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The modified finite-temperature random phase approximation (FT-RPA) has been constructed by tak-
ing the influence of thermostat on the structure of quasiparticles into account. The modified FT-RPA
linear response for electric quadrupole (A"=2") and octupole (A"=3") excitations in **Ni has been cal-
culated as a function of the nuclear temperature. As compared to the conventional FT-RPA, the
modified FT-RPA has given a stronger spreading for the strength distribution of quadrupole excitations

at finite temperature 7'< 3 MeV.

PACS number(s): 21.60.Jz, 21.10.Pc, 21.10.Re, 23.20.— g

I. INTRODUCTION

The finite-temperature random phase approximation
(FT-RPA) has been the background of many microscopic
theories studying the temperature-dependent effects upon
collective vibrations in hot finite nuclear systems [1-6].
Based on it, interesting features related to the nonvanish-
ing thermal superfluid pairing gap [7], to the thermal
splitting and collapse of low-lying vibrational states
[1,3,5], and to the shift and broadening of strength distri-
butions for isoscalar (IS) and isovector (IV) giant reso-
nances (GR) have been investigated in detail [8-10].
The difficulty associated with discrete FT-RPA calcula-
tions of collective roots and strength distributions in a
pair configuration space with large dimension has been
avoided by applying alternatives of linear response tech-
niques [4,11,12].

However, in the conventional FT-RPA [1-7] and in
the approaches constructed on it [8-10] the thermal
single-particle or quasiparticle excitations have been gen-
erated by operators of zero-temperature particles or
quasiparticles immersed in the thermal Hartree-Fock or
Hartree-Fock-Bogolubov mean field. The temperature-
dependent effects, therefore, have been accounted for
only by averaging over the statistical ensemble appearing
in the single-particle or quasiparticle occupation num-
bers. The influence of the thermodynamical ensemble,
playing the role of thermostat, on the structure of quasi-
particle operators has been ignored so far.

Recently, based on the thermal Bogolubov canonical
transformation in the formalism of thermofield dynamics
(TFD) [13], we have constructed the microscopic FT-
RPA operators from the zero-temperature two-
quasiparticle ones and derived for them a Dyson boson
realization [14]. The adoption of the thermal Bogolubov
transformations allowed us to take into account the
effects of the thermostat on the structure of thermal
quasiparticles.

In this paper we are going to construct a modified ver-
sion of the FT-RPA making use of the FT-RPA micro-
scopic operators constructed in [14] under the influence
of thermostat. We shall apply this modified FT-RPA to
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study the quadrupole (A"=27) and octupole (A"=37)
vibrations in the case of separable multipole interactions
for a superfluid spherical nucleus. Applying the linear
response techniques in conjunction with Bethe-Salpeter’s
equation method [12], we shall compare the results ob-
tained in the modified FT-RPA with those of the conven-
tional one.

The paper is organized as follow. In Sec. II we discuss
the theoretical details of the modified FT-RPA in the
linear response treatment. Results of calculations of
strength distributions for multipole vibrations A"=2%
and 3~ for *Ni are shown in Sec. III. Conclusions are
drawn in Sec. IV.

II. FORMALISM

In this section for sake of convenience we describe
briefly the main features of the model Hamiltonian we
use as well as the conventional FT-RPA equation [5]
based on this Hamiltonian in Sec. II A. This summary
will make easier the comparison with the modified ver-
sion of FT-RPA derived in Sec. II B.

