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Exact form of the random phase approximation equation at finite temperature
including the entropy effect
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The thermal random phase approximation~TRPA! equation is derived from the variational principle applied
to the grand potential with an entropy term. This form of the TRPA equation is exact within the framework of
the random phase approximation at finite temperature, whose matrix representation coincides with the stability
matrix for the solution to the thermal Hartree-Fock-Bogoliubov equation. It is, however, shown that theg-ray
energy-dependence of the response function for a giant resonance built on a heated nucleus is not altered within
a perturbation treatment of the entropy effect based on a simple microscopic model. Thus, an application of the
TRPA formalism neglecting the entropy effect is justifiable as for giant resonance shape. The calculation
employing a simple microscopic model shows that the increase of the Landau splitting of giant resonance
levels with temperature is mainly attributed to the contributions ofpp andhh configurations.

PACS number~s!: 21.10.Pc, 21.10.Re, 21.60.Jz
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I. INTRODUCTION

Recent experimental studies of the damping of giant re
nances~GR’s! built on heated nuclei@1–8# have supplied
useful information for checking the theoretical models a
methods, which have been successful in describing pro
ties of the nuclear states in the yrast region and extensi
applied to the highly excited states above the yrast line.
such an extension of microscopic formalism, the thermal r
dom phase approximation~TRPA! equation@9–13# on top of
the thermal Hartree-Fock-Bogoliubov~THFB! @14,15#, or
the thermal Hartree-Fock~THF! solution when the pairing
correlation is not important, is expected to describe
temperature-dependent behavior of the hot GR. For this
pose, the formalism has to be guaranteed not only
smoothly tend to the ordinary RPA in the zero-temperat
limit, but also to solve the problem of discrepancy betwe
the TRPA matrix and the THFB stability matrix@11#. There-
fore, in the first part of this paper~Sec. II!, we derive in a
comprehensive manner the exact TRPA equation from
grand potential including entropy term, which has been p
posed only in a preliminary form in Ref.@16#. The entropy
effect is taken into account by enlarging the dimension of
TRPA vector to include the shifts of occupation numbers
particles in addition to the original degrees of freedom of
TRPA amplitudes. However, we will see that a special
vice in our formalism prevents those shifts of occupat
numbers from contributing to the norms of the TRPA eig
namplitudes. The exact TRPA equation will describe an
crease of the inclination toward the instability of the me
field ~i.e., the THFB! solution due to entropy effect. Thi
instability is indicated by the occurrence of a vanishi
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TRPA eigenenergy at finite temperature. We present a
explicit forms of the completeness condition and the fin
temperature version of the energy-weighted sum r
~EWSR! @17#.

In the second part of the paper, our interest is in the
tropy effect and the temperature dependence of the GR w
and centroid energy. In Sec. III we introduce a simplifi
microscopic model, and in Sec. IV we apply it to investiga
~i! the entropy effect on the stability of the THFB solutio
~ii ! its effect on the GR shape, and~iii ! the temperature de
pendence of the Landau splitting and the centroid ene
Then, we treat the contributions from the entropy to the G
spectra as perturbation. We will, however, see that such
effect turns out to be negligible unless the interacti
strength is abnormally large. It is experimentally known th
in case of the giant dipole resonance~GDR! in a hot nucleus,
its width at half maximum~i.e., the FWHM! increases rap-
idly with increasing temperature for Sn isotopes@1–6# and
208Pb @7,8#, and it seems to saturate at the temperature ab
T.3;4 MeV in the case of Sn isotopes. In Sec. V, w
confirm, within the framework of our microscopic mode
that the rapid increase of the Landau splitting with tempe
ture is mainly due to the damping of the GR through t
particle-particle (pp) and the hole-hole (hh) configurations.
This is consistent with the theoretical expectation based
the ‘‘standard’’ TRPA equation in terms of the quasiparticl
picture which automatically includes thea†a terms in addi-
tion to thea†a† and theaa terms@9–13#, and also with the
phonon damping model~PDM! which takes into account the
coupling of GDR phonon to thepp andhh configurations as
the main mechanism of the width’s increase and satura
@18,19#. We conclude the paper in Sec. VI.

II. DERIVATION OF THE EXACT TRPA EQUATION

A. Stability condition of the THFB solution

In order to elucidate the relation between the stabi
condition of the THFB solution and the TRPA equation, w
©2000 The American Physical Society10-1
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derive an explicit form of the stability matrix. For an exa
statistical operatorŴtrue, the exact grand potentialF true and
entropyStrue are, respectively, given by

F true5^Ĥ8&2TStrue ~2.1!

and

Strue52k Tr~Ŵtrueln Ŵtrue!, ~2.2!

where Ĥ8 is the auxiliary Hamiltonian for a finite system
such as a nucleus

Ĥ85Ĥ2lpẐ2lnN̂2v rotĴX . ~2.3!

Three constraints are required for the proton and the neu
numbers and the angular momentum

^Ẑ&5Z, ^N̂&5N, ^ĴX&5AI ~ I 11!, ~2.4!

which determine three Lagrange multiplierslp , ln , and
v rot introduced in Eq.~2.3!. In Eq. ~2.4! the ensemble aver
age of an operatorÔ is expressed aŝÔ&5Tr(ŴtrueÔ). In a
practical problem, we replaceĤ8 including the full Hamil-
tonian simply by a bilinear formĤeff expressed in terms o
the quasiparticle operators$am ,am

† %, and correspondingly

we replace the exact statistical operatorŴtrue by the trial
operator

Ŵ5
exp~2bĤeff!

