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Role of exact treatment of thermal pairing in radiative strength functions of 161–163Dy nuclei
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The enhancement of radiative strength function (RSF) in the region of low γ -rays energy (Eγ � 12 MeV),
which is caused by the pygmy dipole resonance (PDR), is treated within the phonon damping model (PDM)
plus exact thermal pairing (EP) without adding any extra PDR strength function. The numerical calculations
performed for 161–163Dy show that, because of the effect of EP, the EP+PDM can describe reasonably well the
total RSF data in both low- and high-energy regions of γ rays. Consequently, as compared to the conventional
description within the phenomenological generalized Lorentzian and standard Lorentzian models, the EP+PDM
calculations can eliminate, at least, eight free parameters. This indicates the important role of microscopic
approaches towards the precise description of the RSF. In particular, temperature is found to have significant
contributions to the RSF below the neutron separation energy, questioning again the validity of the Brink-Axel
hypothesis in this energy region.

DOI: 10.1103/PhysRevC.102.061302

The photon or radiative strength function (RSF), defined
as the average electromagnetic transition probability per unit
of γ -ray energy Eγ [1], plays an important role in the
study of nuclear reaction properties, such as γ -ray emis-
sion rate, reaction cross section, and/or nuclear astrophysical
processes [2–5]. The experimental information of the RSF
is often divided into the low- and high-energy regions of
γ rays. In the region of high-energy γ transitions (Sn �
Eγ � 15 MeV, where Sn is the neutron separation energy),
the RSF is directly related to the giant dipole resonance
(GDR) deduced from the photoabsorption cross-section data,
which is well understood via many (γ , n) reactions [6].
However, in the region of low-energy γ transitions (Eγ �
Sn), the experimental RSFs are rather scarce because of
less collectivity in this region. In the late 1990s and early
2000s, the Oslo Cyclotron Group developed an advanced
technique, called the Oslo method, to simultaneously ex-
tract the nuclear level density (NLD) and RSF from the
experimental primary γ -ray emitted spectra by using the
light ions induced and/or inelastic-scattering reactions, such
as (3He, αγ ), (3He, 3He′ γ ), (p, p′γ ), (p, dγ ), etc. [7–14].
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Basically, the Oslo method was developed based on the Brink-
Axel hypothesis [15,16] in which the experimental primary
γ -ray matrix is proportional to the product of the NLD ρ(E∗)
(E∗ denotes the excitation energy) and γ -ray transmission
coefficient TXλ(Eγ ) or RSF fXλ(Eγ ) = TXλ(Eγ )/(2πE2λ+1

γ ),
where X stands for the electric (E ) or magnetic (M) excitation
and λ is the multipolarity. This assumption implies that the
RSF does not depend on E∗, leaving all the dependence on E∗
in the NLD. Based on this assumption, many experimental
NLD and RSF data below Sn have been extracted and are
accessible for different applications [17]. The Oslo method, at
present, is considered as the most advanced method capable
of providing reliable NLD and RSF data. In particular, a
recent analysis of the RSF extracted from the photoneutron
(γ , n) cross sections in the energy region Sn � Eγ < 13 MeV
has shown an excellent matching between the RSF data of
160−164Dy extracted from the light ions induced and the (γ , n)
reactions at Eγ = Sn [18]. This finding indicated the fulfill-
ment of the principle of detailed balance and, thus, confirms
the reliability of the Oslo method and data.

From the theoretical aspect, the simplest description of
the RSF for the electric dipole (E1) transitions is given
in terms of a standard Lorentzian (SLO) distribution with
the energy-independent GDR width [15]. However, this
phenomenological distribution overestimates the experimen-
tal RSF data at Eγ � Sn [3,19], indicating that the above
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assumption of energy-independent GDR width does not hold
for the low-energy γ transitions. In other words, the energy-
dependent GDR width had better be taken into account in
the theoretical calculation of the RSF. In addition, recent
experiments have clearly shown that the RSF in the low-
energy region should have contributions from not only the
GDR, but also the spin-flip M1 or giant magnetic dipole
resonance, pygmy dipole resonance (PDR), and quadrupole
E2 excitation [10,11,13]. As a matter of fact, in a later model
proposed by Kadmensky-Markushev-Furman (KMF) based
on the Fermi-liquid theory [20], a functional form similar to
the SLO is introduced with a GDR width, which is borrowed
from the collisional damping model, depending on the ex-
citation energy or temperature. This temperature-dependent
GDR width is proposed in order to reproduce the nonzero
limit of the GDR width when Eγ approaches zero. The
KMF together with other improved versions, such as gener-
alized Lorentzian (GLO) [21], enhanced GLO [22], modified
Lorentzian [23,24], and generalized Fermi liquid [25] models
have provided a good description of the RSFs in many nuclei
in the low-energy region, and they become common models
for the phenomenological analysis of experimental RSF data.
However, these phenomenological models cannot explain the
mechanism of the enhancement underlying the E1 RSF at
Eγ � Sn, such as the PDR. Moreover, these models have no
predictive power since they rely on a number of parameters,
whose values are obtained by fitting to the existing experi-
mental data. In this case, microscopic models are obviously
preferable to phenomenological ones.