A. Model Hamiltonian and conventional FT-RPA

For the investigations of electric (EA—) transitions
with multipolarity A we adopt the Hamiltonian [15]
which consists of terms describing, respectively, the nu-
cleon motion in the mean field H,,, the monopole
superfluid pairing interaction H ,;, and the residual in-
teractions in the form of separable multipole particle-hole
(p-h) forces H,

H=H, +H,, +H,, (1
where
H,= 3 [Ej(t,)~} Ja},a; ,
jmt,
H,.=—+32G({t,) ¥ a;,,a;ﬁaj,m,aj,m: , (2)
t jmj'm’

z

Hp==13 3 & +ox M, (1 )0My,(pt,) -
Ap t,p=*1
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In Egs. (1) and (2) we have used the standard notations
widely employed in [15]. Namely, a ;m and aj,, are the
single-particle operators; ¢, is the z projection of the nu-
cleon isospin operator; E;(z,) are single-particle energies
for neutron (n) and proton (p) G(tz) are the superfluid
pairing constants; k,*’ and «,'*’ denote the IS and IV
constants of separable mult1pole forces; M ku(’ ) and
M,;,(pt,) are the creation and annihilation multipole
operators. The tilde stands for the time-reversing opera-

tion: 4 =(—)""qg i —m- Using the standard canonical
Bogolubov transformation
t =y o
A =ujj, TV (3)

the Hamiltonian (1) is expressed in terms of the quasipar-
ticle creation a}m and annihilation a;, operators. At
finite temperature the quasiparticle energies €; are found
by solving the temperature-dependent BCS equations

(FT-BCS) [16]

e (T)=V(E;—A)+A%, @)
where the superfluid pairing gap A is defined as
G2(1+‘)uv( —2n;) (5
with n; bemg the quasiparticle occupation number at
temperature T
n;=[exp(e;/T)+1]7" (6)

for both neutron and proton components. The single-
particle energies E; and the chemical potential A are
found by the average nucleon number conserving condi-
tion
E;
N=3 G+ [1—
J

(1—2n;) (7

and depend, in general, also on T. Due to the finiteness
of realistic nuclei the thermal fluctuations must be includ-
ed [17,18]. Consequently, the thermal average pairing
gap (A7) which does not collapse at the critical temper-
ature T, ~1Ar_, should be adopted instead of A, from
|

(+)2¢1 —,, _ (—
uj; (1 n; nj.)(aj+sj,)_vjj,

Eq. (5). Itis defined as [17,18]
(Ap)= fo“’ATP(AT,T)dAT/fO‘”P(AT,T)dAT . ®

where P(Ar,T) is the probability that the pairing gap in
the system with the free energy F(A;) takes the value A,
at T:

P(A;, T)~exp[—F(A;)/T]. 9)

The gap (A7) will be used in our calculations in Sec. III.
The multipole operator Mt (t,) from Eq. (2) in the

quasiparticle representation has the form [15]

(_ A—

i — (A
M, ()= e z SR g

[ 4], + 4,,Gi]

+v7 "By, (i)} (10)

with f{})=(j'|[iR,(r)Y;|j) being the single-particle
matrix elements corresponding to the separable multipole
interactions; u ") =uv,+uv;, v\ =u;u;—v,v; and
the well-known two-quasiparticle operators 4 T, A, B, B

LG )—2(jm]m IMedal,al,
i

B, jj')=— 2 (jmj'm |7W>C¢,ma],,,
i’

(11)

In Ref. [5] we have introduced the microscopic collective
operators called thermal phonon ones of type

Q1L TI=13 (¥} AL, Gi") — @l 4,,if")
i’
+&3B, Ui ) =BG
Q1 (D=[Q],(T)]

and linearized the equations of motion for operators (12)
to obtain the FT-RPA equation

FIXr(0)]=1+ (kP +cM)[ XX 0)+ X X7 (0)]
+ax kM X M (0) X PPN 0)
=0 (13)

(12)

with

)Z(nj-—njl)(sj—ej/) - (14)

XO( y=— (M
e 2k+1 2 13 (g; ¢ ) —o?

