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Chemical potential beyond the quasiparticle mean field
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The effects of quantal and thermal fluctuations beyond the BCS quasiparticle mean field on the chemical
potential are studied within a model, which consists of N particles distributed amongst � doubly folded equidistant
levels interacting via a pairing force with parameter G. The results obtained at zero and finite temperatures
T within several approaches, which include the fluctuations beyond the BCS theory, are compared with the
exact results. The chemical potential, defined as the Lagrangian multiplier to preserve the average number of
particles, is compared with the corresponding quantity, which includes the effect from fluctuations of particle and
quasiparticle numbers beyond the BCS quasiparticle mean field. The analysis of the results shows that the latter
differs significantly from the former as functions of G and T . The chemical potential loses its physical meaning
in the system with a fixed number of particles or after eliminating quantal fluctuations of particle (quasiparticle)
numbers by means of particle number projection. The validity of the criterion for the signature of the transition
to Bose-Einstein condensation, which occurs in infinite systems when the chemical potential hits the bottom of
the energy spectrum, is reexamined for the finite multilevel model.
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I. INTRODUCTION

Fluctuations play an important role in small finite systems
such as atomic nuclei. The mean-field theories, which work
well for very large or infinite systems in condensed matter and
solid state physics, need to be modified when applied to atomic
nuclei, especially the light ones. Among these theories, the
most popular one is the BCS theory, which describes the phe-
nomenon of superconductivity (superfluidity). It is well known
that this theory violates the particle number, which causes
the quantal particle-number fluctuations (PNFs). At finite
temperature (T �= 0), the BCS theory also violates the unitarity
relation R2 = R for the generalized single-particle density
matrix R. It has been shown by Goodman [1] that this sym-
metry violation comes from the effects due to quasiparticle-
number fluctuations (QNF), which are neglected within the
Hartree-Fock-Bogoliubov (HFB) theory at T �= 0. The PNF
are of the quantal nature as they exist even at T = 0, whereas
the QNF are thermal fluctuations because they arise only at
T �= 0.

The results of a considerable number of theoretical studies
have shown that fluctuations in small systems indeed lead
to significant modifications of quantities, which are defined
within the mean field and/or thermal equilibrium, where the
effects of fluctuations are ignored. Among the two unknowns,
which are defined by solving the BCS equations, namely the
pairing gap and chemical potential, much attention has been
devoted so far to the study of the first one, the pairing gap. It has
been shown, for instance, that removing quantal fluctuations
by using various methods of particle-number projection (PNP)
significantly improves the agreement between the theoretical
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predictions and experimental data on pairing energies. The
PNP also eliminates the shortcoming of the BCS theory, which
breaks down at small values G � Gc of the pairing interaction
parameter, where the BCS equations have only trivial solutions
[2–4]. At T �= 0, the results of theoretical studies in the last
three decades have also shown that thermal fluctuations smooth
out the sharp transition between the superfluid phase to the
normal one (the SN phase transition) in nuclei [5–10]. In very
large or infinite systems, the SN phase transition takes place
when the superfluid pairing gap �(T ) collapses at a critical
temperature Tc � 0.57�(0), where �(0) is the value of the
pairing gap at T = 0. However, in small systems such as nuclei,
under the effects of thermal fluctuations, namely the QNF, the
pairing gap never collapses, but decreases monotonously with
increasing T .

The second quantity, the chemical potential, describes the
change in energy when one particle is added to the system at
constant entropy and volume. In nuclear physics, the vanishing
of chemical potential indicates the vicinity of the nucleon
drip line. In the study of Bose-Einstein condensation (BEC),
as has been shown by Nozières and Schmitt-Rink (NSR) [11],
one expects the system to undergo the BEC into a single
quantum state with zero total momentum when the chemical
potential of the bound pair of fermions reaches the bottom
of the bound state band. The aim of the present article is to
study the effects of quantal and thermal fluctuations on the
chemical potential and some of their consequences within the
exactly solvable multilevel pairing model, which is also called
the ladder, picket-fence, or Richardson model.

The article is organized as follows. The chemical potential
and its corresponding quantity, which includes the effects of
fluctuations beyond the quasiparticle mean field are discussed
in Sec. I. The numerical results obtained within the equidistant
multilevel pairing model are analyzed in Sec. II. The last
section summarizes the article, where conclusions are drawn.
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II. CHEMICAL POTENTIAL

The chemical potential has been first defined by Gibbs as the
energy, which is required to add an infinitesimal quantity of a
substance to any homogeneous mass, divided by the quantity of
the substance added. This energy increase should not change
the volume and entropy of the homogenous mass. Applied
to the many-body systems, the chemical potential µ is the
minimum energy required to add a particle to a system in
thermal equilibrium with the heat bath. This condition requires
that the grand potential �(µ, T ) ≡ F − µN of the system,
whose average number of particles is equal to N , reaches the
minimum, that is,

δ�(µ, T ) = δF − µδN = δE − T δS − µδN = 0, (1)

where F = E − T S is the Helmholtz free energy, E is the total
(internal) energy, S is the entropy, and T is the temperature
of the system. From Eq. (1) it follows that the thermodynamic
chemical potential µ of a system with the average number N

of particles at a constant volume and temperature is given as

µ = ∂F

∂N
. (2)