Tr exp~2bĤeff!
, Ĥeff[(

m
Emam

† am , ~2.5!

whereb51/kT, andT is temperature andk the Boltzmann
constant. The single-particle operators$ck ,ck

†% are related to
the quasiparticle operators$am ,am

† % through the generalized
Bogoliubov transformation

ck5(
m

~ukmam1vkm* am
† !, ~2.6a!

ck
†5(

m
~vkmam1ukm* am

† !. ~2.6b!

In addtition to a set of the generalized Bogoliubov transf
mation coefficients$ukm ,vkm ,ukm* ,vkm* %, the parametersE’s
introduced in Eq.~2.5! are also regarded as variational p
rameters. Based on the Peierls’ inequality

F true<F5Tr~ŴĤ8!2TS, S52k Tr~Ŵ ln Ŵ!,
~2.7!

which holds for any approximate grand potentialF and en-
tropy Sdefined in terms of the approximate statistical ope
tor Ŵ as given by Eq.~2.5!, we apply the variational prin-
ciple dF50 to derive the thermal Hartree-Fock-Bogoliubo
equation as well as a relation@14#
02431
on

-

-

^am
† an&[ f mdmn5

dmn

exp~bEm!11
. ~2.8!

The parameterEm is interpreted as a quasiparticle ener
since it is determined as an eigenvalue of the THFB eq
tion. The variation ofEm is related to that of the quasiparticl
distribution functionf m by

d f m52b f m~12 f m!dEm . ~2.9!

Furthermore, if we introduce the infinitesimal Thoules
transformation parameters$cmn ,dmn% being related to the
variations of the Bogoliubov transformation coefficients
@11#

dukm5~v* c* !km1~ud!km , ~2.10a!

dvkm5~u* c* !km1~vd!km , ~2.10b!

then the stability condition of the THFB solution derive
from the second order variation ofF is expressed as

d2F5
1

2
V†SV.0, ~2.11!

where

V†[~cmn
.* ,cmn

. ,dmn* ,d f m!,

cmn
. [cmn52cnm ~m.n!. ~2.12!

In Eq. ~2.11! the stability matrix is defined as

S[S Amn,rs Bmn,rs Cmn,rs Emn,s

Bmn,rs* Amn,rs* Cnm,sr* Emn,s*

Crsmn* Csr,nm Dmn,rs Emn,s8

Ers,m* Ers,m Esr,m8* Fm,s

D , ~2.13!

where the matrix elements are given by

Amn,rs[~Em1En!~dmrdns2dmsdnr!~12 f m2 f n!

14~H22!mnrs~12 f m2 f n!~12 f r2 f s!,

Bmn,rs[24~H40!mn,rs~12 f m2 f n!~12 f r2 f s!,

Cmn,rs[6~H31!mnsr~12 f m2 f n!~ f s2 f r!,

Dmn,rs[~Em2En!~ f n2 f m!dmrdns

14~H22!msnr~ f n2 f m!~ f s2 f r!,

Emn,s[6~H31!mn,ss~12 f m2 f n!,

Emn,s8 [4~H22!msnr~ f n2 f m!,

Fm,s[
kTdms

f m~12 f m!
14~H22!msms . ~2.14!

In the above expressions, we have introduced the ordin
notations for the two-body terms in the Hamiltonian in t
0-2
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quasiparticle picture such as(mnrs(H31)mnrsam
† an

†ar
†as ,

(mnrs(H22)mnrsam
† an

†asar , etc.
It must be noticed that the stability matrixS is enlarged to

include the additional matrix elements corresponding tod f m

in the fourth row and the fourth column, i.e.,Emn,s , Emn,s8 ,

Emn,s* , Emn,s* 8 , andFm,s , while the 333 sector in the upper
left corner ofS corresponds to the standard TRPA equat
neglecting entropy effect@11#.

B. Variational derivation of the TRPA equation

Keeping in mind a parallel with the THFB stability con
dition, we apply the variational principle again to derive t
TRPA equation. We consider the nonunitary transformat

Em→Em1dEm ~2.15!

in addition to the unitary transformation of the trial statistic
operator

Ŵ→eiRŴe2 iR, R5Q†1Q ~2.16!

with the TRPA operator in the quasiparticle picture defin
by

Q†5 (
m.n

~Xmnam
† an

†2Ymnanam!1 (
mÞn

Zmnam
† an .

~2.17!

The third term inQ† contributes only at finite temperature
and then plays an essential role in describing the rapid
crease of the GR width with increasing temperature. Wh
we consider the TRPA equation in the particle-hole (ph)
picture, this term is expressed in terms of the combinati
of pp and hh operators as will be done in the subsequ
sections.

Regarding the TRPA collective motion about an equil
rium point determined by the mean field approximation~i.e.,
the THFB solution! as of small amplitude motion, we calcu
late the second order variation of the transformed grand
tential with respect to (Xmn ,Ymn ,Zmn) andd f m to obtain

d2F5
1

2
X†SX,

X†5~Xmn* 2Ymn ,Ymn* 2Xmn ,Zmn* 1Znm ,d f m!. ~2.18!

