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Particle-number projection is applied to the modified BCS (MBCS) theory. The resulting particle-number-
projected MBCS theory, taking into account the effects due to fluctuations of particle and quasiparticle numbers
at finite temperature, is tested within the exactly solvable multilevel model for pairing as well as the realistic 120Sn
nucleus. The signature of the pseudogap in the crossover region above the critical temperature of superfluid-normal
phase transition is discussed in terms of the pairing spectral function.
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I. INTRODUCTION

The BCS theory and its generalization, the Hartree-Fock-
Bogoliubov (HFB) theory at finite temperature, describe
well the superfluid-normal (SN) phase transition from the
superconducting (superfluid) state to the normal one in infinite
systems. By solving the finite-temperature BCS (FT-BCS)
equations for a constant level density around the chemical
potential, the critical temperature Tc, at which the pairing
gap for metal superconductors [1] and nuclear matter sharply
vanishes, is found to be 0.567�(T = 0) [2,3]. These theories
use a simple variational ground-state wave function as a
collection of coherent pairs acting on the particle vacuum.
As a result, one obtains a set of nonlinear equations for
the pairing gap and the chemical potential within the BCS
theory, which can be easily solved, or a small-dimension
matrix within the HFB theory, which can be diagonalized.
Although the pairing problem can be exactly solved by various
methods [4–6], the simplicity of the BCS and HFB theories
still makes them a preferable choice in the study of finite
systems such as atomic nuclei, whose realistic configuration
space quite often prevents the feasibility of the exact solutions.
However, when the BCS and HFB theories are applied to such
small systems, modifications are required, since the finiteness
of the systems causes large quantal and statistical (thermal)
fluctuations, whose effects are ignored in these theories. These
fluctuations increase with decreasing particle number N . With
increasing temperature T one also witnesses a decrease of
quantal fluctuations and increase of statistical ones.

Quantal fluctuations (QF) within the BCS (HFB) theory
include the particle-number fluctuations. The latter exist even
at zero temperature T = 0 because of the violation of particle
number in the BCS ground-state wave function, which is not
an eigenstate of the particle-number operator. To eliminate
this defect of the BCS (HFB) theory, various methods of
particle-number projection (PNP) have been proposed, which
project out that component of the BCS wave function which
corresponds to the right number of particles. These PNP
methods can be classified as the projection after variation
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(PAV) and variation after projection (VAP) ones. In the PAV
method, the BCS (HFB) wave function is used to calculate
the projected energy of the system, whereas the VAP method
determines the wave function by minimizing the projected
energy. With respect to the BCS (HFB) theory, naturally, the
VAP approach is much better than the PAV, in particular
in the region where the BCS (HFB) theory breaks down,
namely, at very weak interaction and/or temperature above
Tc. Among the VAP methods, the one proposed by Lipkin
and Nogami is quite popular because it is computationally
simple albeit approximate. Within the Lipkin-Nogami (LN)
method [7,8], the expectation value of the pairing Hamiltonian
with respect to the projected BCS state is expressed in
terms of that with respect to the unprojected BCS state. The
approximation consists of truncating the infinite expansion
series at the second order of the particle-number operator N .
As a result, one ends up with minimizing the Hamiltonian
H − λ1N − λ2N

2. The elegance of this method is that, unlike
λ1, the expansion coefficient λ2 is not a Lagrangian multiplier,
but analytically expressed in terms of coefficients uj and vj of
the Bogoliubov transformation from particles to quasiparticles.
The LN equations for the gap and particle number, therefore,
are as simple as the BCS ones. Different from the BCS
theory, which has nontrivial (nonzero) solutions only above
a critical value Gc of the pairing-interaction parameter G, the
LN equations have nontrivial solutions at any G �= 0, which
are quite close to the exact ones when tested in schematic
models [8–10].

Statistical fluctuations (SF) in the pairing field have been
studied in several papers within the approaches based on
Landau’s (macroscopic) theory of phase transitions [11–13]
and the static-path approximation [14]. The results of these
studies show a nonvanishing pairing gap as a function of tem-
perature in the presence of SF. The gap does not collapse at the
critical temperature Tc as has been predicted by the BCS theory
but decreases monotonously as the temperature increases and
remains finite even at rather high T . The conclusion is that
thermal fluctuations in the pairing field wash out the SN phase
transition. While the conventional BCS and HFB theories at
finite temperature ignore the quasiparticle-number fluctuation
(QNF) [12], the recently proposed modified BCS (MBCS)
theory [15–17] and its generation, the modified HFB (MHFB)
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theory [18], have taken into account the effects due to QNF
based on a microscopic foundation. This is realized through
a secondary Bogoliubov transformation from quasiparticle
operators to modified quasiparticle ones that allows one to
include the QNF in the generalized single-particle matrix. As
a result, the unitarity relation, which is violated within the
conventional BCS and HFB theories at finite temperature [12],
is restored. It has been shown for the first time within the
MBCS theory [15–17] that it is the QNF that smoothes out
the sharp SN phase transition and leads to the nonvanishing
thermal pairing in finite systems. The existence (or appearance)
of a pairing gap at finite temperature above the critical
temperature Tc of the SN-phase transition in finite systems is
quite similar to that of pairing correlations in the crossover
region from a BCS-like phase-ordered band structure to a
new phase-disordered pseudogapped band structure discussed
recently in the BCS–Bose-Einstein condensation crossover
theory for high-temperature superconductors and ultracold
atomic Fermi gases [19]. As a matter of fact, the high-
temperature tail of the MCBCS gap is driven mostly by the
QNF.