In the case when the free energy F is a quadratic function of
N , the definition Eq. (2) gives the same result as that obtained
by using the arithmetic average,

µ = 1
2 [µ(+) + µ(−)], (3)

where µ(+) and µ(−) are the chemical potentials defined as half
of the energy required to add two particles to a system with N

and N − 2 particles, respectively,

µ(+) = 1
2 [F (N + 2,�) − F (N,�)],

µ(−) = 1
2 [F (N,�) − F (N − 2,�)], (4)

where � denotes the number of single-particle levels (the size
of the system). This leads to

µ = 1
4 [F (N + 2,�) − F (N − 2,�)]. (5)

At T = 0, the entropy S vanishes, so that the free energy
F (N,�) reduces to the ground-state energy Eg.s(N,�), and
Eq. (5) turns to the conventional approximation for the
chemical potential at zero temperature.

It is worth emphasizing that the concept of chemical
potential µ is meaningful only in the presence of PNF.
Therefore, at finite temperature, µ is defined within the grand
canonical ensemble (GCE), where not only the energy, but also
the particle number is allowed to fluctuate so that the variation
over δN is possible. To get more insight into this issue we
recall that an alternative quantity, which represents the effort
of adding an extra particle to the system, is called the fugacity
f , whose logarithm is equal to the thermodynamic chemical
potential µ, that is,

µ = T lnf, or f = eβµ, β = T −1. (6)

An average quantity, such as the energy E , particle number N ,
and, consequently, the chemical potential µ itself, is calculated
within the GCE as a weighted sum over systems with different
numbers of particles. The weight is given by the grand partition

function Z(β,µ). The latter is defined as

Z(β,µ) =
∞∑

n=0

f nZn(β), Zn(β) = e−βE (n)
, (7)

where Zn(β) is the partition function of the canonical ensemble
(CE) of the system with n particles. Indifferent of the GCE,
within the CE only the energy is allowed to fluctuate whereas
its particle number is fixed. The GCE becomes the CE if there
is no PNF, that is, no summation takes place over the particle
numbers at the right-hand side of Eq. (7). In this case, Eq. (7)
reduces to Zn=N (β,µ) = f NZN (β). Because at a fixed N ,
one should have ZN (β,µ) = ZN (β), it follows that f N =
1, or µ = 0 within the CE. This argument shows that the
chemical potential is a meaningful concept only within the
GCE. Therefore, although the free energy F can be calculated
exactly within the CE, where no PNF are allowed, the result for
the chemical potential µ obtained from the definition Eq. (2)
or the approximation Eq. (5) already involves several CEs with
different numbers of particles, for example, n = N , and N ± 2
in Eq. (5) (i.e., assuming the existence of PNF).

A. Within quasiparticle mean field

The present article considers the pairing Hamiltonian,

H =
∑
jm

εja
†
jmajm − G

∑
jj ′

∑
mm′>0

a
†
jma

†
jm̃aj ′m̃′aj ′m′ . (8)

It describes a system of N particles with single-particle
energies εj , generated by the particle creation operators
a
†
jm on j th orbitals with degeneracies 2�j (�j = j +

1/2), and interacting via a monopole-pairing force with the
parameter G. The symbol˜denotes the time-reversal operator,
namely ajm̃ = (−)j−maj−m. The eigenvalues and eigenvectors
of this pairing Hamiltonian can be found by exact diagonal-
ization [12]. The d (n)

s -degenerated eigenvalues E (n)
s , obtained

for the system with n particles, are used to construct the grand
partition function Z(β,µ), which is employed to calculate the
exact GCE total (internal) energy as [13]

Eexact = 1

Z(β,µ)

∑
s,n

E (n)
s f nZn(β), Zn(β)=

∑
s

d (n)
s e−βE (n)

s .

(9)

The GCE sum in Eq. (9) is carried out over all n = 1, . . ., �-1
with blocking properly taken into account for odd n. From the
exact GCE total energy Eexact, one calculates the entropy by
using the Clausius definition, δS = βδE , which leads to

S =
∫ T

0

1

τ

∂E
∂τ

dτ. (10)

Consequently the free energy F is known, from which the
exact µ can be estimated according to the definition Eq. (2) or
approximation Eq. (5).1

1Notice that, when the grand partition function is known, one can use
the differentials of lnZ(β)α to obtain the entropy S = β(E − µN ) +
lnZ(β, µ), which is equivalent to Eq. (10) (see Eqs. (2B-37a)–(2B-
37c) in Ref. [14]). This expression is employed in the present article in
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For a system with a given number N of particles such as
an atomic nucleus, the chemical potential is often defined as
a Lagrangian multiplier λ enforcing the constraint of density
normalization, namely,

δ

{
F [fi] − λ

(∑
i

fi − N

)}
= 0, (11)

where fi are the occupation numbers. This leads to the
variational procedure,

(δF [fi]/δfi)|fi=f 0
i

= λ, (12)

where f 0
i are the reference occupation numbers that minimize

the energy. Definition Eq. (12) to determine the chemical po-
tential λ is often used within the BCS-based approaches, where
the single-particle mean field and the pairing correlations are
unified into the quasiparticle mean field. The total energy E and
the particle-number constraint are calculated as the expectation
values of the pairing Hamiltonian H (8) and particle-number
operator N̂ , respectively, namely