Here the matrixS is the same as the stability matrix th
appeared in Eq.~2.11!. This suggests the possibility of th
extension of the TRPA equation to include also the con
butions from the entropy term in the grand potentialF, but
we need a special device to preventd f m from contributing to
the RPA amplitude. For this purpose we rewrite the expr
sion X†SX as

X†SX5~X(1)1X(2)!†MOM~X(1)1X(2)!, ~2.19!

which newly defines the extended form of the TRPA ope
tor O. We have introduced the following notations:
02431
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X(1)[S V(1)

df D , X(2)[S V(2)

df D ,

M[S M 0

0 s2
D ~2.20!

with

V(1)5S Xmn

Ymn

Zmn

D , V(2)5S 2Ymn*

2Xmn*

Znm*
D ,

s25S 0 2 i

i 0 D , df5S d f m

d f m̄
D . ~2.21!

In Eq. ~2.21!, we classify all the quasiparticle states into tw
groups labeledm andm̄. Practically, there are many differen
ways of this classification. An example of such a classifi
tion is to refer to the eigenvalues6 i of the signaturee2 ip ĴX.
The matrixM defined as a part ofM in Eq. ~2.20! is the
TRPA metric given by@11,12#

M5S 12 f m2 f n 0 0

0 2~12 f m2 f n! 0

0 0 f n2 f m

D .

~2.22!

On the analogy with the stability condition of the TRP
solution @11,20#

^@Q,@H8,Q##&5^@Q†,@H8,Q†##&50 ~2.23!

and the normalization condition

^@Q,Q†#&51, ~2.24!

we require

X(1)†MOMX(2)5X(2)†MOMX(1)50 ~2.25!

and

X(1)†MX(1)52X(2)†MX(2)51. ~2.26!

These conditions are regarded as constraints in what follo
The grand potential is a functional of the trial statistical o
eratorŴ which is a function of the parametersEm , i.e., F
5F@Ŵ(Em)#. Applying simultaneously both the unitar
transformation in Eq.~2.16! and the nonunitary transforma
tion in Eq. ~2.15! to F, we consider a shift DF
5F@eiR̂Ŵ(Em1dEm)e2 iR̂#2F@Ŵ(Em)#. Then, we find that
DF formally coincides with the second order variationd2F
given by Eq.~2.18! since the first order terms inR̂ andd f m
vanish in consequence of the THFB equation. Multiplyi
the quantities in Eqs.~2.25! and~2.26! by the Lagrange mul-
tipliers a/2, b/2, andv, respectively, and subtracting thos
from DF, we put the variational requirement in the form
0-3
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dS DF2
a

2
X(1)†MOMX(2)

2
b

2
X(2)†MOMX(1)2vX(1)†MX(1)D50.

~2.27!

Performing the variations with respect toXmn* , Ymn* , Zmn* ,
anddEm ~or d f m), we obtain a relation unified in the matri
form

~12a!MOMX(2)1~12b!MOMX(1)

5~vM2MOM!X(1)2~vM1MOM!X(2).

~2.28!

It must be noticed that, in this equation, the terms related
df consist of different contributions, i.e., the term of the ty
kTdms / f m(12 f m) arising from the second order variation
the entropy term2TS in F, the one of the type 4(H22)msms

from the ground state correlation at finite temperature,
the ones of the types 6(H31)mnrr and 4(H22)mrnr from
i Tr(Ŵ@Ĥ8,R#), which vanishes if the nonunitary transfo
mation in Eq.~2.15! is not applied. We will call the tempera
ture effect described by these contributions simply by
entropy effect, hereafter.

Multiplying Eq. ~2.28! by X(2)†, or X(1)† from the left,
and using two relations in Eq.~2.25!, we derive the follow-
ing two alternative equations:

~12a!X(2)†MOMX(2)52X(2)†~vM1MOM!X(2),

~2.29a!

~12b!X(1)†MOMX(1)5X(1)†~vM2MOM!X(1).

~2.29b!

Here, we put a requirement that the right-hand sides~RHS!
of the above equations vanish, i.e., ansatz

OMX(1)5X(1)v, OMX(2)5X(2)~2v!. ~2.30!

Due to this ansatz, the relationsa5b51 result from Eq.
~2.29!. Furthermore, we can show that the excitation ene
of the system is certainly given by the eigenvalue of the fi
equation in Eq.~2.30! v, i.e.,

DF5
1

2
~X(1)†MOMX(1)1X(2)†MOMX(2)!

5
v

2
~X(1)†MX(1)2X(2)†MX(2)!5v. ~2.31!

This result justifies the ansatz in Eq.~2.30!. Thus, our pur-
pose of deriving an exact form of the RPA equation at fin
temperature~TRPA! is attained. More explicitly the TRPA
equation is expressed as

S V E

E† FD S M 0

0 s2
D S V

dfD 5S V

dfDv, ~2.32!
02431
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where

V[S Amnrs Bmnrs Cmnrs

Bmnrs* Amnrs* 2Cmnsr*

Crsmn* 2Crsnm Dmnrs

D , ~2.33a!

E[S 3~H31!mnss 23~H31!mns̄s̄

3~H31!mnss* 23~H31!mns̄s̄
*

2~H22!msns 22~H22!ms̄ns̄

D , ~2.33b!

