PHYSICAL REVIEW C, VOLUME 62, 024310

Exact form of the random phase approximation equation at finite temperature
including the entropy effect
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The thermal random phase approximat{@RPA) equation is derived from the variational principle applied
to the grand potential with an entropy term. This form of the TRPA equation is exact within the framework of
the random phase approximation at finite temperature, whose matrix representation coincides with the stability
matrix for the solution to the thermal Hartree-Fock-Bogoliubov equation. It is, however, shown thatdlye
energy-dependence of the response function for a giant resonance built on a heated nucleus is not altered within
a perturbation treatment of the entropy effect based on a simple microscopic model. Thus, an application of the
TRPA formalism neglecting the entropy effect is justifiable as for giant resonance shape. The calculation
employing a simple microscopic model shows that the increase of the Landau splitting of giant resonance
levels with temperature is mainly attributed to the contributiong pfandhh configurations.

PACS numbsd(s): 21.10.Pc, 21.10.Re, 21.60.Jz

[. INTRODUCTION TRPA eigenenergy at finite temperature. We present also
explicit forms of the completeness condition and the finite
Recent experimental studies of the damping of giant resotemperature version of the energy-weighted sum rule
nances(GR’s) built on heated nuclef1-8] have supplied (EWSR [17]. _ o
useful information for checking the theoretical models and,_ N the second part of the paper, our interest is in the en-
methods, which have been successful in describing propel;[Opy effect and the temperature dependence of the GR width

. . . .~ ~and centroid energy. In Sec. Ill we introduce a simplified
ties of the nuclear states in the yrast region and extenswe%icroscopiC model, and in Sec. IV we apply it to investigate

applied to the highly excited states above the yrast line. A%) the entropy effect on the stability of the THFB solution,
such an extension of microscopic formalism, the thermal ranij) jis effect on the GR shape, afiil) the temperature de-
dom phase approximatidifRPA) equation9-13 ontop of  pendence of the Landau splitting and the centroid energy.
the thermal Hartree-Fock-BogoliuboHFB) [14,15, or  Then, we treat the contributions from the entropy to the GR
the thermal Hartree-FockKTHF) solution when the pairing spectra as perturbation. We will, however, see that such an
correlation is not important, is expected to describe theeffect turns out to be negligible unless the interaction
temperature-dependent behavior of the hot GR. For this pustrength is abnormally large. Itis experimentally known that,
pose, the formalism has to be guaranteed not only td" case of the giant dipole resonan@DR) in a hot nucleus,
smoothly tend to the ordinary RPA in the zero-temperaturdtS Width at half maximunti.e., the FWHM increases rap-

- : dly with increasing temperature for Sn isotogds-6] and
limit, but also to solve the problem of discrepancy betweerfzoglpb[7 8], and it sgeemspto saturate at the tenﬁ{pera{ure about
the TRPA matrix and the THFB stability matrjt1]. There- T

fore, in the first part of this papdSec. I, we derive in a T>3~4 MeV in the case of Sn isotopes. In Sec. V, we

hensi h t TRPA ton f thconfirm, within the framework of our microscopic model,
comprenensive manner the exac equation Trom g, ot the rapid increase of the Landau splitting with tempera-

grand potential including entropy term, which has been proy e js mainly due to the damping of the GR through the
posed only in a preliminary form in Ref16]. The entropy  haice-particle pp) and the hole-holei(h) configurations.
effect is taken into account by enlarging the dimension of therps s consistent with the theoretical expectation based on
TRPA vector to include the shifts of occupation numbers ofihe “standard TRPA equation in terms of the quasiparticle
particles in addition to the original degrees of freedom of thepicture which automatically includes the @ terms in addi-
TRPA amplitudes. However, we will see that a special desjon to thea' o' and theaa terms[9—13, and also with the
vice in our formalism prevents those shifts of occupationphonon damping modéPDM) which takes into account the
numbers from contributing to the norms of the TRPA eige'coupling of GDR phonon to thep andhh configurations as

namplitudes. The exact TRPA equation will describe an inthe main mechanism of the width's increase and saturation
crease of the inclination toward the instability of the mean1g 19. We conclude the paper in Sec. VI.

field (i.e., the THFB solution due to entropy effect. This
instability is indicated by the occurrence of a vanishing ||. DERIVATION OF THE EXACT TRPA EQUATION

A. Stability condition of the THFB solution

*Electronic address: tanabe@riron.ged.saitama-u.ac.jp In order to elucidate the relation between the stability
Electronic address: dang@rikaxp.riken.go.jp condition of the THFB solution and the TRPA equation, we
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derive an explicit form of the stability matrix. For an exact

statistical operatoWV"¢, the exact grand potentig™® and
entropy S are, respectively, given by

5,”

R The parameteE,, is interpreted as a quasiparticle energy
FUe=(H'y-TS"e (2.  since it is determined as an eigenvalue of the THFB equa-

tion. The variation oE , is related to that of the quasiparticle
and distribution functionf , by