Since the effects of QF are still neglected within the MBCS
(MHFB) theory, to give a conclusive answer to the question for
SN phase transition in finite systems it is necessary to carry
out a PNP in combination with the MBCS (MHFB) theory.
This task has been pointed out in the previous paper [17]
and is the aim of the present paper, where the PNP will be
carried out in two ways. In the first way, the VAP is carried
out by using the LN method within the BCS theory, and then
the resulting approach is modified by using the secondary
Bogoliubov transformation to include the effect of QNF. In
the second way, the PAV is applied to the total energy of
the system obtained within the MBCS theory to extract the
effective thermal gap. The reason that the PAV is reliable in this
case is that it is carried out after solving the MBCS equations,
which include the effect of QNF beyond the BCS theory. These
two ways of combining the PNP with the MBCS theory will
be referred to as the modified Lipkin-Nogami (MLN) method
and the PAV-MBCS theory, respectively.

The paper is organized as follows. The particle-number-
projected MBCS (PNP-MBCS) theory is discussed in Sec. I
within the MLN and PAV-MBCS. The results of numerical
calculations carried out for an exactly solvable model as well
as for a realistic nucleus are analyzed in Sec. II. The equidistant
multilevel model called the Richardson model for pairing
and the neutron spectrum obtained within the Woods-Saxon
potential for 120Sn are used in these calculations. The last
section summarizes the paper, where conclusions are drawn.

II. PNP-MBCS THEORY

A. Outline of MBCS theory

The MBCS theory and its generation, the MHFB theory,
have been discussed in detail in a series of papers [15–18].
Therefore, only the outline of the MBCS theory is given in
this section, which will be used for the application of the PNP
in the next section.

The MBCS theory includes the QNF by using the following
secondary Bogoliubov transformation from quasiparticle op-
erators, α

†
jm and αjm, to the modified quasiparticle ones, ᾱ

†
jm

and ᾱjm, that is,

ᾱ
†
jm = √

1 − njα
†
jm + √

njαjm̃,
(1)

ᾱjm̃ = √
1 − njαjm̃ − √

njα
†
jm,

where the indices j and m denote the angular-momentum
quantum numbers of single-particle orbitals, while the
sign ˜ stands for the time-reversal operation, e.g., ajm̃ =
−T aj−m ≡ (−)j−maj−m, and nj is the quasiparticle occupa-
tion number. By applying successively the original Bogoliubov
transformation from particle operators to quasiparticle ones
and the transformation (1), one obtains the combined transfor-
mation between particle and modified quasiparticle operators
as

a
†
jm = ūj ᾱ

†
jm + v̄j ᾱjm̃, ajm̃ = ūj ᾱjm̃ − v̄j ᾱ

†
jm, (2)

The coefficients ūi and v̄i of the combined transformation (2)
are given as

ūj = uj

√
1 − nj + vj

√
nj , v̄j = vj

√
1 − nj − uj

√
nj .

(3)

By applying the transformation (2), one rewrites the pairing
Hamiltonian

H =
∑
jm

εja
†
jmajm − 1

4
G

∑
jj ′mm′

a
†
jma

†
jm̃aj ′m̃′aj ′m′ (4)

in the modified-quasiparticle representation. Because of the
formal Eq. (2), the result has the same form as that of the
quasiparticle representation for H , but with the modified-
quasiparticle operators ᾱ

†
i , ᾱi replacing the quasiparticle ones

α
†
i , αi , and coefficients ūi , v̄i replacing ui, vi [see Eqs. (7)–(13)

of Ref. [16]]. The rest of the derivation followed the same way
as that for the BCS equation. The final result yields the MBCS
equation in the form [17]

�̄ = G
∑

j

�j τ̄j , N = 2
∑

j

�j ρ̄i , (5)

where the modified single-particle density matrix ρ̄j and
modified particle-pairing tensor τ̄j are different from the
conventional temperature-dependent single-particle density
matrix ρj and particle-pairing tensor τj by the terms containing
the QNF on j -th orbitals, δNj , namely,

ρ̄j = ρj − 2ujvj δNj , τ̄j = τj − (
u2

j − v2
j

)
δNj , (6)

with

ρj = v2
j + (

1 − 2v2
j

)
nj ,

τj = ujvj (1 − 2nj ), (7)

δNj = √
nj (1 − nj ),

and the shell degeneracy 2�j ≡ 2j + 1. The quasiparticle
occupation number nj is defined within the MBCS theory
by the Fermi-Dirac distribution of free quasiparticles, that is,

nj = 1

eĒj /T + 1
, (8)
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where Ēj is the modified quasiparticle energy

Ēj =
√

(ε′
j − λ)2 + �̄2, (9)

with ε′
j = εj − Gv2

j , including the self-energy term −Gv2
j ,

or ε′
j = εj if the self-energy term is neglected. The MBCS

internal energy is given by an expression similar to that of the
BCS one as follows:

EMBCS =
∑

j

�j

[
2εj v̄

2
j − Gv̄4

j

] − �̄2

G
. (10)

Neglecting the term ∼ −Gv̄4
j , one recovers from Eq. (10) the

expression for the MBCS energy used in Refs. [16–18]. In the
present paper, the complete expression (10) will be used.

The gap and number equations (5) clearly show how the
QNF is included within the MBCS theory. This leads to
the appearance of the thermal component δ� in the pairing
gap �̄,

δ� = −G
∑

j

�j

(
u2

j − v2
j

)
δNj , (11)

in addition to the quantal one, � = G
∑

j �jτj , so that
�̄ = � + δ�. The thermal component δ� is generated only
by QNF. As the temperature decreases, the quasiparticle
occupation number nj decreases. As a result, δ� gets depleted
while � becomes enhanced. This behavior closely recalls
the thermal precursor superconducting fluctuations, which
cause the incoherent preformed pairs leading to gaplike
features (pseudogap) observed at T > Tc in high-temperature
superconductors [19]. As T decreases, thermal fluctuations (of
the phase) are suppressed to a point at which the pairs becomes
sufficiently coherent to cause superconductivity. Therefore, in
the rest of the paper, the thermal component δ� of the MBCS
gap �̄ will be called the pseudogap, keeping in mind that the
connection between the QNF and classical phase fluctuations
at T �= 0 deserves a thorough study.