F[S kTdm̄s̄

4 f m̄~12 f m̄! 2~H22!ms̄ms̄

1~H22!m̄s̄m̄s̄

2~H22!m̄sm̄s

kTdms

4 f m~12 f m!

1~H22!msms

D , ~2.33c!

Vtr[~Xmn ,Ymn ,Zmn!, dftr[~d f m ,d f m̄! ~2.33d!

with the definitions

Amnrs5
Em1En

12 f r2 f s
~dmrdns2dmsdnr!1~H22!msnr ,

~2.34a!

Bmnrs5224~H40!mnrs , Cmnrs56~H31!mnrs ,
~2.34b!

Dmnrs5
Em2En

f n2 f m
dmrdns14~H22!msnr . ~2.34c!

The normalization condition in Eq.~2.26! becomes

X†MX5V†MV 5^@Q,Q†#&51, ~2.35!

which is irrelevant to the shiftdEm ~or d f m) as expected.
This completes the derivation of the extended form of
TRPA equation@16#.

For later convenience, we eliminate the shift of the occ
pation numberdf from the TRPA equation in Eq.~2.32!.
Then, the TRPA equation is converted to

@V1Es2~v2Fs2!21E†#MV 5Vv, ~2.36!

whosenth eigensolution$vn ,V(n)% determines the shifts o
occupation numbers in the single-particle levels under
influence of this excited collective mode

df(n)5df(2n)5~vn2Fs2!21E†MV (n) ~2.37!

as well as the TRPA operators

Q(n)†5Q(2n)

5 (
m.n

~Xmn
(n)am

† an
†2Ymn

(n)anam!1 (
mÞn

Zmn
(n)am

† an .

~2.38!
0-4
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Some complication is unavoidable in solving the eigenva
equation~2.36! since the eigenvaluev appears in both side
of the equation.

In general, the THFB solution becomes unstable at
critical point where there occurs a vanishing TRPA eige
mode. Therefore, puttingv50 in Eq. ~2.36!, we obtain a
general expression for the instability line~or the boundary of
the THFB stability domain!

det~V2EF21E†!50, ~2.39!

which defines a functional relation between the tempera
T and the relevant coupling strenghts of interactions. It c
be inferred from this expression that the instability occurs
the temperature lower than the one predicted by the stan
TRPA without the entropy effect, since the diagonal ene
Em1En in the matrixVM is partly cancelled by the diago
nal contributions in the second term2EF21E†M . We will
see in some detail that this is the case in the perturba
treatment of the entropy term for a simple model in the l
part of Sec. IV.

C. Completeness condition and energy-weighted sum rule

From the hermiticity of the TRPA operatorO and the
TRPA metricM, the TRPA equation~2.32! requires

~vm2vn!~V(m)†,df(m)tr!MS V(n)

df(n)D 50. ~2.40!

Thus, if there is no degeneracy in the TRPA energiesv ’s,
the orthonormality relation is given by

~V(m)†,df(m)tr!MS V(n)

df(n)D 5V(m)†MV (n)1df(m)trs2df(n)

5
vn

uvnu
dmn , ~2.41!

which represents both the normalization condition in E
~2.26! and the orthogonality relations in Eq.~2.25! alto-
gether. Use of Eq.~2.37! together with the reality ofdf’s
allows us to rewrite Eq.~2.41! as

V(m)†M @ I1E~vm2s2F!21s2~vn2Fs2!21E†M #V(n)

5
vn

uvnu
dmn , ~2.42!

where the second term on the left-hand side~LHS!, which is
identically zero form5n, represents the modification due
the entropy effect.

Ensemble averages of the commutators among eig
operators,Q(n)(5Q(2n)†) (n561,62, . . . ), aregiven by

^@Q(m),Q(n)†#&52^@Q(m)†,Q(n)#&* 5V(m)†MV (n)

5
vn

uvnu
dmn2df(m)trs2df(n), ~2.43a!
02431
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^@Q(m),Q(n)#&52^@Q(m)†,Q(n)†#&* 5V(m)†MV (2n)

52df(m)trs2df(n). ~2.43b!

Note thatdf(m)trs2df(n)50 for m5n in the last expressions
in Eqs. ~2.43a!, ~2.43b!. Any one-body transition~i.e., non-
diagonal! operatorP̂ can be expanded in terms ofQ(n)† and
Q(n)(5Q(2n)†) as

P̂5 (
n.0

~anQ(n)†1bnQ(n)!, ~2.44!

whose expansion coefficients,a’s andb’s, are determined by
a set of equations as follows:

^@Q(m),P̂#&5 (
n.0

$an^@Q(m),Q(n)†#&1bn^@Q(m),Q(n)#&%

5am2 (
n.0

~an1bn!df(m)trs2df(n), ~2.45a!

^@Q(m)†,P̂#&5 (
n.0

$an^@Q(m)†,Q(n)†#&1bn^@Q(m)†,Q(n)#&%

52bm2 (
n.0

~an1bn!df(m)trs2df(n). ~2.45b!

Solving Eq.~2.45! with respect toa’s andb’s, we get

an5^@Q(m),P̂#&1 (
m.0

^@Q(m)2Q(m)†,P̂#&df(n)trs2df(m),

~2.46a!

bn52^@Q(n)†,P̂#&2 (
m.0

^@Q(m)2Q(m)†,P̂#&df(n)trs2df(m).