Stre= —  Tr(WUen W), (2.2 o= =BT, (1-1,)0E,. (2.9

Furthermore, if we introduce the infinitesimal Thouless’
transformation parametere,,,d,,} being related to the
variations of the Bogoliubov transformation coefficients by

where H’ is the auxiliary Hamiltonian for a finite system
such as a nucleus

PN - . R [11]
H'=H-\_Z— N N—w,Jx. 2.3
AUy, = (v*C* )y, +(ud)y,, (2.109
Three constraints are required for the proton and the neutron
numbers and the angular momentum O, = (U*C* )y, + (vd)yy, s (2.10b

S\ )\ — then the stability condition of the THFB solution derived
2=z, (N)=N, (3 VI(I+1), 2.4 - .
() (N) (3=l 29 from the second order variation ¢t is expressed as

which determine three Lagrange multipliexs,, \,, and 1
wyo iNtroduced in Eq(2.3). In Eq. (2.4) the ensemble aver- 82F=-VvTsv>o, (2.11
age of an operatad is expressed akd)=Tr(W™D). In a 2
practical problem, we repladd’ including the full Hamil-  where
tonian simply by a bilinear fornt e expressed in terms of

t_ ¢ d*
the quasiparticle operaton{mﬂ,a;[}, and correspondingly, v (C;w Crvr s 6F4),
we replace the exact statistical operaWwi e by the trial C>VECW: —c,, (u>v). (2.12
operator w
<o In Eq. (2.11) the stability matrix is defined as
R exp(— BHEM) ~ oft t
W= m’ : =§ E“a'“a“’ (2.9 A/w po B/w po C/w po E,uv o
B;:V po A::V po C:,u, op EZV o
_ ; S= (2.13
where 8=1/KT, andT is temperature andl the Boltzmann c* Copvu Duvos E! :
constant. The single-particle operatcg ,c|} are related to S
the quasiparticle operatofs, ,aL} through the generalized Epon  Boow  Eopu  Fuo

Bogoliubov transformation where the matrix elements are given by
Ck:E (UkMaM+U:MaL)1 (2.63 A,LLV,pUE(EILL+EV)(5ILLp5V0'_ 5[.!,0'5Vp)(1—f/.l,_f1/)
# +4(H22),u.1/p(r(1_f,u_fv)(l_fp_f(r)a

:E (Ukuau—’_uzﬂal)' (26b) Buv,p0524(H40);Lv,p0'(1_f,u_fv)(l_fp_fa')v
m

C,uV,pO'EG(Hsl),uVO'p(l_fM_fV)(fO'_fp)!
In addtition to a set of the generalized Bogoliubov transfor-
mation coefficientquy,, ,v, Uk, ,Uk,}, the parameterg’s Dpvpo=(Eu=E)(f,=1,)8,,6
introduced in Eq(2.5 are also regarded as variational pa- +4(H,,) (f,—f)(f,—f)
rameters. Based on the Peierls’ inequality e

E[LV,(TEG(H?zl)/AV,U'U'(l_ f,u_ fv)a
(27) E/,.LV 0'_4(H22),u,0'1)p(fv_f,u,)!

which holds for any approximate grand potentfaland en-

tropy Sdefined in terms of the approximate statistical opera- Fuo= W +4(H22) popo - (2.19

tor W as given by Eq(2.5), we apply the variational prin-

ciple =0 to derive the thermal Hartree-Fock-Bogoliubov In the above expressions, we have introduced the ordinary
equation as well as a relatigt4] notations for the two-body terms in the Hamiltonian in the

Fie< F=Tr(WA')~TS,  S=—kTr(WinW),
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quasiparticle picture such a8 ,,,,(Ha) .00 alala,, V() v()
> (H 2) Tt t X(l)E X(Z)E
uvpo\12 ,uvp(ra.,ua,ya(rap , elC. N ) ’
It must be noticed that the stability mati$is enlarged to
include the additional matrix elements correspondingftp M 0
in the fourth row and the fourth column, i.&,,, ,, E,, . ME( 0 ) (2.20
Bl E;,',’,,, andF, ,, while the 3<3 sector in the upper- 72
left corner ofS corresponds to the standard TRPA equationwith
neglecting entropy effedtL1].
X,uV _Y::V
B. Variational derivation of the TRPA equation V() = Yu v =| —x*
14 1 mv 1
Keeping in mind a parallel with the THFB stability con- Z,, 7%
dition, we apply the variational principle again to derive the . e
TRPA equation. We consider the nonunitary transformation 0 —i Sf
= ,ost=| ). 2.2
E,—E,+oE, (2.15 72 ( i 0 ) 5f;) (229
in addition to the unitary transformation of the trial statistical In Eq. (2.21), we cIasEify all the quasiparticle states into two
operator groups labelege and .. Practically, there are many different
S me in ) ways of this classification. An example of such a classifica-
—i — RS
W—e"We™™, R=Q'+Q (216 fion is to refer to the eigenvaluesi of the signature™'™x,

The matrixM defined as a part in Eq. (2.20 is the
with the TRPA operator in the quasiparticle picture definedrppa metric given by[11 1Zp am a-(2:20

by
1-f,—f, 0 0
QT=Z (XM,,aLaI—YMVa,,a#)-I—g Z,0la,. M= 0 -(1-f,~f,) 0
m=v HFV
(2.17) 0 0 f,—f.