E = 〈H 〉, N = 〈N̂〉, (13)

where the symbol 〈. . .〉 denotes the average within the GCE
at a given temperature T �= 0. At T = 0 this GCE average is
replaced with the expectation value in the ground state. The
variational procedure is carried out within the quasiparticle
representation H of the Hamiltonian H , which is obtained
by expressing the particle operators, a

†
j and aj , in the pairing

Hamiltonian H [Eq. (8)] in terms of the quasiparticle ones, α†
j

and αj by using the canonical Bogoliubov transformation:

a
†
jm = ujα

†
jm + vjαjm̃, ajm̃ = ujαjm̃ − vjα

†
jm. (14)

The explicit form of H can be found in many references, for
example, Eqs. (3)–(14) of Ref. [15]. The variational variables
are the coefficients uj and vj , whereas the variation of the
entropy over the quasiparticle occupation number nj yields
the explicit expression for nj in the form of Fermi-Dirac
distribution of noninteracting quasiparticles,

nj = 1

eβEj + 1
, (15)

with Ej being the quasiparticle energies. As the result of this
variational procedure, the BCS equations are obtained, which
determine the pairing gap � and the Lagrangian-multiplier
chemical potential λ for a given single-particle spectrum with
energies εj at a given value G, namely,

� =
∑

j

�jujvj (1 − 2nj ), (16)

N = 2
∑

j

�j

[
(1 − 2nj )v2

j + nj

]
. (17)

calculations using the exact eigenvalues of the pairing Hamiltonian as
it is free from errors caused by calculating numerically the derivative
under the integration in Eq. (10).

The Bogoliubov’s coefficients uj and vj have now the explicit
form,

u2
j = 1

2

[
1 + ε′

j − λ

Ej

]
, v2

j = 1

2

[
1 − ε′

j − λ

Ej

]
, (18)

with the quasiparticle energies Ej and single-particle energies
ε′
j , renormalized by the self-energy term −Gv2

j ,

Ej =
√

(ε′
j − λ)2 + �2, ε′

j = εj − Gv2
j . (19)

B. Beyond quasiparticle mean field

Within the quasiparticle mean field, the two ways of
calculating the chemical potential, either by using definition
Eq. (2) for µ or as the Lagrangian multiplier λ from the
variational Eq. (12), produce the same result (i.e., µ = λ).
However, it is well known that the BCS theory violates
the particle number. The chemical potential λ found as the
Lagrangian multiplier within the BCS theory ensures only the
particle-number conservation in average [see Eq. (13)], just
ignoring the effects caused by PNF,

δN2 ≡ 〈N̂2〉 − N2 �= 0. (20)

At T �= 0, besides the quantal fluctuations of particle number,
there appears the QNF as well,

δN 2 ≡
∑

j

δN 2
j =

∑
j

nj (1 − nj ) �= 0, (21)

which are also neglected in the BCS theory at T �= 0. The
present section discusses the effects of these fluctuations on
the chemical potential.

1. Effects of particle-number fluctuations within
Lipkin-Nogami method

To eliminate the PNF, one has to carry out the PNP.
The Lipkin-Nogami (LN) method [2] is a perspicacious
approximate PNP before variation, which has been widely
applied in calculations for realistic systems [16]. It proposes a
variational procedure based on a trial Hamiltonian HLN in the
form,

HLN = H − λ1N̂ − λ2N̂
2, (22)

instead of H − λN̂ . As the result, the LN equations, obtained
for the pairing gap and particle number, are formally the same
as the BCS ones, Eqs. (16) and (17). However, the chemical
potential λ is now replaced with its corresponding LN value,
λLN,

λLN = λ1 + 2λ2(N + 1), (23)

whereas the LN renormalized single-particle energies,

(ε′
j )LN = ε′

j + 4λ2v
2
j = εj + (4λ2 − G)v2

j , (24)

replace the BCS values ε′
j given in Eqs. (18) and (19). It is

obvious that λLN defined in Eq. (23) is no longer the same as
the thermodynamic chemical potential µLN, because the latter,
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according to the minimization Eq. (1) and definition Eq. (2),
is equal to

µLN = δFLN

δN
= δ(ELN − T S)

δN
= λ1 + 2λ2N = λLN − 2λ2.

(25)

The quantity λLN can be defined as the modified chemical
potential beyond the BCS quasiparticle mean field to em-
phasize the fact that it takes into account the effects due to
δN2, which is neglected within the BCS theory, although this
definition should be taken with a grain of salt. Indeed, as the
LN method is an approximate PNP, it partially restores the
exact particle number (i.e., eliminating the PNF). An exact
PNP would eventually conserve the particle number exactly,
(i.e., it would eliminate completely the PNF). At T �= 0,
for example, the exact PNP would bring the GCE results
back to the CE ones. In the latter case, the thermodynamic
chemical potential µ becomes completely irrelevant as has
been discussed previously. Therefore, strictly speaking, in
the presence of PNF, only the quantity µLN, which neglects
the effects due to δN2, preserves the full meaning of a true
thermodynamical potential, not λLN.2

The total energy ELN is given as

ELN = E − λ2δN
2. (26)

The explicit expression of the PNF δN2 is given by Eqs. (15)–
(17) in Ref. [17], whereas E has the same form as that obtained
within the BCS theory. The parameter λ2 is not a Lagrangian
multiplier, but defined so that 〈HLNN̂2〉N = 0. This leads to

λ
(i)
2 = 1

2

∂2E (i−1)

∂N2
, (27)

where the superscript i denotes the ith iteration, at which
λ2 converges to the desired accuracy. The explicit expression
of λ2 at finite T is given in Ref. [15]. At T = 0, the
quasiparticle occupation numbers nj vanish, so one recovers
from Eqs. (16), (17), and (27) the zero-temperature LN
equations, and the expression for λ2 at T = 0 [2], respectively.