B. Modified Lipkin-Nogami method

The MLN method consists of two self-consistent steps. In
the first step, the LN method is applied to remove the particle-
number fluctuations inherent in the BCS theory. This leads
to a renormalization of the single-particle and quasiparticle
energies as

ε̃j = εj + (4λ2 − G)v2
j , Ẽj =

√
(̃εj − λ)2 + �̄2, (12)

where

λ = λ1 + 2λ2(N + 1), v2
j = 1

2

[
1 − ε̃j − λ

Ẽj

]
,

(13)
u2

j = 1 − v2
j .

In the next step, one determines the modified pairing gap �̄

and λ from the same MBCS equations (5), where coefficients
uj and vj from Eq. (13) are used to determine ūj and v̄j in

Eq. (3). The coefficient λ2 has the form [20]

λ2 = G

4

∑
j �j (1−ρ̄j )τ̄j

∑
j ′ �j ′ ρ̄j ′ τ̄j ′−∑

j �j (1−ρ̄j)2ρ̄2
j[∑

j �j ρ̄j (1−ρ̄j )
]2− ∑

j �j (1−ρ̄j )2ρ̄2
j

,

(14)

which becomes the expression for T = 0 given in the original
paper [8] of the LN method when nj = 0. The set of Eqs. (3),
(12), (13), and (14) is solved self-consistently and forms the
MLN equations. The total energy is given as

EMLN =
∑

j

�j [εj − Gρ̄j ]ρ̄j − �̄2

G
− λ2�N2, (15)

where the particle-number fluctuation �N2 is calculated as

�N2 = 4
∑

j

�j (ūj v̄j )2. (16)

By setting λ2 = 0, one recovers the MBCS equations from the
MLN ones.

C. PAV-MBCS theory

The PNP energy is realized by applying the PNP operator

P N = 1

2π

∫
dφe−iφ(N̂−N) (17)

to a model Hamiltonian whose expectation (average) value in
the ground-state (grand canonical ensemble) corresponds to
the energy under consideration. Defining the average value of
an operator O with respect to the density operator D as

〈O〉 = T r[OD], (18)

one obtains the formal expression of the PNP pairing energy
at finite temperature T as

EN
pair = 〈HpairP

N 〉
〈P N 〉 =

∫
dφyN (φ)Hpair(φ), (19)

where

yN (φ) = e−iφN 〈eiφN̂ 〉∫
dφ e−iφN 〈eiφN̂ 〉 ,

(20)

Hpair(φ) = 〈Hpair e
iφN̂ 〉

〈eiφN̂ 〉 .

The thermal average 〈eiφN̂ 〉 is determined in terms of the
generalized particle-density matrix R as

〈eiφN̂ 〉 = det
√

eiφ/2C(φ), C(φ) = 1 + (eiφN − 1)R, (21)

with R given by Eq. (17) of Ref. [18]. Within the HFB
theory, the idempotent R2 = R no longer holds at T �= 0,
and the difference is just the QNF, namely, R2(T ) − R(T ) =∑

j �jδNj [12,21]. A merit of the MHFB theory is that
it restores the idempotent R̄2(T ) = R̄(T ) for the modified
generalized particle-density matrix R̄ defined by Eq. (40) of
Ref. [18]. As a result, the modified matrix C̄(φ) becomes

C̄(φ) = e2iφ

D̄(φ)
, D̄(φ) = 1 + ρ̄(e2iφ − 1), (22)
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i.e., it acquires the same form as that obtained at T = 0. All
the temperature dependence is now included in the uj , vj

coefficients and in the QNF δNj of the modified single-particle
density ρ̄j .

By using Eqs. (20) and (22) as well as Hpair = −GP †P ,
which is given in the spherical basis as the last term at the
right-hand side of Hamiltonian (4), one obtains the PNP pairing
energy as

EN
pair = −G

∫
dφ e−iφN

{[ ∑
j �j ūj v̄j D̄j (φ)−1]2 + ∑

j �j v̄
4
j D̄j (φ)−1}

eiφ
[∏

j ′ D̄j ′(φ)
]1/2

∫
dφe−iφN

[∏
j ′ D̄j ′(φ)

]1/2 . (23)

For comparison with the pairing gaps determined within the
MBCS theory and MLN method, it is convenient to define an
effective gap from the PNP pairing energy as

�PNP =
√

−GEN
pair. (24)

It is worth noticing that the term −G
∑

j �j v̄
4
j is included in

the definition of the effective gap �PNP.

D. Probing the presence of a pseudogap by using
thermodynamic quantities

1. Heat capacity

A clear signature of the SN (second-order) phase transition
is the disconvergence of the heat capacity C at the critical
temperature T = Tc. The heat capacity C is defined as

C(T ) = ∂E
∂T

, (25)

where E is the total (internal) energy of the system. As has been
shown in Refs. [17,18], the nonvanishing MBCS pairing gap
due to the effect of QNF leads to the smoothing of the sharp
disconvergence in the heat capacity C calculated within MBCS
theory. Therefore C can be used to examine the presence of
the pseudogap δ� in Eq. (11).