(2.22
The third term inQ" contributes only at finite temperature, ) . »
and then plays an essential role in describing the rapid in- ©On the analogy with the stability condition of the TRPA

crease of the GR width with increasing temperature. Wherselution[11,20
we consider the TRPA equation in the particle-hofeh) ' ot ot —
picture, this term is expressed in terms of the combinations ([Q.[H".QID=([Q"[H",Q']])=0 (2.23
of pp and hh operators as will be done in the subsequent,nq the normalization condition
sections.
Regarding the TRPA collective motion about an equilib- ([Q,.QM)=1, (2.24
rium point determined by the mean field approximatioe.,
the THFB solution as of small amplitude motion, we calcu- we require
late the second order variation of the transformed grand po-

tential with respect t0X,,,,Y ,,,Z,,) and 6f,, to obtain XOTAMOMXD=XDTAMomxP=0 (2.25
1 and
82F==X"sX,
2 XOTAMX D= - XOTAX@ =1, (2.26
XT= X =Y Y= X0 23, + Z,,,6f,). (218 These conditions are regarded as constraints in what follows.

The grand potential is a functional of the trial statistical op-

Here the matrixS is the same as the stability matrix that grator\i which is a function of the parameteks, , i.e., F

appeared in Eq(2.11). This suggests the possibility of the _ : . .
extension of the TRPA equation to include also the contri- f[\fN(E#):.l' Appéylnzg 1S|mulctjarr11eously b_Oth the l;nltary
butions from the entropy term in the grand potentfalbut transformation In 4(2.16 and the nonunitary transforma-

i ! o tion in Eq. (2.19 to F, we consider a shiftAF
we need a special device to prevéii, from contributing to = -

_ 17 iRV ~iR A :
the RPA amplitude. For this purpose we rewrite the expres=71€" W(E,+ 6E,)e” "]~ FTW(E,)]. Then, we find that

sionX'SX as A F formally coincides with the second order variati6hF
given by Eq.(2.18 since the first order terms iR and of,
XTSX= (XM +XCHTAMOM(XD+X@)), (2.19  vanish in consequence of the THFB equation. Multiplying
the quantities in Eqg2.25 and(2.26) by the Lagrange mul-
which newly defines the extended form of the TRPA operadipliers a/2, b/2, andw, respectively, and subtracting those
tor O. We have introduced the following notations: from AF, we put the variational requirement in the form
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a where
S| AF— EX(”TMOMX@)
Ap,vpo' B,uvpo’ C;vao'
_ EX(Z)TMOMX(”—wX(l”MX(l) —o. 0=\ Bipe  Aupe  “Cavep |, (2.333
2 Czauv _Cpo'v,u, D/.wpo
(2.27
Performing the variations with tX,, Y, Z* HHaduwe ~HHsdues
erforming the variations with respect X§,,, Y7, Z5,, B % B .
and 6E,, (or of ), we obtain a relation unified in the matrix E= 3(H31)MVUU 3(H31);wmr J (2.33D
form 2(H22)/mwr _2(H22),u;v;
1—a) MOMX@+ (1—b) MOMXD)
( KT6,5
=(oM— MOM)XD— (0w M+ MOM)X?). Afo1-1)  —(Humuo
(2.28 +(H
F= ( 22),uo’,u,o’ , (233@
It must be noticed that, in this equation, the terms related to kTS,o
of consist of different contributions, i.e., the term of the type —(H22) oo af,(1-1,)

kTé,,/f,(1—f,) arising from the second order variation of

the entropy term-TSin 7, the one of the type 4,2 .0

from the ground state correlation at finite temperature, and Vi=(X
the ones of the types 63y ,,,, and 4Hy),,.,, from

i T(W[H’,R]), which vanishes if the nonunitary transfor- with the definitions
mation in Eq.(2.15 is not applied. We will call the tempera-

+ ( H 22)Ma',u,a'

sfr=(sf,,sf,) (2.330

Mmoo ,uv vz,uv)v

ture effect described by these contributions simply by the _ E.TE, _
entropy effect, hereafter. Auvpa 1- fp—f(,(é’“’&”" OucOup) + (Ha2) oy
Multiplying Eq. (2.28 by X3 or X1 from the left, (2.343
and using two relations in E¢2.25, we derive the follow-
ing two alternative equations: Bupe=—24Ha0) pvpos  Cuvpe= 6(H31),u.vp(r&2 aab
(1-2)X@DTAMOMXD= - XDt o M+ MOM)XD), '
E,—E
_or v
(2.293 Dypvpo= = 8,pBrot4(H22) iy (2.340

(1-b)XDTAMOMX V= XD M~ MOM)XD),

The normalization condition in Eq2.26) becomes
(2.29p

XTMX=V'MV =([Q,Q"])=1, 2.3
Here, we put a requirement that the right-hand sid&4S) QD 239

of the above equations vanish, i.e., ansatz which is irrelevant to the shif6E, (or 8f,) as expected.
This completes the derivation of the extended form of the
OMXBD=xBw, OMXP=X(-w). (230 TrPA equatior16].
For later convenience, we eliminate the shift of the occu-
ation numbersf from the TRPA equation in Eq¢(2.32.
hen, the TRPA equation is converted to