The trial Hamiltonian HLN (22) is, in fact, the first order of
the infinite expansion series,

H∞ = H −
∞∑

j=1

λjN
j , (28)

which contains all higher-order PNF such as δNj = 〈N̂j 〉 −
Nj with j > 2 as well. By neglecting the effect of δNj and
taking the variation according to Eq. (1), this infinite series

2In a similar manner, the pairing gap is a mean-field concept with
its true meaning only within the BCS theory. This gap collapses
at a T = Tc for G > Gc or at any G < Gc. Meanwhile, the exact
solutions of the pairing problem produce no pairing gap, but only
pairing correlation energy, from which one can define the “exact”
pairing gap. The latter, however, never collapses at any T and G. The
approaches, which take into account thermal fluctuations beyond the
quasiparticle mean field [5,6,8–10,18], also lead to the pairing gap
that does not collapse at T > Tc, as has been discussed in Sec. I.

would eventually yield the new thermodynamic chemical
potential µ∞ in the form,

µ∞ = λ1 +
∞∑

j�2

j λjN
j−1. (29)

Similar to µLN, this thermodynamic chemical potential µ∞ is
different from λ∞ = µ∞ + 2λ2 + · · · , which is the quantity
that includes all quantal effects due to PNF beyond the BCS
quasiparticle mean field.

2. Effects of quasiparticle-number fluctuations within
LN1+SCQRPA and MBCS theories

The effects of QNF are taken into account in a microscopic
way within two recent approaches, called the modified
BCS (MBCS) theory [9,10] and the Lipkin-Nogami plus
self-consistent quasiparticle random-phase approximation
(LN1+SCQRPA) [15]. Although both the LN1+SCQRPA
and MBCS theories take the effects of QNF into account
microscopically, they are based on different assumptions. The
details of these approaches have been discussed thoroughly
in Refs. [9,10,15,18], therefore, only the main results, nec-
essary for the analysis in the present article, are summarized
below.

(a) LN1+SCQRPA. The LN1+SCQRPA uses the same
variational procedure as that employed for the derivation of the
BCS and/or LN equations. However, it retains the expectation
values of 〈A†

jA
†
j ′ 〉, 〈A†

jAj ′ 〉, and 〈NjNj ′ 〉, with A†
j ≡ [α†

j ⊗
α
†
j ]0

0/
√

2 and Nj = ∑
m α

†
jmαjm. These expectation values are

neglected within the BCS and LN theories. As the result, within
the LN1+SCQRPA one obtains a generalized level-dependent
gap equation,

�j = G

〈Dj 〉
∑
j ′

�j ′ 〈DjDj ′ 〉uj ′vj ′ , Dj = 1 − Nj

�j

. (30)

The expectation value of the product of two quasi-
particle density operators at the right-hand side of
Eq. (30) is calculated approximately by using the exact
relation,

〈DjDj ′ 〉 = 〈Dj 〉〈Dj ′ 〉 + δNjj ′

�j�j ′
,

with δNjj ′ = 〈NjNj ′ 〉 − 〈Nj 〉〈Nj ′ 〉, (31)

and the mean-field contraction,

δNjj ′ � 2�jδN 2
j δjj ′ , δN 2

j ≡ nj (1 − nj ), (32)

with the quasiparticle occupation number nj ,

nj = 〈Nj 〉
2�j

= 1

2
(1 − 〈Dj 〉). (33)

As the result, the gap equation [Eq. (30)] is split to a sum
of a quantal level-independent part, �, and a thermal level-
dependent part, δ�j , namely,

�j = � + δ�j , (34)
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where

� = G
∑
j ′

�j ′uj ′vj ′ (1 − 2nj ′ ), δ�j = 2G
δN 2

j

1 − 2nj

ujvj .

(35)

The expression of the gap �j differs from that of the BCS
(LN) gap by the level-dependent part δ�j , which contains the
QNF δN 2

j on the j th orbital. The corrections due to coupling
to the SCQRPA pair vibrations enter in the expression of the
renormalized single-particle energies, which are now given as

(ε′
j )LN1+SCQRPA = ε′

j + G√
�j (1 − 2nj )

∑
j ′

√
�j ′

(
u2

j ′ − v2
j ′
)

× (〈A†
jA

†
j ′ �=j 〉 + 〈A†

jAj ′ 〉), (36)

where the expectation values 〈A†
jA

†
j ′ 〉 and 〈A†

jAj ′ 〉 are
calculated in terms of the QRPA forward- and backward-going
amplitudes X and Y , as well as the occupation numbers of the
QRPA phonons. The approximate PNP is carried out within
the LN method in the same way as has been discussed in the
previous section. The quasiparticle occupation numbers nj are
also calculated taking into account the effects of coupling to
the QRPA vibrations, therefore, different from the Fermi-Dirac
distribution Eq. (15) of noninteracting fermions. The resulting
equations form a closed set of the LN1+SCQRPA equations,
which are solved self-consistently by iteration.