~2.46b!

If we use these expressions for the coefficients in Eq.~2.44!
and Eq.~2.37!, we obtain an equation havingP̂ in both sides.
Requiring that this equation is an identity forP̂, we derive an
extended expression for the completeness condition as

(
n.0

FV(n)V(n)†H I1ME ~vn2s2F!21s2

3 (
m.0

~vm2Fs2!21E†MV (m)~V(m)†2V(2m)†!J
2V(2n)V(2n)†H I1ME ~vn2s2F!21s2

3 (
m.0

~vm2Fs2!21E†MV (2m)

3~V(2m)†2V(m)†!J GM5I . ~2.47!

When the operatorP̂ is Hermitian, the relationbn5an*
holds. Then, making use of Eqs.~2.44!, ~2.43!, and ~2.37!,
we reduce the ensemble average of the double commu
betweenP̂ and Ĥ as follows:
0-5
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1

2
^@ P̂,@H,P̂##&5

1

2 (
n,m.0

~am* V(m)†1amV(2m)†!

3MVM ~anV(n)1an* V(2n)!

5 (
n.0

vnuanu21
1

2 (
mÞn(all)

am* anV(m)†

3ME ~F2vns2!21E†MVV(n) ~2.48!

with

an5a2n* 5^@Q(n),P̂#&1V(n)†ME ~F2vns2!21s2

3 (
m(Þn)

~F2vms2!21E†MV (m)^@Q(m)2Q(m)†,P̂#&.

~2.49!
The identity given by Eq.~2.48! provides an extension of th
EWSR for a Hermitian one-body operatorP̂ @17# to the case
of an excited system in a finite temperature. The first term
its final expression corresponds to an experimental EWS
tending over the strengthuanu2 of thenth eigenmode, and its
second term represents a correction attributed to the ent
effect. Since a diagonal element of the matrixF is propor-
tional to @b f m(12 f m)#21 or @b f m̄(12 f m̄)#21 as seen in Eq.
~2.33c!, it diverges in the zero-temperature limit. Thus, t
diagonal elements ofF dominate in the denominator of th
matrix form (F2vns2)21 in Eqs.~2.48! and ~2.49!. There-
fore, the entropy effect represented by the second term
the expressions of Eqs.~2.48! and ~2.49! becomes less im
portant at low temperatures.

For an arbitrary one-body operatorP̂, the LHS of Eq.
~2.48! is in general not a constant as in a microscopic mo
which will be introduced in the next section. In case of GD
the operatorP̂ is replaced by the electric dipole operator

D̂5
Z

A (
n51

N

xn2
N

A (
p51

Z

xp , ~2.50!

whereZ, N, and A stand for the numbers of neutrons, pr
tons, and the sum of them, respectively. Sin

^@D̂,@V,D̂##&50 for the velocity-independent nuclear inte
action potentialV, we have
02431
n
x-

py

in

l
,

e

1

2
^@D̂,@H,D̂##&5

1

2M

NZ

A
. ~2.51!

Thus, the identity in Eq.~2.48! gives an extension of the
Thomas-Reiche-Kuhn sum rule to the GDR built on an e
cited nucleus at a finite temperature. In case of such an id
tity, it is expected that the increase of the contribution c
responding to the second term in the final expression of
~2.48! is compensated by the decrease of the experime
EWS (n.0vnuanu2 with increasing temperature.

III. MICROSCOPIC MODEL

In order to perform numerical analysis, we consider
simple microscopic model in which protons and neutrons
not discriminated; and angular momenta~or spins! and pari-
ties are completely ignored. We do not take into account
pairing correlations so that the particle-hole picture can
employed. In this model, we takeL single-particle levels
with an equal spacing«0 except for a shell gapD above the
l gap-th level. Two single-particle states labeledm and m̄ are
degenerate in each single-particle level. Thus, the sin
particle energies measured from the Fermi energy«F are
given by

« l5~ l 21!«02«F for 1< l< l gap,

« l5~ l 22!«01D2«F for l gap, l<L. ~3.1!

Our Hamiltonian with two-body interaction is express
in terms of the particle operators$pk ,pk

†% and the hole op-
erators$hk ,hk

†% as

Ĥ5 (
k.F

«kpk
†pk2 (

h,F
«khk

†hk1
x

2
: P̂2: ~3.2!

with

P̂5 P̂†5 (
kl(kÞ l )

gklck
†cl , ~3.3!

wheregkl stands for the form factor representing the tran
tion matrix element;ck5pk for a particle state andck5hk

†

for a hole state. The Hamiltonian is formally expressed
terms of self-evident notations as follows:
Ĥ5 (
p1p2