2. Entropies

A quantity that is directly related to the heat capacity is
the thermodynamic entropy Sth, which is defined from the
condition of thermal equilibrium of a closed system, that is,

∂Sth

∂E = 1

T
. (26)

Integrating Eq. (26), one obtains the thermodynamic entropy
Sth in the form

Sth =
∫ T

0

1

τ

∂E
∂τ

dτ =
∫ T

0

1

τ
C(τ ) dτ. (27)

In general, the thermodynamic entropy Sth is different from
the quasiparticle or single-particle entropy as the latter cor-
responds to the purely mean-field picture. The quasiparticle
entropy within the MBCS theory has the same form as that
obtained within the conventional BCS theory [17,18]:

Sqp = −2
∑

j

�j [nj lnnj + (1 − nj ) ln(1 − nj )]. (28)

The relationship between the thermodynamic, single-particle,
and information entropies were studied in Ref. [22], which
shows that the thermodynamic and single-particle entropies
are nearly the same only for noninteracting particles. For the
realistic mean fields with empirical residual interactions, these
entropies are different at the edges of their distributions over
single-particle levels. This leads to the difference between the
low thermodynamic temperature and single-particle tempera-
ture, which are extracted by using Sth and Sqp, respectively.

3. Pairing spectral function

Another quantity used to probe the presence of a pseudogap
is the pairing spectral function Ij (ω), which is derived from
the modified quasiparticle Green’s function Ḡj (E) [3]

Ḡj (E) = 1

2π

[
ū2

j

E − Ēj

+ v̄2
j

E + Ēj

]
(29)

as follows. Using the analytic property of Green’s function
Ḡj (E) to continue it into the complex energy plane E =
ω + iε (ω and ε are real) and taking the imaginary part of
this analytic continuation, one finds the quasiparticle spectral
function J j (ω) in the form

J j (ω) = 1

π

[
ū2

j ε

(ω − Ēj )2 + ε2
+ v̄2

j ε

(ω + Ēj )2 + ε2

]
. (30)

The two-quasiparticle spectral function Ijj ′ (ω) is derived in the
same way as the imaginary part of the analytic continuation of
the two-quasiparticle Green’s function. The latter is obtained
by folding two Green’s functions Gj (E) and Gj ′ (E). The final
result reads

Ijj ′ (ω) = 2

π

[
ū2

j ū
2
j ′ε

(ω − Ēj − Ēj ′ )2 + 4ε2

+ v̄2
j v̄

2
j ′ε

(ω + Ēj + Ēj ′ )2 + 4ε2

+ ū2
j v̄

2
j ′ε

(ω − Ēj + Ēj ′ )2 + 4ε2

+ v̄2
j ū

2
j ′ε

(ω + Ēj − Ēj ′ )2 + 4ε2

]
. (31)
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The pairing spectral function Ij (ω) is obtained by setting j =
j ′ in Eq. (31). As a result, one obtains

Ij (ω) = 2

π

[
ū4

j ε

(ω − 2Ēj )2 + 4ε4
+ v̄4

j ε

(ω + 2Ēj )2 + 4ε2

+ 2ū2
j v̄

2
j ε

ω2 + 4ε2

]
. (32)

The calculation of the pairing spectral function Ij (ω) includes
the parameter ε equal to the half-width of the pairing exci-
tation, whose lifetime is 1/(2ε). At T = 0, the quasiparticle
occupation numbers nj vanish so the coefficients ūj and v̄j in
Eq. (3) become the conventional Bogoliubov coefficients uj

and vj , and the expression for the BCS case is recovered from
Eq. (32). The total pairing spectral function J (ω) is calculated
from Eq. (32) as

J (ω) ≡
∑

j

Ij (ω) = JU (ω) + JV (ω) + JUV (ω), (33)

where

JU (ω) = 2

π

∑
j

ū4
j ε

(ω − 2Ēj )2 + 4ε4
,

(34)

JV (ω) = 2

π

∑
j

v̄4
j ε

(ω + 2Ēj )2 + 4ε2
,

JUV (ω) = 4

π

∑
j

ū2
j v̄

2
j ε

ω2 + 4ε2
. (35)

Using the total pairing spectral function J (ω), one can also
calculate the k-th moment mk , the energy centroid Ē, and the
deviation σ from the energy centroid as follows:

mk =
∫ E2

E1

ωkJ (ω)dω, Ē = m1

m0
, σ =

√
m2

m0
− Ē2.

(36)

The zeroth and first moments are also called the total and
energy-weighted sums of strengths, respectively, while the
deviation σ is also referred to as the spreading width.

III. NUMERICAL ANALYSIS

The calculations were carried out within the Richardson
model1 and for 120Sn. The Richardson model consists of �

doubly folded equidistant levels, which interact via a pairing
force with a constant parameter G. The single-particle energies
take the values εj = jε with the index j running over all �

levels. The model is called half-filled when the number � of
levels is equal to the number N of particles. This particle-hole
(p-h) symmetric case means that in the absence of interaction
(G = 0), the lowest �h = �/2 hole levels are occupied with
N = � particles (two particles on each level), while the upper

1It is also called the picket-fence model, ladder model, doubly-
folded equidistant pairing model and was solved exactly for the first
time by Richardson in the 1960s [4].

�p = �/2 particle levels are empty. In general, the number
of hole levels �h need not be the same as the number of
particle levels �p, i.e., � �= N . The level distance ε = 1 MeV
will be used in the present paper. This model is often used
to test the validity of approximated approaches to the pairing
problem, as its exact solutions can be found using a number
of different methods, including the Richardson method [4],
the method using infinite-dimensional algebras [5], and a
direct diagonalization of the pairing Hamiltonian [6]. To
extend the exact eigenvalues of the Richardson model to
finite temperature, one needs to average them over a statistical
ensemble. As the number N of particles in the system is fixed,
the preferable choice is the canonical ensemble, which does
not allow the particle-number fluctuations but can share the
total energy E(T ) among its possible thermodynamic states
distributed by a partition function [17].