(b) MBCS. The HFB theory at T �= 0, and its limit, the BCS
theory, violate the unitarity relation R2 = R for the generalized
single-particle density matrix R. It has been pointed out in
Ref. [1] that the source of this violation is the effects due to
QNF, which are neglected within the HFB and BCS theories,
because Tr[R(T )2 − R(T )] = 2δN 2 �= 0, which is twice the
QNF. The MBCS theory takes into account the effects of
QNF by means of the secondary Bogoliubov transformation
from the quasiparticle operators, α†

jm and αjm, to the modified

quasiparticle ones, ᾱ
†
jm and ᾱjm,

ᾱ
†
jm = √

1 − njα
†
jm + √

njαjm̃,
(37)

ᾱjm̃ = √
1 − njαjm̃ − √

njα
†
jm,

where the quasiparticle occupation numbers nj are approx-
imated by the Fermi-Dirac distribution (15). It was shown
in Sec. III A of Ref. [10] that this secondary Bogoliubov
transformation eventually restores the unitarity relation for the
modified quasiparticle space. As the result of transformation
[Eq. (38)] the MBCS equations for the pairing gap and particle
number are obtained in the form,

�̄ = � + δ�, � = G
∑

j

�jujvj (1 − 2nj ),

(38)
δ� = G

∑
j

�j

(
v2

j − u2
j

)
δNj ,

N = 2
∑

j

�j

[
(1 − 2nj )v2

j + nj − 2ujvj δNj

]
. (39)

Similar to the LN1+SCQRPA, the MBCS gap [Eq. (38)] also
consists of a quantal part, �, which is formally identical to

the BCS gap, and a thermal part, δ�, which contains the QNF.
But, different from the LN1+SCQRPA gap, the MBCS gap
is level independent with a different functional form of the
thermal gap δ�. Moreover, because the QNF also affect the
single-particle density via the last term at the right-hand side
of the number equation [Eq. (39)], the chemical potential λ

also changes with T within the MBCS theory and differs from
that obtained within the BCS and LN theories.

C. Application in the study of BCS-BEC transition

The chemical potential µ has been employed in Ref. [11]
to identify the onset of BEC in an attractive fermion gas.
Applying the same concept to the finite systems with discrete
single-particle levels, it is also true that, if the interaction is
sufficiently strong, two fermions form a singlet bound pair,
whose minimum energy is εb with −εb being the binding
energy. The internal wave function φj of the pair creation
extends over a characteristic distance ∼ ε

−1/2
b . If two bound

pairs have only a small overlap (|φj | � 1), they can be treated
as a gas of structureless bosons. When this happens within the
BCS theory, this means

φj ≡ �√
(εj − λ)2 + �2

� 1, (40)

and the BCS gap equation reduces, in leading order, to
the Schrödinger equation for a single bound pair, whose
eigenvalue is the pair chemical potential µP ≡ 2µ. Its zeroth
order yields 2µ = εb, as for an ideal Bose gas [11]. Therefore,
in the same way as has been carried out in Ref. [11], the smooth
BCS-BEC transition into a single quantum state with zero total
momentum at T = 0 takes place if the positive pair chemical
potential µP monotonously decreases with increasing G and
eventually reaches the bottom of the bound pair spectrum,
εb = 2ε1, at a certain value G = GBEC

c , higher than which
(G > GBEC

c ) µP continues to decrease. If the bottom of the
single-particle spectrum ε1 is chosen to be equal to zero, this
means µP = 0 or µ = 0 at G = GBEC

c , and becomes negative at
G > GBEC

c . The choice of the positive single-particle energies
with the bottom of the spectrum located at zero in the present
pairing model is not simply a matter of an energy shift, but
reflects a real physical situation. Indeed, if there are only two
particles in the model, they will form a bound state for a
finite value G of the attractive pairing interaction because the
lowest eigenvalue of the diagonalization is below the lowest
level. By putting only four, or six, etc. particles in the �-level
system, a bound state of these four, or six, etc. particles will
always have a negative energy (i.e., below the lowest level).
In this way, even the neutron matter could become bound,
if the nucleon-nucleon attractive interaction was sufficiently
strong. As the number of particles increases, the Fermi surface
starts to build up with a positive value for µ depending on the
value of G. Within the BCS-based approaches, for example,
the chemical potential µ goes from a negative value (i.e., the
one for the bound state), to a positive one (i.e., that for an
unbound state) as the interaction strength G decreases. In the
present article, we consider the opposite direction, namely,
the increase of the pairing interaction G, which causes the
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decrease of the chemical potential, determined as positive at
G = 0 within the application to the BCS-BEC transition.

III. RESULTS OF NUMERICAL CALCULATIONS

The Richardson model used in numerical calculations
consists of � doubly folded equidistant levels, which interact
via the pairing force with parameter G. The level distance is
chosen equal to 1 MeV. In the absence of the interaction, the
lowest N/2 levels are filled with N particles (two particles
on each level). The case with N = � is called half-filled,
whereas those with N < � and N > � are called underfilled
and overfilled, respectively.