Due to this ansatz, the relatioms=b=1 result from Eq.
(2.29. Furthermore, we can show that the excitation energ
of the system is certainly given by the eigenvalue of the first

equation in Eq(2.30 o, i.e., [Q+Eoy(w—Fo,) 'ETIMV =V, (2.36
2 occupation numbers in the single-particle levels under the

influence of this excited collective mode
w
— —(xt (1) _y ()7 (2)y =
2 (X MX X MX ) . (2.3]) 5f(n): 5f(7n)=(wn— FO'Q)ilETMV(n) (237)

This result justifies the ansatz in E@®.30. Thus, our pur- as well as the TRPA operators
pose of deriving an exact form of the RPA equation at finite

temperaturg TRPA) is attained. More explicitly the TRPA QWT=Q="
equation is expressed as
Q E\/M 0\/V)| [V _Z(XEBMVY(H)““)*EZEB;L
(E* F)( 0 az)(a‘f):(af)“" (232 (2.39
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Some complication is unavoidable in solving the eigenvalue  ([QM QM])=—([QMT QMT])* =y MTpy (=M
equation(2.36) since the eigenvalue appears in both sides
of the equation. = — 5f(M o, 5FM. (2.430

In general, the THFB solution becomes unstable at thq’\lote thaté\f(m)tra_zaf(n)zo for m=n in the last expressions
critical point where there occurs a vanishing TRPA eigeny, Egs. (2433, (2.43h. Any one-body transitiori.e., non-
mode. Therefore, puttingg=0 in Eq. (2.36), we obtain a
general expression for the instability liger the boundary of
the THFB stability domain

diagona) operatorP can be expanded in terms @™ and

QW(=Q"") as

_ P— (mt (n)

de(Q—EF1E") =0, (2.39 P=2, (2,Q™"+b,Q"), (2.44
which defines a functional relation between the temperatur@hose expansion coefficiens's andb’s, are determined by
T and the relevant coupling strenghts of interactions. It car@ set of equations as follows:

be inferred from this expression that the instability occurs at

the temperature lower than the one predicted by the standard([Q(™,P])= >, {a,([Q™,Q™ 1)+ b ([Q™, QM)
TRPA without the entropy effect, since the diagonal energy n>0
E,+E, in the matrixQM is partly cancelled by the diago-
nal contributions in the second termEF*ETM. We will

see in some detail that this is the case in the perturbation

treatment of the entropy term for a simple model in the last

=an— 2, (a,+b,) Mg, sfn,

n>0

(2.453

part of Sec. IV.

C. Completeness condition and energy-weighted sum rule

From the hermiticity of the TRPA operatd@® and the
TRPA metricM, the TRPA equatiori2.32 requires

v(m

(wm_wn)(v(m)Tvé\f(mm)M( af(n)) =0. (2.4@

Thus, if there is no degeneracy in the TRPA energiés
the orthonormality relation is given by

\Vi)
(V(m)T'(sf(m)tf)M< ) =VMTMY (M4 sFMT 5 550

SFM

Wn
Smns (241

ol

which represents both the normalization condition in Eq.

(2.26 and the orthogonality relations in Eq2.25 alto-
gether. Use of Eq(2.37) together with the reality obf’s
allows us to rewrite Eq(2.41) as

VOTMI 1+ E(wm— 05F)  top(w,— Fop) *ETM VM

Wp

Omns (2.42

—lwn|

where the second term on the left-hand gideS), which is
identically zero fom=n, represents the modification due to
the entropy effect.

Ensemble averages of the commutators among eigen-

operatorsQM(=Q""") (n=x1,+2,...), aregiven by

<[Q(m).Q(n)T]>: —<[Q(m)T,Q(”)]>* VIO VIVIW]

Wn

_lwn|

Spyn— OF MU, 5FM (2.433

<[Q<m”ﬁ]>=go {a([QMT, QM) +b([QM™T,QM])}

=—by— > (a,+b,) M, 5H M,

n>0

(2.45bh
Solving Eq.(2.45 with respect taa’s andb’s, we get

an=<[Q<m>ﬁ]>+n§O ([QM—QMT BT sfMter, 5,
(2.46a

by=—([QM",P)= X ([Q™—-Q™",P])ofMer,of™.
(2.46b

If we use these expressions for the coefficients in(Edql4)
and Eq.(2.37), we obtain an equation havirijin both sides.