A. Sensitivity of MBCS theory to small configuration space

The extension of exact solutions of the Richardson model
to finite temperature by averaging over a statistical ensemble
should be taken with some care. First of all, one should keep
in mind that the exact solutions of a system with pure pairing
such as those of the Richardson model do not represent a full
thermalization. The seniority conservation prevents a number
of particles to interact with each other. As a result, for the exact
solutions, the temperatures defined in different ways do not
agree [22]. Furthermore, for large N , e.g., N > 14, the exact
solutions weighed up to high temperature are impracticable.
At the same time, for small N , the small configuration space
for the p-h symmetric cases (� = N ) significantly reduces the
limiting temperature up to which the MBCS theory can be
applied.

Such sensitivity of the MBCS prediction to a small configu-
ration space has been the subject of persistent criticism by the
authors of Ref. [23], who carried out the MBCS calculations
within the Richardson model for the case with � = N = 10
and found that the MBCS gap abruptly increases at T �
1.75 MeV for G = 0.4 MeV. In Ref. [24], we pointed out that
the reason for such behavior comes from the QNF profile as a
function of single-particle energies. When � = N is small, this
profile easily becomes asymmetric with respect to the Fermi
level at a rather low temperature. The asymmetry of the QNF
profile increases the imbalance between the positive-definite
and negative-definite parts in the sum (11) that forms the
pseudogap δ�. When this imbalance is large, the absolute
value |δ�| may become larger than the quantal gap �. As
the result, the total gap �̄ may increase, decrease, or even
become negative as T increases. This issue has been discussed
in detail in Refs. [17,18,24], where it has been demonstrated
that for N � 14, it is sufficient to enlarge the space by one more
level, � = N + 1, to restore the symmetry of the QNF profile
up to high temperatures [17].

The sensitivity of the QNF profile to the size of the
configuration space is demonstrated in the upper panels of
Fig. 1, which shows the results for QNF obtained within the
MBCS theory for N = 10 and � = N,N + 1, and N + 2
by using the pairing parameter G = 0.4 MeV at several
temperatures. When � = 11, the symmetry of the QNF
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FIG. 1. (Color online) QNF profiles δNj [(a)–(c)] at several values of T shown by the numbers at the lines, and pairing gaps [(d)–(f)] as
functions of T obtained within the Richardson model for N = 10 and � = 10 [(a) and (d)], � = 11 [(b) and (e)], and � = 12 [(c) and (f)]
(G = 0.4 MeV). In (a)–(c), lines are used to connect discrete points to guide the eye. The thin and thick lines denote the MBCS results obtained
without and including the self-energy term −Gv2

j in the single-particle energies. In (d)–(f), the solid and dashed lines denote the quantal gap �

and the pseudogap δ� [Eq. (11)], respectively, whereas the open circles on the abscissa in (d) and (f) mark the temperatures at which the gap
abruptly increases (d) or decreases (f).

profiles is preserved up to rather high temperature T >

5 MeV [see Fig. 1(b), which shows the QNF profiles up to T =
4 MeV]. Adding or removing levels easily destroys the balance
between the positive-definite and negative-definite parts in the
sum (11) for the pseudogap. As a result, the symmetry of
the QNF is deteriorated at a much lower value of TM , which
is about 1.75 MeV for � = 10, and 1.6 MeV for � = 12
if the self-energy term −Gv2

j is not taken into account in
the single-particle energies [thin lines in Figs. 1(a) and 1(c)].
Adding or removing more levels, such as � = 8 or 14, as
has been tried in Ref. [25], just worsens the situation, as this
further increases the imbalance and creates the asymmetry at
low TM in either direction, as shown in Figs. 1(a) or 1(c).
On the other hand, a renormalization of the single-particle
energies due to the residual interaction, correlations beyond
the quasiparticle mean field, and/or a compression of the
single-particle spectrum such as that obtained within the
temperature-dependent HF calculations at high temperature
[26] can also greatly enlarge the temperature region in which
the MBCS theory can be applied. As demonstrated by the thick
lines in Figs. 1(a) and (c), including the self-energy term in
the single-particle energies significantly increases the limiting
temperature up to TM � 2.3 MeV. This example clearly shows
how the MBCS prediction depends on the single-particle
spectrum. The renormalization of single-particle spectra due
to correlations within the self-consistent quasiparticle random-
phase approximation (SCQRPA) and its effect on the thermal
pairing gap have not yet been implemented in the MBCS
calculations and are subjects for further studies. This may

further enlarge the temperature region in which the MBCS
theory can be applied. The thorough test conducted in Ref. [17]
shows that TM for � = N increases linearly with the number
of particles. At N > 20, one obtains TM > 5 MeV.

Within the temperature region of its validity, the MBCS
theory predicts a monotonously decreasing pairing gap with
increasing T as shown in Figs. 1(d)–1(f). The figures also
show that as the particle number is small (N = 10), the effect
of the self-energy term −Gv2

j in the single-particle energies is
rather strong, but it effects only the quantal gap, leaving the
pseudogap almost intact. Moreover, the temperature to which
the MBCS theory is valid is extended significantly to T �
2.3 MeV for the cases with � = 10 and 12 as has been
mentioned above. By recalling the value of the maximum
temperature of around the shell distance (∼ 6–8 MeV) for
the large single-particle levels in realistic nuclei, one can see
that for a spectrum with only 10 or 12 levels and the level
distance ε of 1 MeV, a value of 2.3 MeV for the temperature
is a relatively high one, to which the zero-temperature single-
particle energies can be extrapolated. For realistic nuclei, the
MBCS theory predicts a smoothly decreasing pairing gap
up to a temperature as high as T = 5 MeV when a large
realistic single-particle spectra such as those obtained within
the Woods-Saxon potential are used [17,18].