A. Chemical potentials within and beyond quasiparticle
mean field at T = 0

In the present and next sections we consider the single-
particle energies counted from the highest occupied Hartree-
Fock level, namely,

εj = j − 1
2 (N + 1), j = 1, . . . , �. (41)

With this choice of single-particle energies, the exact value
of the chemical potential µ for the half-filled case (� = N )
is independent of T and N , and equal to −G/2, which is the
same as the BCS chemical potential λ at G > Gc. This can
be easily checked by using a �-folded degenerated two-level
model [19], where one finds Gc = 1/(2� − 1).

On the contrary, once the effects of PNF are taken into
account, the chemical potential (or rather, parameter) λLN,
which is obtained from Eq. (23) and shown as a dashed line in
Fig. 1, deviates from its quasiparticle mean-field value −G/2
already at G = 0 because the quantity α ≡ 4λ2 − G �= 0 even
at G = 0 (or λ2 �= 0 even at � = 0). This deviation increases
with G. As has been analyzed in Ref. [2], this discrepancy is
caused by the admixture of the four-quasiparticle components
in the ground state from the omission of the term ∼(α†)4 of
the trial Hamiltonian. Consequently, the energy shift �ELN of
the ground state obtained within the LN method at very small
G does not coincide with the prediction by the perturbation
theory. However, this discrepancy vanishes after adding the
four-quasiparticle contribution to �ELN.

We also calculated the exact values of parameters λ2 from
Eq. (27), and λ1 from Eq. (25) by using the exact free energy
FLN, which is obtained from the exact ELN given by Eq. (26)
with the entropy equal to zero at T = 0. From them the exact
λLN is found by using Eq. (23). These exact values (solid lines
in Fig. 1) practically coincide with those obtained by solving
the LN equations. These results demonstrate how the chemical
potential µ is different from its corresponding quantity, which
included the effects due to quantal fluctuations beyond the
quasiparticle mean field.

B. Chemical potentials within and beyond quasiparticle
mean field at T �= 0

The chemical potential µ of the Richardson model (equal to
λ in the quasiparticle mean field) becomes a constant, which
remains in the middle of the single-particle spectrum (i.e.,
zero in the present choice of εj ) only in the half-filled case
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FIG. 1. (Color online) Chemical potential λLN, the parameters λ2

[(a)–(c)], and λ1 [(d)–(f)] as functions of pairing interaction parameter
G at T = 0 for � = N = 6, 8, and 10. The solid and dashed lines are
the exact and LN results, respectively, whereas the dotted lines show
the −G/2 values.

that neglects the self-energy corrections −Gv2
j in the single-

particle energies ε′
j (19). In all other cases, where � �= N , the

chemical potential µ depends on temperature T , no matter the
self-energy corrections −Gv2

j are included or not. The values
of µ obtained within the BCS theory are shown in Fig. 2 as
functions of T for the underfilled cases with � = 11, N = 10,
at G = 0.4 MeV, and � = 12, N = 8, at G = 0.6 MeV along
with the exact GCE and CE results. To be compared with the
BCS results obtained without the self-energy corrections, the
exact GCE (CE) results are calculated by using the exact GCE
(CE) total energy shifted by −G

∑
j f 2

j , where fj are the exact
single-particle occupation numbers obtained within the GCE
(CE) (see the thin solid lines in Fig. 2). The BCS chemical

ε' = ε - G vj j j
2

ε' = ε j j
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FIG. 2. (Color online) Chemical potentials as functions of tem-
perature T for the underfilled cases with � = 11, N = 10 (a) and
� = 12, N = 8 (b). The dotted, solid, and dashed lines are the BCS,
exact GCE, and CE results, respectively. The thin lines denote the
BCS results obtained without the self-energy corrections −Gv2

j in
the single-particle energies, whereas the thick lines stand for the
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potentials decrease with increasing T at T > Tc in agreement
with the exact GCE and CE results [Eq. (2)]. Neglecting the
self-energy corrections causes only a shift upward of around
0.2 ∼ 0.3 MeV. However, the BCS results, obtained including
the self-energy corrections −Gv2

j , contain some small jumps
at the values of T where the chemical potential crosses the
single-particle levels. These singularities lead to some small
fluctuations in the values µ obtained in the approximations
beyond the mean field such as the LN1+SCQRPA considered
in the present article, and also leads to a slower convergency.
For the case with � = N + 1 = 11, which we choose as an
illustration below, there is no qualitative difference between the
results obtained with and without the self-energy corrections
up to T = 6 MeV [see Fig. 2(a)]. Therefore, the terms −Gv2

j

will be omitted in further calculations at T �= 0 for simplicity.
The free energies obtained for the systems with � = N +

1 = 11 at G = 0.4 MeV and � = N = 50 at G = 0.3 MeV are
shown in Figs. 3(a) and 3(c) as functions of T . They all show
the general trend of decreasing with increasing T . At T � Tc

the LN1+SCQRPA offers the lowest value for the free energy,
which is the closest to the exact one for � = N + 1 = 11.
However, at high T , where the quantal fluctuations vanish,
and the thermal fluctuations become important, the MBCS
free energies turn out to be the lowest ones. In the case with
� = N + 1 = 11, the MBCS and exact results coincide at T �
1.7 MeV.