~H11!p1p2
p1

†p21 (
h1h2

~H11!h1h2
h1

†h21 (
p1p2h1h2

~H22!p1h1p2h2
p1

†h1
†h2p2

1 (
p1p2p3p4

~H22!p1p2p3p4
p1

†p2
†p4p31 (

h1h2h3h4

~H22!h1h2h3h4
h1

†h2
†h4h3

1 (
p1p2p3h1

$~H31!p1p2p2h1
p1

†p2
†h1

†p21~H31!p1p2p3h1
* p3

†h1p2p1%

1 (
h1h2h3p1

$~H31!h1h2h3p1
h1

†h2
†p1

†h31~H31!h1h2h3p1
* h3

†p1h2h1%

1 (
p1p2h1h2

$~H40!p1p2h1h2
p1

†p2
†h2

†h1
†1~H40!p1p2h1h2

* h1h2p2p1% ~3.4!
0-6
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with

~H11!p1p2
5«p1

dp1p2
,

~H11!h1h2
52«h1

dh1h2
,

~H22!p1h2p2h1
5vp1h2h1p2

,

~H22!p1p2p3p4
5

1

4
vp1p2p3p4

,

~H22!h1h2h3h4
5

1

4
vh1h2h3h4

,

~H31!p1p2p3h1
5

1

4
vp1p2p3h1

,

~H31!h1h2h3p1
5

1

4
vh1h2h3p1

,

~H40!p1p2h1h2
5

1

4
vp1p2h1h2

, ~3.5!

and

vklmn[x~gkmgln2gknglm!. ~3.6!

In order to introduce a smooth cutoff in energy for the abo
transition matrix elements defined in the finite single-parti
model space, we assume a transition form factor given b

gkl5e2[(«k2« l )/A] 2
2e2[(«k2« l )/B] 2

. ~3.7!

In the practice of numerical analysis carried out for no
rotating nuclei~i.e., v rot50) in the subsequent sections, w
ignore the temperature dependence of single-particle lev
The numerical values of five constants are chosen to be«0
50.275 MeV, D56.0 MeV, x50.1 MeV, A56.8 MeV,
andB55.5 MeV. Total number of levels isL580, and the
shell gap is placed between 36th and 37th levels~i.e., l gap
536).

IV. PERTURBATION DUE TO ENTROPY EFFECT

It is obvious that the second term in the LHS of Eq.~2.36!
describes the entropy effect. Since this contribution is in
second order of the coupling constant, i.e.,x2, the perturba-
tion treatment is applicable to calculate the shift of the
genvalue of collective excitation due to the entropy eff
Dv. Introducing notation for the quantity

U[Tr~Ŵ@ P̂,Q†# !, ~4.1!
02431
e
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t

which frequently appears in what follows, and an express
for the TRPA amplitude

Vtr5~Xph ,Yph ,Zp1p2
,Zh1h2

!

5S gphU

v2«p1«h
,

2gphU

v1«p2«h
,

gp1p2
U

v2«p1
1«p2

,
gh1h2

U

v1«h1
2«h2

D ,

~4.2!

we derive an explicit formula for the shift of the TRP
eigenenergy as

Dv>uUu2F(
ph

gph
2 ~nh2np!2

3H 1

uv2«p1«hu2
1

1

uv1«p2«hu2J
3~E~vs22F!21E†!ph,ph

1 (
p1p2

gp1p2

2 ~np2
2np1

!2

uv2«p1
1«p2

u2
~E~vs22F!21E†!p1p2 ,p1p2

1 (
h1h2

gh1h2

2 ~nh2
2nh1

!2

uv2«h1
1«h2

u2
~E~vs22F!21E†!h1h2 ,h1h2G

~4.3!

together with the relation derived from the normalizati
condition in Eq.~2.35!, i.e.,

uUu225(
ph

gph
2 ~nh2np!

3H 1

uv2«p1«hu2
2

1

uv1«p2«hu2J
1 (

p1p2

gp1p2

2 ~np2
2np1

!

uv2«p1
1«p2

u2
2 (

h1h2

gh1h2

2 ~nh2
2nh1

!

uv2«h1
1«h2

u2
,

~4.4!

where

nk5
1

eb«k11
~4.5!

is the single-particle occupation number. The explicit form
of the matrix elements appearing in Eq.~4.3! are given by
@E~vs22F!21E†#ph,ph52(
p1

vp1pp1h
2 gp1

1v p̄1pp̄1h
2

g p̄1

12~4v!2gp1
g p̄1

2(
h1

vh1ph1h
2 gh1

1v h̄1ph̄1h
2

g h̄1

12~4v!2gh1
g h̄1

,

0-7
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~E~vs22F!21E†!p1p2 ,p1p2
52(

p

vp1pp2p
2 gp1vp1p̄p2p̄

2
g p̄

12~4v!2gpg p̄

2(
h

vp1hp2h
2 gh1vp1h̄p2h̄

2
g h̄

12~4v!2ghg h̄

,

~E~vs22F!21E†!h1h2 ,h1h2
52(

p

vh1ph2p
2 gp1vh1p̄h2p̄

2
g p̄

12~4v!2gpg p̄

2(
h

vh1hh2h
2 gh1vh1h̄h2h̄

2
g h̄

12~4v!2ghg h̄

~4.6!
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ct
with the definition

gk[bnk~12nk!. ~4.7!

The temperature dependence of the Fermi energy~or the
chemical potential! «F is determined by the self-consiste
requirement for a given particle numberN

2(
k51

L

nk5N. ~4.8!

Thus, the Fermi energy moves with temperature when
distribution of single-particle levels is asymmetric with r
spect to«F at the temperatureT50. However, it will be
shown in the subsequent section that its temperature de
dence is slight only if we take into account enough num
of single-particle levels.