In the present paper, to show the stability of the results of
the PNP treatment, the predictions within the PNP-MBCS
approaches for the pairing gaps will be compared with
the exact solutions for the cases with N = 10 and � =
N,N + 1, and N + 2 obtained by using the pairing parameter
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FIG. 2. (Color online) Pairing gaps as functions of temperature obtained within the Richardson model for N = 10 with � = N (a), N + 1
(b), and N + 2 (c). The BCS solutions obtained without and including the self-energy term −Gv2

j in the single-particle energies are shown
with the thin and thick dotted lines, respectively. The corresponding MBCS solutions are shown by the thin and thick dashed lines, respectively.
The results obtained within the LN and MLN methods are denoted by the dot-dashed and double-dot-dashed lines, respectively. The thin solid
line shows the PAV-MBCS effective gap �PNP, while the thick solid lines stand for the exact result.

G = 0.4 MeV. The predictions for thermodynamic quantities
such as energies, heat capacities, and entropies will be shown
for the case with � = N + 1 = 11, for which the MBCS
theory has a larger temperature region of validity (up to T �
5 MeV). As for the realistic nucleus 120Sn, as it is a nucleus
with an open neutron shell, the calculations are carried out
only for neutrons by using the single-particle energies obtained
within the Woods-Saxon potential and Gν = 0.13 MeV as in
Ref. [18].

B. Pairing gap

The pairing gaps for � = N,N + 1, and N + 2 are plotted
in Fig. 2 as functions of T . In the region T � Tc, the BCS
and MBCS gaps obtained including the self-energy term
−Gv2

j are significantly smaller than the values predicted by
the BCS and MBCS theories when this term is omitted (cf.
Fig. 1). The inclusion of the self-energy term also reduces
the value of Tc within the BCS theory. At T � 0.7 MeV, the
MBCS gap obtained including the self-energy term becomes
slightly larger than that obtained ignoring this term. The
PNP applied by using the LN method increases the gap at
T = 0 by nearly 47%, 40%, and 30% for � = 10, 11, and
12, respectively. The value of Tc also rises closer to that
obtained within the BCS theory ignoring the self-energy term.
However, at T > Tc the predictions by the MBCS theory
that includes the self-energy term and by the MLN method
are nearly the same, just demonstrating that the quantal
fluctuations due to particle-number violation vanish at high
temperature. It is also seen that in this region both of these
approaches significantly underestimate the exact result. The
situation is largely improved within the PAV-MBCS theory.
For all � within the temperature region where the MBCS
theory is valid, the values of the pairing gap predicted
by the PAV-MBCS theory agree fairly well with the exact
ones. The best example is seen in the case with � = 11, where
the PAV-MBCS prediction almost coincides with the exact
results at 1 � T � 2 MeV. At 0.2 � T � 1 MeV, the PAV-MBCS

prediction is slightly lower than the exact result; while at T >

2 MeV, the PAV-MBCS overestimates the exact result, and
this discrepancy increases with T . For � = 12, despite a small
kink at T � 2.3 MeV due to the size effect discussed in the
preceding section, the agreement between the PAV-MBCS and
exact results is still quite satisfactory. In the rest of the paper,
only results for the case with � = N + 1 will be considered.

The effect of PNP at low T becomes much weaker in
the realistic nucleus 120Sn, where the contribution of the
self-energy term is negligible because of the large number
of particles (Fig. 3). The results offered by the MBCS theory
and the MLN method are close to each other even at low T ,
while at high T they coalesce. The increasing discrepancy
between the PAV-MBCS and MBCS results with increasing T

is mainly caused by the −G
∑

j �j v̄
4
j term, which enters in

the definition of the effective gap GPNP.

C. Total and excitation energies

The total energies obtained within the approaches under
consideration applied to the Richardson model are plotted as
functions of T in Fig. 4(a). For 120Sn, as the absolute value
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FIG. 3. (Color online) Pairing gaps as functions of temperature
for neutrons in 120Sn. Notations are as in Fig. 2.
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FIG. 4. (Color online) Total energy (a) and excitation energy (b) as functions of temperature obtained within the Richardson model for
(� = 11, N = 10) (a), and for neutrons in 120Sn (b). Notations are as in Fig. 2.

of the total energy at T = 0 is large, the excitation energies
E∗

ν = E(T ) − E(0) for neutrons are plotted in Fig. 4(b). It is
seen from this figure that the QNF indeed smoothes out the
signature of the sharp SN phase transition from the total and
excitation energies even after PNP is taken into account. The
effect of PNP on the energies is noticeable only at very low
temperature and improves greatly the agreement with the exact
result [Fig. 4(a)]. Increasing the particle number reduces the
difference between the predictions within MBCS, MLN, and
PAV-MBCS theories. This difference becomes negligible in
such realistic and heavy nuclei as 120Sn [Fig. 4(b)]. At high T ,

all approaches predict nearly the same energy.

D. Heat capacity

The heat capacities, which are shown in Fig. 5 as functions
of T , demonstrate the difference between effects caused by
PNP within the MLN method and the PAV-MBCS theory.
Although the gap does not collapse at Tc in both (light and
heavy) systems, the effect of PNP within the MLN method is
much stronger in the light system at T < Tc, so the slope in
the pairing gap in the region around Tc is much deeper in the
system with N = 10 than that obtained in 120Sn (cf. Figs. 2
and 3). As a result, although the heat capacity in the system

with N = 10 does not diverge within the MLN method, it still
has a quite pronounced peak at T ∼ Tc, which is completely
smeared out in the case of 120Sn. The PAV-MBCS theory, on
the contrary, predicts a smooth temperature dependence of the
heat capacity in both light and heavy systems in a much better
fit to the exact result (for N = 10).