Regarding the chemical potentials, one finds a clear
difference between λ and µ [Eq. (2)] as functions of T as
well. The thermodynamic potential µ starts from zero and
decreases with increasing T in the underfilled case [Fig. 3(b)],
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FIG. 3. (Color online) Free energies F and chemical potentials
µ and λ as functions of temperature T for � = N + 1 = 11 at G =
0.4 MeV (a,b) and � = N = 50 (c,d) at G = 0.3 MeV. In (a) and
(c) the thin dotted, dash-dotted, and dash-double dotted lines are
the BCS, LN, and LN1+SCQRPA results, respectively. The MBCS
results are shown by the dashed lines, whereas the thick solid and
thick dotted lines in (a) are the exact free energy within the GCE
and CE, respectively. In (b) and (d), except for the thin solid line
representing the exact λLN as explained in the text, the other thin lines
show the chemical potentials λ obtained within the above-mentioned
approximations as notated in (a) and (c), whereas the thick lines are
the corresponding thermodynamic chemical potentials µ.

whereas it remains temperature independent in the half-filled
case with � = N [Fig. 3(d)]. The MBCS result with � = 11
and N = 10 exhibits a µ, which slightly increases at T ∼
1 MeV. The reason is due to the shortcoming of the MBCS
theory at low � and N , which has been discussed in a series
of articles [9,10,20], and we are not going to repeat it here.
Therefore, when µ is calculated within the MBCS theory by
using Eq. (2) for � = 11 and N = 10, the result can be obtained
only up to T ∼ 1 MeV. The chemical potential λ that includes
the effects of quantal and/or thermal fluctuations beyond the
quasiparticle mean field, on the contrary, is quite different
from µ. The LN and LN1+SCQRPA values for λ are
significantly larger than zero, and decrease with increasing T

to merge with µ only at T > Tc. The “exact”λLN is calculated
by using the same Eq. (23), where λ2 is given by Eq. (27) with
the exact energy E , whereas λ1 is found from Eq. (25) with
the exact ELN from Eq. (26) and exact S given by Eq. (10).
This exact λLN is shown as the thin solid line in Fig. 3(b),
which decreases smoothly as T increases, and crosses zero
only at T ∼ 4 MeV. The values of λ obtained within the
MBCS theory show a different temperature dependence. It
is zero at T = 0 because PNP is not included in the MBCS
theory. As T increases, the MBCS λ increases sharply up
to Tc, then it continues to increase (decrease) slightly with
T in the case of small (large) � [see Figs. 3(b) and 3(d)].
Similar to the chemical potential λLN defined beyond the BCS
quasiparticle mean field, the quantity λ obtained by solving
the MBCS equations loses its meaning as the thermodynamic
chemical potential µ because it includes the effects due to
QNF. In this sense, within the MBCS theory, only the quantity
µ, which is shown as the thick dash lines in Figs. 3(b) and 3(d),
corresponds to a strict thermodynamic chemical potential.

C. Chemical potentials and the onset of BEC in finite systems

Following the discussion in Sec. II C for the numerical
calculations regarding the BCS-BEC transition, we choose the
single-particle energies εj = j − 1 with j = 1, . . . , � (MeV),
that is, all the levels have positive energies, except the lowest
one, ε1 = 0, with both N and � being even numbers (N �
2�). At small N and �, the mean-field chemical potential
λ can increase or decrease with increasing G depending
on whether the model is overfilled (N > �), half-filled
(N = �), or underfilled (N < �). This can be easily seen
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in the simplest illustration using the seniority model with one
single 2�-folded level, whose eigenvalue is given as a function
of seniority s as [21]

Es(N,�) = −G�

4

[
s2

�
− 2(s − N )

(
1 + 1

�

)
− N2

�

]
.

(42)

The chemical potential µsen.(T = 0) at T = 0, according to
Eq. (2), is

µs=0(T = 0) = ∂Es=0(N,�)

∂N
= −G

2
(� − N + 1). (43)

This result for µ, which is obtained as the derivative of
the free energy (or total energy at T = 0) over the particle
number N , is the same as the prediction by the approximation
Eq. (5) because Es(N,�) is a quadratic function of N in the
present case, whereas S(T = 0) = 0. This chemical potential
is negative if N � �, and positive if N > � because both N

and � are even. Consequently, as G increases, the chemical
potential will decrease in the underfilled and half-filled cases,
and increase in the overfilled case. The physics here is related
to the behavior of the pairing gap in a small shell, which is
equal to � = G