The quasiparticle occupation number n; in Eq. (14) ap-
peared as a result of averaging over statistical ensemble
and by using the commutation relations valid to O(n;)
(1,5]

([ Ar,Gado s AL Ged) D
=8,8,,[8;, 8, . —(—

Jati,—A
mt[JJ JpJa ) ’ 87,91

Jada JpJe
X(l—nja—njb) ,
(15)

([BXu(jajb )’Bk’p’(jcjd)])zskkapu 8] Jj ajb]d( —nja) ’

— 2.2
(sj Ej') [4]

[
where

(- )=Tr[---exp(—H/T)1/Tr[exp(—H/T)] . (16)
We note that the same equations as (13) and (14) have
been also obtained in [1,2] by using the techniques of
temperature-dependent Green’s-function method. From
Egs. (12)-(16) one can see that the only temperature
effects included in the FT-RPA equation (13) are ac-
counted for by using the thermal average (16) leading to
the quasiparticle occupation numbers of type (6). At the

same time the two-quasiparticle operators forming the
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thermal phonons (12) have the same form as those at zero
temperature with the temperature-dependent quasiparti-
cle energies €;(T') calculated from Eq. (4).

B. Modified FT-RPA

We are going now to consider how the effects of the
thermostat on the quasiparticle excitations modify the
FT-RPA equations. According to the conception of the
TFD [13] the influence of temperature appears in the
structure of quasiparticle operators a}m and a;,, through
the thermal Bogolubov transformation [13]

t =/ 1=n.f =2/
ajm(T)—\/l nia, \/njotj’ﬁ ,
\/l—nja m+\/n a

The thermal quasiparticles ajm(T) and «a jm(T) in the
left-hand side of Eq, (17) describe the states with quasi-
particle excitation a}m and quasihole annihilation a  ex-
isted due to the thermostat. Using Egs. (3) and (17) we
find that the transformation from particle creation and
annihilation operators a }:,, and a;, to the thermal quasi-
particle creation and annihilation operators a;fm(T) and
@, (T) has the same form as Eq. (3)

a7
J

al =

jm = U ,,,,(T)+vjajm(T), (18)

where, however,

fij=\/l—njuj+\/7jvj R

B ———\/l—n‘u—\/_n—juj .
The thermal two-quasiparticle operators (w1th subscript
D Aky(]] )7 Aky(.]] )rs BaUi' s a“(Ti Bl.y(.’.l )r have
been expressed m terms of operators A4;,(jj’), 4,0ij’),

B;,(jj'), and BM_L(]] ) from Eq. (11) based on Eq. (17) in
Ref [14] as

(19)

AL Ui
=V (=n)(A=n) A", Gi) =V nn; 4Gl
+v (1—n,)n, —n;)n;B,,(jj') )+ (1— nyn;B, ., (jj")
_‘/2]+1‘/ —n; )njﬁjjtsm,
- 20)
B;,.Gi')r

=v/(1—n))(1—n;)B,,(jj') =V n;n; l“(J]
—V (U =npn; A%, G50 —V (A =npin; A, j")

+V2i+1n,8,:8,

A Ginr=141,Gi71" BLGINr =By r]

Due to the canonical transformation (17) the thermal
two-quasiparticles AT, Ar, By, and BT from Eq. (20)
satisfy the same commutation relatlons (15) of the zero-
temperature operators AT, 4, B, and BT, immersed in the
thermostat. In fact, by using the Dyson boson realiza-
tions obtained in Ref. [14] for thermal two-quasiparticle
operators A}, Ap, By, and BT one can easily venfy the
validity [to O(n;)] of Egs. (15) for operators AT, A, By
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and B}.

Employing Egs. (20) we have shown in Ref. [14] that
the thermal phonon operators (12) have the same form as
the conventional microscopic RPA phonon ones:

Qlu(M=1 2 [} AL, Ui =y A3, r ]

_22

2n

Q,u(T (x5 A, GiN =y Al Ginr

where the relations between the amplitudes xr ” ' y H and
the amplitudes ¥, ¢, &, and § in the former expression
(12) of thermal phonon operators ka T) and Q,,,(T)
are [14]

Ai _ — i
H -—x” ‘v (1 n; )1 +yu \/njnj ,
(pﬂ yjj'\/(1~n l—n +x}“\/nn R o2
)‘"“ ﬁ’\/ (1—n n -—y”‘\/(l—n )nj R

k’—y”’\/(l—-n n; —xjj“\/(l—n In;

It is noteworthy that thermal phonon operators (21) con-
sist only of the thermal two quasiparticle AL( Jj')r and
4,,Uj")r from Egs. (21).