Within an approximation neglecting exchange terms a
the entropy terms, the TRPA equation in the particle-h
picture becomes

F 1

x
22(

ph

gph
2 ~«p2«h!~nh2np!

v22~«p2«h!2
2 (

p1p2

gp1p2

2 ~np2
2np1

!

v2«p1
1«p2

1 (
h1h2

gh1h2

2 ~nh2
2nh1

!

v1«h1
2«h2

GU50. ~4.9!

Thus, the corresponding linear response function is given

R5
R0

12xR0
~4.10!
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with

R0[2(
ph

gph
2 ~«p2«h!~nh2np!

v22~«p2«h!2

1 (
p1p2

gp1p2

2 ~np2
2np1

!

v2«p1
1«p2

2 (
h1h2

gh1h2

2 ~nh2
2nh1

!

v1«h1
2«h2

.

~4.11!

The first term on the RHS of this expression describes
contribution from theph configuration, while the second an
the third terms correspond to the contributions from thepp
and thehh configurations, respectively. Then, the streng
function of the GR is given by the imaginary part ofR as

S~v!52
1

p
Im R5

Im R0

~12x ReR0!21~x Im R0!2
.

~4.12!

Finally, we consider the stability problem within the pe
turbation treatment. For the eigenenergyv0 of the standard
TRPA equation without the entropy effect,VMV 5Vv0, the
shift of the eigenenergy due to the entropy effect is given
puttingv5v0 in Eq. ~4.3!. Assuming thatv0 is already very
small and neglecting it in the denominators in Eqs.~4.3!,
~4.4!, and~4.6!, we get a shift caused by the entropy effe
ability at
Dv>2uUu2F2(
ph

gph
2 S np2nh

«p2«h
D 2H(

p1

~vp1pp1h
2 gp1

1v p̄1pp̄1h
2

g p̄1
!1(

h1

~vh1ph1h
2 gh1

1v h̄1ph̄1h
2

g h̄1
!J

1 (
p1p2

gp1p2

2 S np1
2np2

«p1
2«p2

D 2H(
p

~vp1pp2p
2 gp1vp1p̄p2p̄

2
g p̄!1(

h
~vp1hp2h

2 gh1vp1h̄p2h̄
2

g h̄!J
1 (

h1h2

gh1h2

2 S nh1
2nh2

«h1
2«h2

D 2H(
p

~vh1ph2p
2 gp1vh1p̄h2p̄

2
g p̄!1(

h
~vh1hh2h

2 gh1vh1h̄h2h̄
2

g h̄!J G , ~4.13!

which is a negative quantity. Thus, the exact TRPA equation is expected to describe the occurrence of the THFB inst
finite temperature caused by the entropy effect, though it is needed to solve exactly the TRPA equation~2.36! especially for
the case of stronger coupling constant in order to study the detailed behavior of the instability line.
0-8
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V. TEMPERATURE DEPENDENCE OF THE GR WIDTH

We carry out numerical analysis for two interesting ca
~a! ‘‘a closed-shell model nucleus’’ whose Fermi energy is
the middle of the shell gap assumed to be between the
level and the 37th level in our model space and~b! ‘‘an
open-shell model nucleus’’ whose Fermi energy is betw
the 50th level and the 51st level. With two diagrams
these cases~a! and~b! in Fig. 1, we show the single-particl
level scheme in the present model by horizontal thin lin
~i.e., 36 levels below and 44 levels above the gap! and the
single-particle occupation numbers in these levels by f
curves with solid lines calculated at the temperatureT51.0,
3.0, 5.0, and 7.0 MeV. The counterparts of each curve be
and above the gap are connected by a straight dashed
through the gap region. Though the single-particle levels
assumed to be independent of temperature, the Fermi en
«F becomes temperature-dependent by the requiremen
Eq. ~4.8!. The temperature-dependent shift of the Fermi
ergy starting from«F50 at T50 is negligible in the case
~a!, while it is explicitly shown by the shift of crossing point
of the occupation number curves with a vertical straight l
at n(«)50.5, though its extent is only within a few single

FIG. 1. Single-particle level scheme and the single-particle
cupation numbers calculated at various temperatures for two c
~a! ‘‘a closed-shell model nucleus’’~the left diagram! and ~b! ‘‘an
open-shell model nucleus’’~the right diagram!. In each diagram,
the horizontal thin lines represent 80 single-particle levels with
equal spacing except for a gap between the 36th and the 37th le
four curves with solid lines connected by the straight dashed l
through the gap region represent the single-particle occupa
numbers calculated at four temperaturesT51.0, 3.0, 5.0, and 7.0
MeV as indicated in the diagram. In the right diagram for case~b!,
the crossing points of the four curves with a vertical straight line
n50.5 demonstrate the temperature-dependent shift of the F
energy.
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particle levels in the temperature rangeT50.0;7.0 MeV.
The occupation numbers in higher levels indicate that
temperature of 5 MeV is already too high for the configu
tion space of the model.

The perturbation result for the gamma-ray energy shift
Eq. ~4.3! gives simply a shift of theg-ray energy, i.e.,v
→v1Dv, without changing the functional form of th
strength functionS(v) given by Eq.~4.12!. The shift Dv
calculated by the formula in Eq.~4.13! turns out to be at
most of the order of 0.1 keV for the above temperature ra
and the set of parameters given below Eq.~3.7!. Therefore,
the GR shape is not modified by the entropy effect provid
that the interaction strength is not too large so that such
effect can be dealt with as a perturbation. Then, the ove
distribution of the GR strengths is well approximated by t
solution to the TRPA equation neglecting completely the
tropy effect.