E. Entropies

The quasiparticle and thermodynamic entropies, Sqp and
Sth, obtained for (� = 11, N = 10) within the Richardson
model and for neutrons in 120Sn are shown in Figs. 6 and 7,
respectively. The clear difference between the single-particle
entropy, Ssp, and thermodynamic one, Sth, is seen already
in the exact results of the Richardson model. As the values
of single-particle occupation numbers in the exact solutions
obtained at T = 0, namely, fh < 1 and fp > 0, are already
different from the HF ones (f HF

h = 1, f HF
p = 0), i.e., the

exact Ssp does not vanish at T = 0. On the contrary, the
thermodynamic entropy Sth always starts from zero at T = 0.
The exact values for both Ssp and Sth increase smoothly with T ,
but Sth is always smaller than Ssp. This observation agrees with
the results in Ref. [22], which show that within the realistic
mean field, the single-particle and thermodynamic entropies
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FIG. 5. (Color online) Heat capac-
ities as functions of temperature within
the Richardson model for (� = 11, N =
10) (a) and for neutrons in 120Sn (b).
Notations are as in Fig. 2.

064320-8



PARTICLE-NUMBER-PROJECTED THERMAL PAIRING PHYSICAL REVIEW C 76, 064320 (2007)

0

2

4

6

8

10

12

14

0.1 1

S

T  (MeV)
2 3 4 0.1 1

T  (MeV)
2 3 4 5

(a) (b)

FIG. 6. (Color online) Quasiparticle
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entropies as functions of temperature within
the Richardson model for (� = 11, N = 10).
Notations are as in Fig. 2. The exact result
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entropy.
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FIG. 7. (Color online) Same as Fig. 6,
but for neutron system in 120Sn.
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FIG. 9. (Color online) Total pairing spectral
function Jν(ω) for neutrons in 120Sn as predicted
by the BCS [(a)–(d)] and MBCS [(e)–(h)]
theories at T = 0.1, 1, 3, and 5 MeV as indicated
in the panels. The calculations used a half-width
ε = 0.8 MeV.

are different at the edges of the spectrum in such a way that
Sth < Ssp. One notices that the predictions for the quasiparticle
and single-particle entropies by all approximations coalesce
at high T , except for PAV-MBCS Sqp for 120Sn, which is
substantially lower because of the large difference between
the PAV-MBCS gap and the values obtained within the MBCS
theory and MLN method. Concerning the thermodynamic
entropy, the values for Sth obtained within the MLN method as
well as the MBCS and PAV-MBCS theories are significantly
lower than those predicted within the BCS theory and LN
method.

F. Pairing spectral function

The total pairing spectral function J (ω) of Eq. (33) is
calculated at various temperatures and values for the half-width

ε of the pairing excitations. The results obtained within
the Richardson model with (� = 11, N = 10, ε = 0.8 MeV)
as predicted by the BCS, MBCS, PAV-MBCS theories, as
well as the exact results are shown in Fig. 8. The exact
results are here defined as those obtained by replacing the
coefficients v̄2

j and ū2
j in Eq. (33) with the occupation numbers

fj and 1 − fj , respectively, which are given by averaging
the exact occupation numbers within the canonical ensemble
of N particles at temperature T (see Ref. [17]). At very
low T (0.1 MeV), all the results show a clear evidence
of superfluid pairing correlations as a depletion of J (ω) at
around ω = 0. Within the BCS theory, this valley becomes
shallower as T increases, and it disappears at T = Tc; beyond
that temperature, the BCS results remain stable relative to T .
Meanwhile, the MBCS, PAV-MBCS, and exact results show
the spectacular development of a peak at ω = 0, which is
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FIG. 10. (Color online) Total pairing spec-
tral function J (ω) within the Richardson model
for for (� = 11, N = 10) at T = 0 (a) and
5 MeV (b) obtained within the MBCS theory
(thin lines) and MLN method (thick lines).

growing with T as a clear manifestation of the pseudogap
δ� (11). Using a smaller value ε for the half-width of
pairing excitation leads to more splitting, while increasing ε

smooths out the fine structure of the distribution. However the
enhancement of the peak at ω = 0 remains with increasing T

within the MBCS and PAV-MBCS theories as well as the exact
solutions. A similar feature is also seen in the total neutron
pairing spectral function for 120Sn as shown in Fig. 9. Here,
within the BCS theory, except for some very small change
in the peak at ω = 0, the whole distribution remains nearly
unchanged as T varies. Within the MBCS theory, the peak at
ω = 0 grows with T , while the one at ω � 15 MeV becomes
depleted as T increases. The PNP with the MLN method does
not change the qualitative picture of the growing peak at ω = 0
with T , although it does lower the peak, as can be seen in
Fig. 10.

To look into the source of the enhancement of the total
pairing spectral function J (ω) of Eq. (33) at ω = 0 with

increasing T , let us examine the components JU (ω), JV (ω)
[Eq. (34)], and JUV (ω) [Eq. (35)] of the function J (ω).
These functions reach maximum values at ω = 2Ēj ,−2Ēj ,
and 0, respectively. The temperature dependences of their
profiles are also determined by ū4

j , v̄
4
j , and ū2

j v̄
2
j , respectively.