√
N (� − N/2)/2 [21]. This gap is zero for

the empty (N = 0) and completely filled shells (N = 2�),
and maximum when the shell is half-filled (N = �). If the
configuration space � is very large or infinite, whereas N

is small, the model is always strongly underfilled (N � �),
so the chemical potential always decreases with increasing
G. This is the situation of infinite-size systems because the
upper limit of k in the kinetic energy k2/2m is very high
or infinite, whereas the number of particles is finite. In the
opposite case, if the model is overfilled (N > �), we can never
get BEC (i.e., structureless bosons from the pairs of fermions)
by increasing the coupling strength G because the chemical
potential will never reach the bottom of the spectrum, being
always increasing with G. This observation is confirmed by the
results for the chemical potential µ, which are obtained within
the multilevel model with � = 12 and N = 8, 12, and 16,

and displayed in Fig. 4(a). This figure shows that µ decreases
with increasing G only for N � �, and the stronger the model
is underfilled, the steeper the decrease of µ one gets as G

increases. The chemical potential µ is a smooth function of
G, as Figs. 4(a) and 4(b) demonstrate. Moreover, the results
displayed in Fig. 4(b) show that the LN1+SCQRPA and exact
results coincide, and µ crosses zero at GBEC

c � 2.4 MeV,
signalizing the appearance of the BEC as a single quantum
state. The BCS prediction slightly overestimates the exact and
LN1+SCQRPA results, crossing zero at GBEC

c � 2.65 MeV.
As has been mentioned in Sec. II C, a negative value of µ

is considered as the signature of the BCS-BEC transition in
infinite systems. We have shown above that a similar behavior
of µ also takes place in the finite underfilled system at large
G. However, whether this still remains the signature of the
BCS-BEC transition in finite systems is not straightforward.
In Fig. 5, we show the ground-state energies (at T = 0) and
the total energies (at T �= 0) as functions of the particle
number N at G = 10 MeV. It is seen from this figure that,
in the strong coupling regime, the multilevel model under
consideration becomes very similar to the seniority model, in
the sense that the level distance can be neglected in first-order
approximation. From Eq. (42) it follows that only at N � �

(i.e., the low-density limit or diluted systems), the binding
energy of the ground state (i.e., the ground-state energy of the
system taken with the reverse sign) approaches the limit equal
to the binding energy of just one pair multiplied by the number
NP = N/2 of pairs. In this limit, the condensate of N/2
noninteracting fermion pairs, whose binding energy is G�

per pair, becomes a condensation of NB = N/2 bosons (i.e.,
a BEC). This trend can be clearly seen in Figs. 5(a) and 5(b),
which shows that, as the ratio N/� decreases on one hand, and
� increases on the other hand, the BCS, LN1+SCQRPA, and
exact ground-state energies become closer to the BEC limit.
We also notice that the LN1+SCQRPA results practically
coalesce with the exact ones at all N . At T � Tc/2 the pairing
gap decreases only slightly as compared with the gap at
T = 0, so the picture remains nearly the same for the total
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energies up to T � Tc/2 [see Fig. 5(c)]. However, at T � Tc,
where the BCS gap vanishes whereas the LN1+SCQRPA and
exact gaps become rather small, the total energies strongly
deviate from the BEC limit. As shown in Fig. 5(d), the total
energies predicted by the exact results and the LN1+SCQRPA
theory at T = Tc are much larger than the BEC limit, especially
at larger N , whereas the total energy predicted by the BCS
theory even turns positive at N � 4. Meanwhile, the total
energy in the BEC limit increases only slightly by 10 MeV at
N = 8.3 This example demonstrates that, even if the system
reaches the BEC in the strong coupling regime at T = 0,
increasing T destroys the superfluid pairing correlations. As
the result, at T � Tc even the lightest system can no longer
stay in the BEC regime.

IV. CONCLUSIONS

The present article studies the effects due to quantal and
thermal fluctuations beyond the BCS quasiparticle mean field
on the chemical potential within a model, which consists of
N particles distributed amongst � doubly folded equidistant
levels interacting via a pairing force with parameter G. The
results obtained at zero and finite temperatures T within
several approaches such as the BCS, LN, LN1+SCQRPA,
and MBCS theories are compared with the exact results,
whenever the latter are available. The analysis of the numerical
results show that, in general, the chemical potential of the
equidistant multilevel pairing model depends on the parameter

3The results obtained within the BCS and LN1+SCQRPA theories
including the self-energy term in the single-particle energies, and the
exact results obtained without subtracting the corresponding term
−G

∑
k f 2

k are only slightly smaller than those shown in Fig. 5. The
largest difference, seen at N = 8, does not exceed 5%.

of the pairing interaction and temperature. It remains a
constant in the middle of the spectrum only in the half-filled
case within the mean-field approximation that neglects the
self-energy corrections to the single-particle energies. Beyond
the quasiparticle mean field, quantal and thermal fluctuations
significantly alter the chemical potential as a function of G

and/or T . As the result, the quantity that corresponds to the
chemical potential but includes the effects due to PNF or QNF,
such as the parameter λLN within the LN method or λ within
the MBCS theory, gradually loses its strict physical meaning as
a chemical potential with increasing T , and as the approximate
PNP approach the exact one, where all PNPs are eliminated.

In the study of the chemical potential as a measure to search
for the onset of BCS-BEC transition in finite systems, we
have shown that the system in the strong coupling regime can
approach the BEC limit only in the strongly underfilled case
(when the number N of particles is much smaller than the
size, that is, number � of the levels of the system) at zero
temperature. Even if it can take place, increasing temperature
will drive the system out of the BEC limit. However, this is
a conclusion obtained here within a simple one-dimensional
model. How this feature is modified in realistic nuclei remains
a question to be answered in the future studies.
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