Applying now the usual procedure of linearizing the
equations of motion for operators (21) with Hamiltonian
(1) or the standard variational procedure (see, e.g., Ref.
[15]) we obtain after some transformations the modified
FT-RPA equation, which has the same form as Eq. (13)
where, however, instead of matrix X9(w) (14) the matrix

' F2(1—n, —n;)(g;j+e;)

1 (7») 2 ]J Jj
2A+1 JE ] (ej+ej:)2—w2

XN w)=
(23)

is understood. In Eq. (23) functions # ;jf) are combina-

tions of coefficients #; and ; from Eq. (19):
ﬂ;jf):—ﬁjﬁj,—i—ﬁj.’ﬁj. We note that in Eq. (23) there are
only the poles of type (¢; +¢;), while the poles (g; —¢;)
as in the conventional FT-RPA equation (14) are absent.
The appearance of the poles (g; —¢;) 1n (14) are caused
by the presence of operators B and B' in the definition
(12) [1,2,5] while in Egs. (21) these operators are involved
in operators A; and A by the transformation (20).
Working with operators AT and A from the definition
(21), we obtain only the poles (g; +¢;). This interesting
feature of the present modiﬁed FT-RPA allows us to
avoid the problem with (p-p) and (h-h) states which ap-
pear between the poles ¢; —¢; and can be localized near
zero when ¢;~¢;. The presence of a great number of
(p-p) and (h-h) states, which are generally less energetic
than the (p-h) ones, has increased too much the dimen-
sion of pair configuration space in the conventional FT-
RPA. Therefore they have complicated the computation
procedure and put under question the traditional choice
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of parameters for multipole interactions. In the rnodlﬁed
FT-RPA the contribution of operators B and B'lis ac-
counted effectively by using the definition (21). The di-
mension of two-quasiparticle space is the same as in

zero-temperature RPA.

Writing the modified FT-RPA equation in terms of the
unperturbed linear response matrix X3 from (23) on the
complex energy plane Q=w+iy

|

1 1
o—(g;+ep)tin  o+(e;+ep)+in

Y%(Q) 1 (M 2~ (+)2(1

— 24
2(2A+1) E @9

n-_nj')

we can use the linearized Bethe-Salpeter equation to obtain the coupled system of linear response matrices. Since the
application of this method has been elaborated in detail in Ref. [12], we give here only the final formulas of the linear
response matrices X T(Q), "ty in neutron-neutron, proton-proton, and neutron-proton channels. They read (cf. Ref. [12])

X (Q), —[1+(K0“+x1“ )X2P(Q)]1XA(Q)/F[XAQ)],
X (Q),, =[1+ (" +kM)XF(Q)1XFP(Q) /FXp(Q)] (25)
X (Q),,=— (" —Kg“))?%‘"’(a)f%“”(m/:?[)?%(m] ,
[
P E
where 7[Xg(ﬂ)] is defined from the left-hand side of Eq. m(T),= fE ZS(EA,w,T)mkdm . (28)
1

(13) with replacing X3(Q) by X2(Q) (24) for neutron and
proton components, respectively.