The latter, obtained within the BCS and MBCS theories at
several temperatures, are depicted in Fig. 11 as functions of
single-particle energies. The cases with the PAV-MBCS theory
and exact results are not shown, as they are qualitatively similar
to those predicted with the MBCS theory. Within the BCS
theory, the coefficients uj and vj have the profiles approaching
the step functions with increasing T so that uj = 1, vj = 0 at
εj − λ > 0, and uj = 0, vj = 1 at εj − λ < 0 when T � Tc.
The product ujvj decreases with increasing T and vanishes at
T � Tc. This leads to a similar evolution of functions u4

j , v
4
j ,

and u2
j v

2
j with increasing T as shown in Figs. 11(a)–11(c).

At the same time, the MBCS functions ū4
j , v̄

4
j , and ū2

j v̄
2
j have

different temperature dependences due to the presence of δNj ,
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j , v

4
j ,

u2
j v

2
j , ū

4
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j , and ū2

j v̄
2
j obtained in the Richard-

son model with (� = 11, N = 10) vs εj − λT =0

at several temperatures. Lines connect discrete
points to guide the eye. In (a)–(c) the thin
solid, dash-dotted, dash-double-dotted, dotted,
and dashed lines denote results obtained with
the BCS theory at T = 0, 0.1, 0.2, 0.3, and
0.5 MeV, respectively. In (d)–(f), the thin solid,
thin dashed, thick dotted, thick dashed, and thick
solid lines stand for results obtained within the
MBCS theory at T = 0, 0.5, 1, 3, and 5 MeV,
respectively.
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FIG. 12. (Color online) Relative errors for the first moment (a) (see text), centroid energies (b), and spreading widths σ (c) as functions of
T obtained within the Richardson model for (� = 11, N = 10). The notations are as in Fig. 2.

which increases with T as was shown in Figs. 1(a)–1(c)
above, as well as in Fig. 1(f) of Ref. [18] and Fig. 2 of
Ref. [17]. Functions ū4

j and v̄4
j become depleted, while ū2

j v̄
2
j

is enhanced as T increases. Since ū2
j v̄

2
j are the components

of the modified pairing tensor, their enhancement with T is
physically related to the existence of the pseudogap induced
by the QNF. As a consequence, the components JU (ω) and
JV (ω) within the BCS theory become rather stable against T ,
while the component JUV (ω) decreases with increasing T and
vanishes at T � Tc. Within the MBCS theory, the temperature
dependences of ū4

j , v̄
4
j , and ū2

j v̄
2
j cause a depletion of JU (ω)

and JV (ω) with increasing T , while JUV (ω) gets enhanced
dramatically, so that at T > 2 MeV, its maximum value at
ω = 0 becomes much higher than those of JU (ω) and JV (ω).
This behavior leads to the enhancement of the total pairing
spectral function J (ω) at ω = 0 with increasing T as shown
in Fig. 8. The same reasoning holds for the total pairing
spectral function J (ω) for neutrons in the realistic nucleus
120Sn (Fig. 9).

The temperature dependences of integrated quantities of
the total pairing spectral function J (ω) are shown in Fig. 12.
All the integrations are carried out from E1 = −40 MeV up
to E2 = 40 MeV. The relative errors of the zeroth moments
δm0(T )/m0(0) ≡ |m0(T ) − m0(0)|/m0(0) obtained within the
BCS, MBCS, and PAV-MBCS theories are compared with
the exact values in Fig. 12(a). It is seen that although all
the integrated strengths increase with T up to T � Tc and
roughly saturate at high T , these changes are extremely small
(below 0.1%). This shows that the sum rule is well preserved
at finite temperature. The centroid energy, which is obtained as
the ratio between the energy-weighted sum and the total sum
of strengths, is also rather stable against temperature within
all the approximations under consideration, which is in good
agreement with the exact result, as shown in Fig. 12(b). Finally,
it is found that the spreading width σ predicted by the BCS
theory is around 9 MeV, which is higher than the exact value
of around 8 MeV. These two values are rather temperature
independent, while the predicted values within the MBCS and
PAV-MBCS theories for σ decrease from the BCS value to the
exact one with increasing T .

IV. CONCLUSIONS

In this paper, particle-number projection (PNP) has been
carried out within the MBCS theory by using the Lipkin-
Nogami (LN) method and projection after variation (PAV).
When applied to the BCS wave functions, the variation after
projection (VAP) such as the LN method is usually better than
the PAV. However, for the MBCS theory, where the sharp SN
phase transition is smoothed out, the calculations carried out
within the Richardson model show that the PAV-MBCS theory
offers predictions closer to the exact results than those obtained
within the MLN method for the pairing gap, energy of the
system, and other thermodynamic characteristics such as heat
capacity and entropies. The application to a realistic heavy
nucleus 120Sn with an open shell for neutrons shows small
effects caused by PNP, which do not change the qualitative
picture of smoothing out the sharp SN phase transition due to
the quasiparticle-number fluctuations (QNF) within the MBCS
theory. The results of temperature-dependent total spectral
pairing functions reveal a spectacular manifestation of the
pseudogap caused by the QNF in the form of a peak at zero
energy, which grows with temperature. It is now possible
to confirm the reliability of the conclusion that the sharp
SN phase transition in finite nuclei at finite temperature is
smoothed out, and this is the consequence of the large QNF
due to the finiteness of the system, as has been microscopically
proved within the MBCS theory in the recent series of papers
[15–18].

As a next step in this direction, it will be interesting
to study microscopically the effects caused by quantal and
thermal fluctuations in hot rotating nuclei. To realize this, the
angular-momentum effect needs to be included in the MBCS
theory. This study is now underway [27], and the results will
be reported in a forthcoming paper.
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