Requiring that this equation is an identity #0r we derive an
extended expression for the completeness condition as

>

n>0

VOV |+ ME (w,— 0,F) 1o,

X D, (@n—Fop) tETMV My MT_y(=mT)

m>0

—v<”>v<"”[ I +ME(w,— 0,F) o,

X > (wn—Fo,) EMVE™

m>0

x(v(—m”—v(m”)] M=I. (2.47

When the operatoP is Hermitian, the relatiorb,=a}
holds. Then, making use of Eq&.44), (2.43, and (2.37),
we reduce the ensemble average of the double commutator

betweenP andH as follows:
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LibrHE ! *\/ ()t (-mt NZ
F(PIHPI)=5 2 (apv(™+apvim —<[D [H.D1) =507 & (2.5
XMQM(anV(“)wLa;‘V(‘”)) Thus, the identity in Eq(2.48 gives an extension of the

Thomas-Reiche-Kuhn sum rule to the GDR built on an ex-
, 1 . ; cited nucleus at a finite temperature. In case of such an iden-
=> wp|an|“+ 2 > ana,vm tity, it is expected that the increase of the contribution cor-
n>0 m=n(all) . . . .
responding to the second term in the final expression of Eq.
XME (F—w,0,) ETMQV™ (2.48 (2.48 is compensated by the decrease of the experimental
EWS =, own|a,|? with increasing temperature.

with
a,=a*,=([QM,P])+VMWIME (F- w,0,) to, IIl. MICROSCOPIC MODEL
~ In order to perform numerical analysis, we consider a
X D (F— wpop) LETMVM(QM—QMT B]), simple microscopic model in which protons and neutrons are

m(=n) not discriminated; and angular momelita sping and pari-

(2.49 ties are completely ignored. We do not take into account the
The identity given by Eq(2.48 provides an extension of the Pairing correlations so that the particle-hole picture can be
EWSR for a Hermitian one-body operat®r[17] to the case employed. In this model, we takke single-particle levels
of an excited system in a finite temperature. The first term uY‘”th an equal spacing, except for a shell gap above the
its final expression corresponds to an experimental EWS exgasth level. Two single-particle states labelgdand » are
tending over the strengtla,|? of the nth eigenmode, and its degenerate in each single-particle level. Thus, the single-
second term represents a correction attributed to the entrogdarticle energies measured from the Fermi energyare
effect. Since a diagonal element of the matfixs propor-  diven by
tional to[ f ,(1—f )]t or[Bf(1—f;)] ! as seen in Eq. g=(I-1)eg—ep for 1<I<|
(2.330, it diverges in the zero-temperature limit. Thus, the
diagonal elements df dominate in the denominator of the e=(1=2)gotA—sp for lgp<I<L. CAY
matrix form (F— w,0,) "t in Egs.(2.48 and(2.49. There- Our Hamiltonian with two-body interaction is expressed
fore, the entropy effect represented by the second terms im terms of the particle operato{spk,pl} and the hole op-
the expressions of Eq$2.48 and (2.49 becomes less im- erators{hk,hl} as
portant at low temperatures.

For an arbitrary one-body operat®, the LHS of Eq. - ey

(2.48 is in general not a constant as in a microscopic model H :k; skplpk_h;: ehihi+ 2" P2 (3.2
which will be introduced in the next section. In case of GDR,
the operatoi is replaced by the electric dipole operator ~ with

N
. Z N .
== - P=P'= cicr, 3.3
AT R 2 % (250 ey, KCC (33

whereZ, N, and A stand for the numbers of neutrons, pro- whereg,, stands for the form factor representing the transi-
tons, and the sum of them, respectively. Sincetion matrix elementc,=py for a particle state and,=h,
([Iﬁ,[V,D]])=O for the velocity-independent nuclear inter- for a hole state. The Hamiltonian is formally expressed in
action potentiaV, we have terms of self-evident notations as follows:

=> (Hll)plpzplp2+z (H1dn,h, hih,+ E (H22)p1h1p2h2p1h1h2p2
P1P2 P1p2hih;

+ > (H22)p1p2p3p4plp2p4p3+ 2 (H22)h,n,honN1h3N4hs

P1P2P3P4 hihohshy

+ > {(H31)p,p,p,h, pip} h1p2+(H31)plp2p3h pihipopa}
P1P2P3hy

+ > {(Hson;h,hgp, 01 Th2p1h3+(H3].)h1h h3p1h3plh hy}
h1hah3py

+ 2 {(Hap,p,nn,P1P50] hl+(H40)plp2h hihop,py} 3.4

h
p1p2hih; 12
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with which frequently appears in what follows, and an expression
for the TRPA amplitude
(H1]_)p1p2:8p15p1p21 ir
Vi= (Xph vah valpszhlhz)

(H1h,h,= —€n 6hh,

gpnY —0pnUY gplpzu ghlhzu
(H22)p,h,p,h, =V pshohypy: B w—epten wtey—en w—ep Tep ‘oten —en, )’
4.2
(H22)p,pypap, = 2 YP1Popspy’ we derive an explicit formula for the shift of the TRPA

eigenenergy as

(H22)h,hohah, = 7 Uhshohahys
1hahghy — 4 ¥ hyhohshy, 2 2 P
A("):|U| % gph(nh_np)