The corresponding IS and IV linear response matrices
have the form [12]

Xr(Q,7=0)=X(Q),, +Xr(Q),,
X (Q,r=1=Xp(Q),, +X(Q),

+2X(Q),, ,
—2%,(Q),,

From Eqgs. (24)-(26) we can calculate the unperturbed
and FT-RPA strength functions S%EA,w,7) and
S(EA, (0,7') as the imaginary part of linear response ma-
trices X2(Q) and X(Q), respectively,

SUEA@,7)=— ;lr—lm.fi?(m,n,f) :
1 (27)
S(EA0,7)= = - TmE(EA,Q,7)

The FT-RPA moments m; (T), are defined in the energy
interval E, S0 =<E, as

The centroid energy E; and the spreading width " of the
multipole strength distributions are calculated based on
Eq. (28) in a standard way

Er=m(T),/myT),,
E, _ 12 (29)
r= [mo_l(T)TfE S(Er 0,7 0—E; ) dw
1
={m,(T),/my(T),—E:}'/* .

III. NUMERICAL RESULTS

We are now going to present and discuss the numerical
results of our calculations of the linear response functions
in the modified FT-RPA for E2 and E3 excitations in hot
spherical *®Ni nucleus. These results will be shown in
comparison with those of the calculations based on the
conventional FT-RPA equations (13) and (14).

The single-particle energies have been calculated in the
Woods-Saxon potential W, whose parameters have been

TABLE I. Energy-weighted sum rules (EWSR) for electric quadrupole (A"=2%) and octupole
(A"=37) excitations in *®Ni. Neutron (n), proton (p), isoscalar (7=0), and isovector (r=1) EWSR are
displayed at T=0 and 3 MeV. Columns (a) show the values obtained in the conventional FT-RPA.
Columns (b) present the results corresponding to the modified FT-RPA. All values are given in single-

particle units.

Unperturbed values

FT-RPA values

(n) (p) (n) (p) (r=0) (r=1)
AT T
(MeV)  (a) () (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
2% 0 475 475 321 321 474 474 321 321 799 799 791 791
3 402 551 262 471 402 549 261 470 666 1023 661 1099
3- 0 969 969 387 387 963 963 385 385 1363 1363 1332 1332
3 867 964 386 408 862 958 384 406 1259 1379 1232 1347
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defined following Ref. [19]. This basis includes discrete
and quasidiscrete states arising from the centrifugal and
Coulomb barriers. The radial part of the single-particle
matrix elements f ;j}?’ is described by R,(r)~r". For
choosing the IS and IV constants Kgf]) of multipole in-
teractions we have followed the method presented previ-
ously in Ref. [15]. Namely, we have first defined the di-
pole IS constant «\!’ by putting the first discrete RPA
root for dipole modes at zero temperature equal to zero
to exclude the “spurious” 1~ state. The IV constant «}"
has been defined to reproduce the location of the IV di-
pole resonance. After that by fixing the ratio «}" /«{!’ for
higher multipolarities we have found the quadrupole and
octupole IS and IV constants so as to reproduce in the
discrete RPA calculations the lowest experimental 2;
and 3; energies [20]. At finite temperature several nu-
merical estimations [21,22] have shown that the tempera-
ture dependence of the single-particle energies E; as well
as of the multipole constants is rather smooth and weak
up to T~ 6 MeV. We have therefore used in our calcula-
tions at finite temperature the same single-particle basis
and values of multipole constants KE)},LI) defined at zero tem-
perature.

The results for the strength functions S EA,®,7) and
S(EA,w,7) calculated in the conventional and modified
FT-RPA are depicted in Figs. 1-4 at T =0 and 3 MeV.
In Figs. 1 and 2 the unperturbed strength functions
S%EA,0,7) of 27 and 3~ excitations are shown for neu-
tron and proton channels separately. The strength func-
tions for IS and IV energy-weighted strength distribu-
tions are presented in Figs. 3 and 4, respectively. In cal-

100 (a) neutrons

50

> 10 20 30 a0
z w (MeV)
3
E
W@ r
= 100 (b) protons
w
o
so | A

o 10 20 30 20
w (MeV)