Utilizing the expression for the strength function in E
~4.12!, we carry out numerical analysis for the above tw
cases~a! and ~b!. In the practice of numerical analysis, w
assume a fictitious finite imaginary part called ‘‘the esca
width,’’ gesc50.5 MeV, only for the purpose of smearin
the functional behavior of the strength function. Therefo
we replacev by v1 igescin the denominator of each term i
the functionR0.

In order to investigate the effect of thepp and thehh
configurations on the Landau splitting of the collective RP
levels, we compare the giant resonance shapes calcu
including these configurations in addition to the ordinaryph
configuration with the one calculated only with theph con-
figurations up to the temperatureT57.0 MeV for both cases
~a! ~four panels on the left! and~b! ~four panels on the right!
in Fig. 2. In both cases we observe a clear trend that thepp
andhh configurations contribute much to increase the ab
lute values of the resonance strengthsS(v). At the tempera-
tureT51.0 MeV, the difference between two strengths c
culated with and without thepp and thehh contributions is
slight in the closed-shell nucleus, while its difference is
ready seen in case of the open-shell nucleus. This is du
the fact that the Fermi energy is in a region of larger sing
particle level density and the single-particle energy measu
from the Fermi energy is smaller, so that the distortion of
Fermi distribution starts from lower temperatures. As a
sult, the excitations via thepp and thehh configurations can
start already from lower temperatures in the open-shell c

Comparing the temperature dependence of the reson
shapes including thepp and thehh contributions between
two cases~a! and ~b!, we recognize that the decrease
resonance strength is more rapid in the open-shell case,
the centroid energies slowly decrease with temperature
both cases. The latter shift is at most 2.0 MeV in both cas
The increase of the resonance widths~i.e., the Landau split-
tings! is seen only in the resonance curves including thepp
and thehh contributions in both cases, while the resonan
widths without those configurations do not change with te
perature and keep almost constant values in both cases
our model is within the RPA, the absolute value of full wid

-
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n
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s
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FIG. 2. Temperature dependence of t
strength functions of giant resonance calculat
for two cases~a! ‘‘a closed-shell model nucleus’’
~four panels on the left! and ~b! ‘‘an open-shell
model nucleus’’ ~four panels on the right!. In
each panel a solid line represents the stand
TRPA result which includes the damping via th
pp and thehh configurations in addition to the
ph configuration, and a dashed line the one i
cluding only theph configuration. In each case
four panels correspond to the results calculated
the temperaturesT51.0, 3.0, 5.0, and 7.0 MeV
respectively.
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is not as large as that of GDR, and its change with temp
ture is not so rapid. Needless to say, a detailed way h
rapidly the resonance strength changes with temperature
pends upon microscopic models.

VI. CONCLUSION

In the present paper we have shown detailed steps for
variational derivation of the exact thermal RPA~TRPA!
equation whose matrix representation precisely correspo
to the thermal HFB~THFB! stability matrix. This equation
describes an interplay between the collective excitation
the entropy effect. It must be noticed that the extended p
of the TRPA matrix, i.e., the matricesE, E†, andF in Eq.
~2.32!, represent the temperature effect arising from
ground state correlations modified by the existing collect
mode as well as the entropy effect. If these effects are m
simply by the entropy effect, the TRPA equation correc
describes such an entropy effect that causes the instabili
the THFB state already at finite temperature. However,
giant resonance shape is not much affected by the ent
effect unless the coupling of the collective modes to partic
hole configurations is strong enough, since the entropy ef
is described in terms of the second order in the coup
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constant. Based on the EWSR extended to the finite temp
ture given by Eq.~2.47!, we can point out a possibility
that, in case of the GDR, the increasing contributions aris
from the entropy effect~ i.e., the second term in the RHS!
compensates the decreasing EWS with temperature~ i.e.,
the first term in the same expression! so that the sum of
both contributions gives a value which does not depend
temperature.

Making use of a simple microscopic model, we have stu
ied the effect of thepp and thehh configurations on the
Landau splitting of the GR. We find that these configuratio
play decisive roles in the temperature-dependent phenom
of the GR built on a hot nucleus. The distortion of the Fer
distribution due to temperature effect allows the damping
GR via thepp andhh configurations and the Landau spli
ting width of the GR increases with increasing the tempe
ture. Since this general mechanism works also in the da
ing of the GR via four quasiparticle configurations, it can
inferred that the increase of the spreading width is contro
mainly by the pppp, ppph, phhh, and hhhh configura-
tions. This physical picture is consistent with the theoreti
expectation based on the standard TRPA in the quasipar
picture @9–13# and the recent approaches with the phon
damping model~PDM! @18,19#. It should be remarked tha
0-10
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the change of the mean field with temperature, due to
change of pairing correlation and deformation which are
considered in the present model, are important at low te
peratures@10#. Therefore, for the purpose of investigating t
temperature dependence of the GR phenomena, it is the
desirable to perform for realistic nuclei the TRPA calcu
,

.
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an
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tions on top of the self-consistent solution to the therm
HFB equation.
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