1
(Hsl)plpzpshlz 4V P1popshy
1 1
2+ 2
1 |w—8p+£h| |w+8p—sh|

(H31)h;hohap, = 7Unyhohgp,s .
X(E(wa,—=F) " "E")pnph

1
— 2 2
(Ha0)p,p,hyh, = 4 VP1pohahy (3.9 gplpg(npz_ Np,) pp—
T2 e (B(0oF) i, i,
and PPz |0—ep tep|
Ukimn=X(Gkm3in = GknTim) - (3.9 gﬁlhz(nhz_nhl)z
-1t
. . + 20— (E(wo2=F) " "E')p h, nh,
In order to introduce a smooth cutoff in energy for the above hihy |w—8hl+ sh2|
transition matrix elements defined in the finite single-particle
model space, we assume a transition form factor given by 4.3
gkl:ef[(akfs|)/A]2_ef[(squ)/B]z' (3.7) together with the relation derived from the normalization

condition in Eq.(2.35), i.e.,
In the practice of numerical analysis carried out for non-
rotating nuclei(i.e., w,,;=0) in the subsequent sections, we |U|*2=2 gz (np—ny)
. - . phitth—tp
ignore the temperature dependence of single-particle levels. ph
The numerical values of five constants are chosen tegbe

=0.275 MeV,A=6.0 MeV, y=0.1 MeV, A=6.8 MeV, y 1 B 1

andB=5.5 MeV. Total number of levels is=80, and the lw—epten? |ote,—ep?

shell gap is placed between 36th and 37th levets, | 4,

> 2 _ 2 _
_36) +2 gplpz(an npl) ghlhz(nhz nhl)

IV. PERTURBATION DUE TO ENTROPY EFFECT bz [o—ep tep|” ffz [o—ep, Tep,|®

It is obvious that the second term in the LHS of £2,.36 (4.4
describes the entropy effect. Since this contribution is in thavhere
second order of the coupling constant, i), the perturba-
tion treatment is applicable to calculate the shift of the ei- 1
genvalue of collective excitation due to the entropy effect nk:eﬁsk +1
Aw. Introducing notation for the quantity

(4.5

L is the single-particle occupation number. The explicit forms
U=Tr(W[P,Q']), 4.1 of the matrix elements appearing in Eg.3) are given by

2 + g — — 2 —+ g — i
Ub,pp,h Ve, vplpplh)/pl Uh;ph;h Vhy Uhlph1h7h1

[E(woy—F) 'Elpnpn=—2
PR 1)y, T 1-(40)%, v,
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2 L2 2 - S
et Up,pp,p¥p ™ Up pp,p P Up;hpohYn T Vg hponh
(E(wo,—F)"°E )plpz,plpzz_ 2 — 2,0,
1-(4w) Yp7p h 1-(40)“Yh¥n
2 2 . 2 2 _
et Uhlph2p7’p+vhl§hzﬁ7’p Uhlhh2h7’h+vhlﬁhzﬁ3’h
(E(wo=F) *ENpn, nn,=— 2 S S (4.6)
P 1-(40)yp7p o 1-(40) YnVh
|
with the definition with
=B (1—ny). 4.7)
; gon(ep—en)(Nh—np)
The temperature dependence of the Fermi enéogyhe RoEZE pht=p P
chemical potentidleg is determined by the self-consistent ph wz—(sp—sh)z
requirement for a given particle numbisr 5 5
L gplpz(npz_ npl) B ghlhz(nhz_ nhl)
2> ne=N. (4.9 Pz @~ 8p tEp, R, @F&n &,
k=1
(4.1)

Thus, the Fermi energy moves with temperature when the

distribution of single-particle levels is asymmetric with re- The fi he RHS of thi ion d ibes th
spect toeg at the temperaturd=0. However, it will be e first term on the of this expression describes the

shown in the subsequent section that its temperature depef2ntribution from theph configuration, while the second and

dence is slight only if we take into account enough numbefh€ third terms correspond to the contributions from e

of single-particle levels. and 'ghehh conflgur_atlo_ns, respect|.vely..Then, the strength
Within an approximation neglecting exchange terms andunction of the GR is given by the imaginary part Rfas

the entropy terms, the TRPA equation in the particle-hole

picture becomes

S(0) 1I = Im Ry

2 w)=——mR= .

I,y (e (M—Np) < Ipyp,(Me,~ Mp) 7 (1— y ReRg)2+ (x IMRy)?

X ph wz—(sp—sh)2 pp, @~ &p teEp, (4.12

2
Oy, ~ Mny) Finall ider the stability problem within th
U=0. (4.9 inally, we consider the stability problem within the per-
hih, @+ é&n —é&p, turbation treatment. For the eigenenexgy of the standard

TRPA equation without the entropy effe€@MV =V wg, the
Thus, the corresponding linear response function is given bghift of the eigenenergy due to the entropy effect is given by
putting w= wq in Eq. (4.3). Assuming thatv is already very
R= Ro (4.10 small and neglecting it in the denominators in E¢$.3),
1-xRo (4.4), and(4.6), we get a shift caused by the entropy effect

AwE—|U|2

2 2 2 2
- (Uplpplh7p1+vplpplh7pl)+h21 (Uhlph1h7h1+vhlphlh7hl))