FIG. 1. Unperturbed strength distributions corresponding to
(a) neutron-neutron and (b) proton-proton configurations for
electric quadrupole (A"=2") excitations in **Ni. Solid lines
show the results calculated at zero temperature. Dashed lines
are the conventional FT-RPA results at 7=3 MeV. Dotted
lines present the results obtained within the modified FT-RPA
at T =3 MeV.
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FIG. 2. Unperturbed strength distribution for electric octu-
pole (A"=37) excitations in *®Ni. The results are shown with
the same notation used in Fig. 1.
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FIG. 3. Strength distributions for isoscalar (7=0) transitions
in *®Ni. Solid lines show the (a) quadrupole A"=2" and (b) oc-
tupole A"=3" linear response functions at T'=0. Dashed lines
are the conventional FT-RPA results at T=3 MeV. Dotted
lines present the results obtained within the modified FT-RPA
at T =3 MeV.
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FIG. 4. Strength distributions for electric quadrupole and oc-
tupole isovector (r=1) transitions in **Ni. The results are
presented with the same notation used in Fig. 3.

culating these strength functions we used a value n=1
MeV for the averaging parameter in Eq. (24). The choice
of the averaging parameter 7 in the linear response
method has been discussed thoroughly in Refs. [12,15]
and we do not repeat it here. From Figs. 1 and 2 we see
that the unperturbed neutron and proton strength func-
tions in the conventional FT-RPA are rather stable with
varying temperature except for the low-lying region un-
der 10 MeV (cf. Ref. [12]). At the same time the n- and
p-strength functions calculated within the modified FT-
RPA are more sensitive to temperature. In Fig. 1(b), for
example, there is a clear transference of the E2-proton
strength from the lower-lying region localized at E, =19
MeV at T=0 to the higher-lying one in the domain
E, =23 MeV at T =3 MeV within the modified FT-RPA.

In general, the temperature dependence of E 3-strength
distributions are weaker as compared to the E2 ones in
the high-lying domain.

The same feature is observed for the IS and IV strength
functions (Figs. 3 and 4). Figure 3(a) shows a collapse of
the first quadrupole state in the conventional RPA at
T =3 MeV; an effect which has been already discussed in
several works [3,5]. At the same time the E2 IS strength
function calculated in the modified FT-RPA is changed
significantly at 7=3 MeV as compared to the one at zero
temperature. We see in this case a large splitting of 2
state and a rather strong damping of the IS giant quadru-
pole resonance (IS-GQR) in such a way that the frag-
mented states are nearly fused together in a large bump
up to E, ~20 MeV. For the E3 IS states due to a great
number of (p-p) and (h-h) states the conventional FT-
RPA calculations give a too strong low-lying region at
E,~2 MeV at T =3 MeV as a result of shifting down the
3, state at nearly 5 MeV at T'=0. This peculiarity is ab-
sent in the modified FT-RPA E3 IS strength function at
T=3 MeV although the distribution is slightly
broadened.

The IV-GQR calculated within the modified FT-RPA
at T =3 MeV is shifted up while the result obtained in
the conventional FT-RPA is shifted down as compared to
the one calculated at T=0. The spreading width T" of
the former is also greater as will be discussed quantita-
tively later by analyzing the tables. The behavior of E3
IV strength distributions is nearly independent of temper-
ature in both versions of FT-RPA except for some little
changes at the tail of the resonance in the lower-energy
domain.

In the calculations of the centroid energies and the
widths of IS and IV E2 and E 3 states we have chosen the
energy interval (E;E,) in Eqgs. (28) and (29) such that
the corresponding energy-weighted sum rule (EWSR) ex-
hausted 88-90% of the model-independent values.
Thus, this interval is (E; =10 MeV; E, =20 MeV) for the
quadrupole IS states and (18 MeV; 30 MeV) for the IV
ones in the conventional FT-RPA calculations. For the
calculations in the modified FT-RPA version these values
are (10 MeV; 20 MeV) and (18 MeV; 33 MeV), respective-
ly. For the octupole IV states the energy interval in both
versions has been chosen to be (E; =18 MeV; E, =38

TABLE II. Centroid energies (E7) and widths (T") of the strength distributions corresponding to iso-
scalar (7=0) and isovector (7=1) 2% and 3~ excitations in **Ni. Columns (a) show the values obtained
in the conventional FT-RPA while the results of the modified FT-RPA are collected in columns (b).

