPA framework is quite accurate at high tem-
peratures (Fig. 5), while at low temperatures the tra-
ditional thermodynamic average including the LN cor-
rections gives a better result (double-dot—dashed curve).
However, the LN method in the SPA context allows one
to extend the calculations of the level density to lower en-
ergies. Some small-amplitude quantal fluctuations could
also be, in principle, included as RPA-like contributions
to improve the low-energy tail of the level density as has
been done in Ref. [14]. To our best knowledge there is no
direct connection between the RPA scheme and the LN

method. However a study of this kind would be highly
desirable.

V. CONCLUSIONS

We have proposed an approach, which encompasses
both particle number fluctuations and the statistical fluc-
tuations of the mean field in the context of the SPA. We
see the merit of the present approximation in its simplic-
ity, which nevertheless allows one to make an accurate ap-
proximate number projection at finite temperature and
at the same time includes automatically the contribu-
tion of the exchange terms into the standard SPA. The
calculations in the schematic degenerate 2Q2-level model,
performed in the present paper, confirms the correctness
of our belief. They also show that while at small temper-
atures the traditional thermodynamic average with the
particle number fluctuations taken into account can give
good results; it is not more valid at high temperatures,
where the SPA is exact.

Because the LN corrections are incorporated in the
grand potential, the present approach avoids an inte-
gration over the gauge angle as in the exact number
projection [8,24]. Therefore it should not be more nu-
merically difficult for calculations in realistic schemes as
compared to the standard SPA. The calculations along
this way with a Hamiltonian, determined by a realistic
single-particle spectrum plus pairing and quadrupole in-
teractions would be highly desirable in comparison with
the finite-temperature number projection, proposed in
our previous work [24].

We acknowledge the support from the DAAD and the
BMFT (under Contract No. 06-MT-733) of Germany
(N.D.D. and P.R.), and from CONICET (Beca Externa)
and CIC (PBA) of Argentina (R.R.).

(1] L.G. Moretto, Phys. Lett. 40B, 1 (1972).

[2] A.L. Goodman, Phys. Rev. C 29, 1887 (1984).

[3] J.L. Egido, P. Ring, S. Iwasaki, and H.J. Mang, Phys.
Lett. 154B, 1 (1985).

[4] J.L. Egido, Phys. Rev. Lett. 61, 767 (1988).

[5] R. Rossignoli and A. Plastino, Phys. Rev. C 37, 314
(1988).

[6] N. Dinh Dang and N. Zuy Thang, J. Phys. G 14, 1471
(1988).

[7] N. Dinh Dang, Z. Phys. A 335, 253 (1990).

[8] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer, New York, 1980).

[9] L.D. Landau and E.M. Lifshitz, Statistical Physics, Vol-
ume 5 of Course of Theoretical Physics (Pergamon,
1980).

[10] H.J. Lipkin, Ann. Phys. 31, 528 (1960); Y. Nogami,
Phys. Rev. 134, B313 (1964); Y. Nogami and I.J. Zucker,
Nucl. Phys. 60, 203 (1964).

[11] P. Arve, G. Bertsch, B. Lauritzen, and G. Puddu, Ann.
Phys. (New York) 183, 309 (1988).

[12] B. Lauritzen, P. Arve, and G. Bertsch, Phys. Rev. Lett.
61, 2835 (1988).

[13] B. Lauritzen and G. Bertsch, Phys. Rev. C 39, 2412
(1989).

[14] G. Puddu, P.F. Bortignon, and R.A. Broglia, Phys. Rev.

C 42, 1830 (1991).

[15) B. Lauritzen and J.W. Negele, Phys. Rev. C 44, 729
(1991).

[16] Y. Alhassid and J. Zingman, Phys. Rev. C 30, 684
(1984).

[17] AK. Kerman, S. Levit, and T. Troudet, Ann. Phys.
(N.Y.) 148, 436 (1983); S. Levit and Y. Alhassid, Nucl.
Phys. A413, 439 (1984).

[18] A.V. Ignatyuk, Yad. Fiz. 21, 20 (1975) [Sov. J. Nucl.
Phys. 21, 10 (1975)].

[19] D.J. Thouless, The Quantum Mechanics of Many-Body
Systems (Academic, New York, 1961).

[20] J. Hubbard, Phys. Rev. Lett. 3, 77 (1959); R.L.
Stratonovich, Dokl. Akad. Nauk. SSSR 115, 1097 (1957)
[Sov. Phys. Dokl. 2, 416 (1958)].

[21] L.G. Moretto, Nucl. Phys. A182, 641 (1972).

[22] A. Bohr and B. Mottelson, Nuclear Structure (Benjamin,
New York, 1969), Vol. 1.

[23] R.E. Peierls, Quantum Theory of Solids (Clarendon, Ox-
ford, 1974).

[24] R. Rossignoli, P. Ring, and N. Dinh Dang, Phys. Lett. B
(to be published).

[25] I.N. Mikhailov, Zh. Eksp. Teor. Fiz. 45, 1102 (1963) [Sov.
Phys. JETP 18, 761 (1964)].