2
ny,—nNp
23, oh e
%gph €p~ €p p
p

2
n, —nN
p p
2 1 P2 2 2 2 2
+E gplpz( ) {2 (Uplpp2p7p+vplpp2p)’p)+§h: (Uplhp2h7h+vp1hp2h)h)]

p1P2 €p,” €p,
2
n, —nN
t2 o S (02 e ot 0E s+ (Rt 0 ) (4.13
hih, hiha €h,~ €h, ) hiphyp 7p h,ph,p 7P = hihhyh 7h h,hh,h h ) .

which is a negative quantity. Thus, the exact TRPA equation is expected to describe the occurrence of the THFB instability at
finite temperature caused by the entropy effect, though it is needed to solve exactly the TRPA d@uadiazspecially for
the case of stronger coupling constant in order to study the detailed behavior of the instability line.
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(a) Closed—Shell Case (b) Open—Shell Case particle levels in the temperature rangie=0.0~7.0 MeV.
IEE! = The occupation numbers in higher levels indicate that the

= 3 temperature of 5 MeV is already too high for the configura-
tion space of the model.

The perturbation result for the gamma-ray energy shift in
= Eq. (4.3 gives simply a shift of they-ray energy, i.e.w
0 =% —w+Aw, without changing the functional form of the
X strength functionS(w) given by Eq.(4.12. The shiftAw
S calculated by the formula in Eq4.13 turns out to be at
% B most of the order of 0.1 keV for the above temperature range
= : and the set of parameters given below ER}7). Therefore,
v ERRR the GR shape is not modified by the entropy effect provided
that the interaction strength is not too large so that such an
effect can be dealt with as a perturbation. Then, the overall
distribution of the GR strengths is well approximated by the
30 =5 solution to the TRPA equation neglecting completely the en-
-1s 50 = tropy effect.

il & Utilizing the expression for the strength function in Eq.
(4.12), we carry out numerical analysis for the above two
T T T T T cases(a) and (b). In the practice of numerical analysis, we
n(e) n(e) assume a fictitious finite imaginary part called “the escape
width,” y.s=0.5 MeV, only for the purpose of smearing

FIG. 1. Single-particle level scheme and the single-particle 0Cy,q fnctional behavior of the strength function. Therefore
cupation numbers calculated at various temperatures for two cases . - . .
(a) “a closed-shell model nucleusithe left diagram and (b) “an we replacew by w+1iyescin the denominator of each term in

open-shell model nucleustthe right diagram In each diagram, the functlonRo._ .
the horizontal thin lines represent 80 single-particle levels with an IN Order to investigate the effect of thep and thehh
equal spacing except for a gap between the 36th and the 37th leveg@nfigurations on the Landau splitting of the collective RPA
four curves with solid lines connected by the straight dashed line$evels, we compare the giant resonance shapes calculated
through the gap region represent the single-particle occupationcluding these configurations in addition to the ordinpty
numbers calculated at four temperatuiles 1.0, 3.0, 5.0, and 7.0  configuration with the one calculated only with thé con-
MeV as indicated in the diagram. In the right diagram for (me figurations up to the temperatu’fe: 7.0 MeV for both cases
the crossing points of the four curves with a vertical straight line at(a) (four panels on the leftand (b) (four panels on the right
n=0.5 demonstrate the temperature-dependent shift of the Fernﬁi] Fig. 2. In both cases we observe a clear trend thapihe
energy. andhh configurations contribute much to increase the abso-
lute values of the resonance strengBis). At the tempera-
V. TEMPERATURE DEPENDENCE OF THE GR WIDTH tureT=1.0 MeV, the difference between two strengths cal-

We carry out numerical analysis for two interesting case<Ulated with and without thep and thehh contributions is
(a) “a closed-shell model nucleus” whose Fermi energy is inslight in the_closed-shell nucleus, while its d|ffere_nc_e is al-
the middle of the shell gap assumed to be between the 36fi§ady seen in case of the open-shell nucleus. This is due to
level and the 37th level in our model space ail “an  the fact that the Fermi energy is in a region of larger single-
open-shell model nucleus” whose Fermi energy is betweerparticle level density and the single-particle energy measured
the 50th level and the 51st level. With two diagrams forfrom the Fermi energy is smaller, so that the distortion of the
these case®@) and(b) in Fig. 1, we show the single-particle Fermi distribution starts from lower temperatures. As a re-
level scheme in the present model by horizontal thin linessult, the excitations via thpp and thehh configurations can
(i.e., 36 levels below and 44 levels above the)gapd the start already from lower temperatures in the open-shell case.
single-particle occupation numbers in these levels by four Comparing the temperature dependence of the resonance
curves with solid lines calculated at the temperaflirel.0,  shapes including th@p and thehh contributions between
3.0, 5.0, and 7.0 MeV. The counterparts of each curve belowwo cases(a) and (b), we recognize that the decrease of
and above the gap are connected by a straight dashed limesonance strength is more rapid in the open-shell case, and
through the gap region. Though the single-particle levels aréhe centroid energies slowly decrease with temperature in
assumed to be independent of temperature, the Fermi energpth cases. The latter shift is at most 2.0 MeV in both cases.
er becomes temperature-dependent by the requirement ifihe increase of the resonance widths., the Landau split-
Eq. (4.8. The temperature-dependent shift of the Fermi entings) is seen only in the resonance curves includingpipe
ergy starting frome=0 at T=0 is negligible in the case and thehh contributions in both cases, while the resonance
(@), while it is explicitly shown by the shift of crossing points widths without those configurations do not change with tem-
of the occupation number curves with a vertical straight lineperature and keep almost constant values in both cases. As
at n(g)=0.5, though its extent is only within a few single- our model is within the RPA, the absolute value of full width