All values are given in MeV.

A." T T E-T
(a) (b) (a) (b)
2% 0 0 14.48 14.48 1.84 1.84
3 14.91 12.83 1.79 4.50
1 0 24.61 24.61 2.65 2.65
3 23.94 26.81 2.64 3.28
3~ 0 0 11.09 11.09 8.80 8.80
3 6.32 12.51 8.26 8.30
1 0 31.74 31.74 3.13 3.13
3 31.46 31.64 3.14 3.11
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MeV). In fact, these are regions where the corresponding
giant multipole resonances are localized.

The linear response EWSR for quadrupole and octu-
pole excitations are shown in Table I. We have used Eq.
(28) for m; (T) which is the integrated energy-weighted
strength of the multipole field A”. Here also the tempera-
ture dependence of the EWSR for the quadrupole excita-
tions calculated in the modified FT-RPA [columns (b)] is
more pronounced as compared to the results of the con-
ventional FT-RPA [columns (a)]. The E2 EWSR ob-
tained in the modified version increases remarkably at
finite temperature.

In Table IT we present the values of the centroid energy
E; and the spreading width T for quadrupole and octu-
pole excitations. The most significant difference between
the results obtained in two versions of the FT-RPA is
found in the calculations of quadrupole excitations. The
centroid energy for the E2 excitations (r=0) at T=3
MeV calculated in the conventional FT-RPA is increased
to 14.91 MeV while the one for the IV states is decreased
to 23.94 MeV as compared to the zero-temperature
values 14.48 and 24.61 MeV, respectively. At the same
time the modified FT-RPA gives an inverse result, name-
ly, Er—; mev=12.83 MeV for IS excitations is less than
its value at T=0, while for IV excitations
Er—3mev=26.81 MeV is greater than E;_, The
spreading widths for IS and IV strength functions ob-
tained in the modified FT-RPA increase significantly at
finite temperature, while their values in the conventional
FT-RPA are nearly stable with varying 7. As a result of
calculations discussed above based on Figs. 1-4, the cal-
culated values of E; and for octupole excitations are
nearly independent of temperature in both versions of
FT-RPA. Moreover, the preference of the modified FT-
RPA can be approved here due to the absence of the
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strong low-lying IS state, which appeared in the conven-
tional FT-RPA calculations, as has been discussed above.

IV. CONCLUSIONS

In the present paper, based on the thermal canonical
Bogolubov transformation in the TFD, we have derived
explicitly the modified FT-RPA equation and applied it
to calculate the linear response strength functions for
electric quadrupole (A"=2") and octupole (A"=3") ex-
citations in hot *®Ni nucleus. The advantage of the con-
structed modified FT-RPA is twofold. On one hand, the
new equation does not contain obviously the (p-p) and
(h-h) poles; an unintended effect, which appeared in the
conventional FT-RPA so far. On the other hand, due to
the influence of the thermostat on the structure of
thermal quasiparticles participating in the construction
of modified FT-RPA microscopic phonon operators, the
new version has given a stronger spreading for the distri-
bution of multipole excitations, particularly for the quad-
rupole field, at finite temperature. Of course, to describe
the broadening of GR in hot nuclei one has to involve at
least the coupling to more complicated states and the
shape fluctuations as has been done in several papers
[8—11]. However, as a base, the modified version of the
FT-RPA constructed in this paper by the reasons dis-
cussed above seems to be more adequate as compared to
the conventional one, employed so far in the literature.

The application of this modified FT-RPA in the con-
struction of states containing the coupling to (2p-2h)
configurations is the goal for our future study.

The author is grateful to the Computer Center of the
Vietnam National Atomic Energy Commission (VNAEC)
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