-10
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4 8
55| (a) Closed—Shell Case 41 (b) Open—Shell Case
o~ 3 6
ba.s T=7.0 MeV b5 T=7.0 MeV
2 2 24
31.5 33
@ 1 @ 2
0.5 . h 1 .
2.5 5- 7.5 10 12.5.5.5 17.5 20 2.5 5 7.5 10 155 15 17.5 20
w (MeV) w(MeV)
4 8
3.5 7
- 3 o €
525 T=5.0 MeV b5 T=5.0 MeV FIG. 2. Temperature dependence of the
2 2 24 strength functions of giant resonance calculated
35 33 for two casega) “a closed-shell model nucleus”
w 1 w 2 m
o5 L Loomtee, (four panels on the leftand (b) “an open-shell
.- model nucleus” (four panels on the right In
2.5 5 7.5 10 12.5 15 17.5 20 2.5 5 7.5 10 12.515 17.5 20 . .
w (MeV) w (MeV) each panel a solid line represents the standard
TRPA result which includes the damping via the
, g 3 pp and thehh configurations in addition to the
5 e ph configuration, and a dashed line the one in-
bo2.s T=3.0 MeV bs T=3.0 MeV cluding only theph configuration. In each case,
2 2 Z4 four panels correspond to the results calculated at
2 1'? %; the temperature$=1.0, 3.0, 5.0, and 7.0 MeV,
0.5 \ 1 \ respectively.
2.5 5 7.5 10 12.5 lé 17.5 20 2.5 5 7.5 10 12.;.15 17.5 20
w (MeV) w(MeV)
4 8
3.5 7
~ 3 —~6
B2.5 T=1.0 MeV b5
£ 2 24
3 1.5 33
@1 @ 2
0.5 1

2.5 5 7.5 10 12.5 15 17.5 20 2.5 5 7.5 10 12.5 15 17.5 20
w (MeV) w(MeV)

is not as large as that of GDR, and its change with temperazonstant. Based on the EWSR extended to the finite tempera-
ture is not so rapid. Needless to say, a detailed way howure given by Eq.(2.47, we can point out a possibility
rapidly the resonance strength changes with temperature dehat, in case of the GDR, the increasing contributions arising
pends upon microscopic models. from the entropy effect i.e., the second term in the RHS
compensates the decreasing EWS with temperature.,
the first term in the same expressioso that the sum of
both contributions gives a value which does not depend on
In the present paper we have shown detailed steps for thiemperature.
variational derivation of the exact thermal RPARPA) Making use of a simple microscopic model, we have stud-
equation whose matrix representation precisely corresponded the effect of thepp and thehh configurations on the
to the thermal HFB(THFB) stability matrix. This equation Landau splitting of the GR. We find that these configurations
describes an interplay between the collective excitation anglay decisive roles in the temperature-dependent phenomena
the entropy effect. It must be noticed that the extended partsf the GR built on a hot nucleus. The distortion of the Fermi
of the TRPA matrix, i.e., the matricas, E', andF in Eq.  distribution due to temperature effect allows the damping of
(2.32, represent the temperature effect arising from theGR via thepp andhh configurations and the Landau split-
ground state correlations modified by the existing collectiveting width of the GR increases with increasing the tempera-
mode as well as the entropy effect. If these effects are meamtre. Since this general mechanism works also in the damp-
simply by the entropy effect, the TRPA equation correctlying of the GR via four quasiparticle configurations, it can be
describes such an entropy effect that causes the instability afiferred that the increase of the spreading width is controlled
the THFB state already at finite temperature. However, thenainly by thepppp, ppph phhh and hhhh configura-
giant resonance shape is not much affected by the entropjons. This physical picture is consistent with the theoretical
effect unless the coupling of the collective modes to particleexpectation based on the standard TRPA in the quasipatrticle
hole configurations is strong enough, since the entropy effeqticture [9—-13] and the recent approaches with the phonon
is described in terms of the second order in the couplinglamping model(PDM) [18,19. It should be remarked that

VI. CONCLUSION

024310-10
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the change of the mean field with temperature, due to théons on top of the self-consistent solution to the thermal
change of pairing correlation and deformation which are noHFB equation.

considered in the present model, are important at low tem-

perature$10]. Therefore, for the purpose of investigating the AU LS SIS

temperature dependence of the GR phenomena, it is the most One of the authoréK. T.) wishes to thank K. Sugawara-
desirable to perform for realistic nuclei the TRPA calcula- Tanabe for useful discussions.
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