Although a number of phenomenological RSF models
have been proposed, there exists only one microscopic model,
namely, the quasiparticle random-phase approximation
(QRPA). The latter was first proposed based on the
Hartre-Fock plus BCS mean field with a Skyrme SLy4
interaction [26]. The RSF for the E1 strength in this case is
calculated by folding all the QRPA resonance strengths at the
energies Ei, which are smoothed into a continuous line shape
by the normalized Lorentzian function. However, this QRPA
version still employs a temperature-independent GDR width
taken from the experimental data or empirical systematics.
This causes some deviations of the calculated E1 strengths
from the experimental data in the low-energy region (see,
e.g., Fig. 3 in Ref. [26]). An improved version of the QRPA
was later developed in which the Hartree-Fock-Bogoliubov
(HFB) mean field with the Skyrme BSk2-7 interactions was
employed and a temperature-dependent GDR width was used
instead of the temperature-independent one [27]. Although
the E1 strengths obtained within this improved QRPA version
are in better agreement with the experimental data than
those obtained within the previous one (see, e.g., Figs. 6
and 7 in Ref. [27]), this model has to employ two fitting
parameters, namely, CST for the energy-dependent width
(Eq. (18) in Ref. [27]) and α for the temperature-dependent
width (Eq. (21) in Ref. [27]). In addition, two QRPA versions
above have been applied to describe a large scale of E1
strengths in all nuclei with 8 � Z � 110, but they have not
been used to calculate the M1 strengths or higher. Hence,
the E1 RSF obtained within these two QRPA versions
cannot be directly compared with the total RSF, which is

the sum of all the E1, M1, E2, and PDR excitations. In a
recent extended QRPA version, which is based on an axially
symmetric deformed HFB+QRPA with the finite-range
Gogny D1M interaction, both E1 and M1 strengths have
been calculated for a large number of nuclei [28–30], and the
calculated E1+M1 strengths are directly compared with those
extracted from the Oslo, nuclear resonance fluorescence,
average resonance capture, and thermal neutron capture
measurements [28–31]. Since the D1M+QRPA version
was developed with the purpose of providing a satisfactory
description of available experimental data as well as being
considered for practical applications in nuclear reactions and
astrophysical studies, some phenomenological corrections
have been carried out in this model. These corrections, for
example, include a broadening and a shift of the QPRA
strengths and/or empirical damping of the collective motions
(see, e.g., Sec. 4.3 of Ref. [31] and references therein).

Very recently, we have proposed a microscopic model to
simultaneously describe the NLD and RSF [32]. For the RSF,
we employ the phonon damping model (PDM) [33–35], which
consistently includes the exact thermal pairing (EP) [36,37],
in order to take into account both temperature-dependent
GDR width (within the PDM) and thermal pairing (within
the EP). Within the EP+PDM, the total RSF is calculated as
the sum of the PDM strength functions SXλ(Eγ ) for all the
E1, M1, and E2 resonances at a given temperature T . In par-
ticular, it has been shown in Ref. [32] that the RSFs obtained
within the EP+PDM for 170–172Yb nuclei at T = 0.7 MeV
are in excellent agreement with the Oslo data at Eγ � Sn,
indicating a violation of the Brink-Axel hypothesis. Moreover,
the EP+PDM has reproduced well the enhancements of the
RSF data in the region of 2.1 < Eγ < 3.5 MeV in 171,172Yb,
which are associated with the two-component PDR in the
low-energy region. This result, which has not been reproduced
in any microscopic model so far, was naturally obtained owing
to the effect of EP, implying the important contribution of
thermal pairing on the RSF at low energy. The goal of the
present Rapid Communication is to shed light on the micro-
scopic nature of the low-energy enhancement in the RSF data
caused by the PDR. Three dysprosium isotopes 161,162,163Dy
are selected for illustration as their latest experimental RSF
data have shown a strong dominance of the E1 strengths,
whereas the spin-flip M1 and E2 resonances have negligible
contributions to the total RSF [18].

Following our previous work in Ref. [32], the RSF for the
E1 excitation is calculated within the PDM as1

fE1(Eγ , T ) =
(

1

3π2h̄2c2

)
π

2

σE1�E1(Eγ , T )SE1(Eγ , T )

Eγ

,

(1)
where σE1 is the GDR cross section, �E1 is the temperature-
dependent GDR width, and SE1 is the GDR strength function

1The factor π

2 appears in Eq. (1) due to the transformation be-
tween the Breit-Wigner (BW) distribution used in the PDM and the
Lorentzian (L) distribution used in the global parameter fitting (see,
e.g., Eqs. (64) and (65) of Ref. [40]), whereas the second term in Eq.
(65) of Ref. [40] is omitted in Eq. (1) because its effect is negligible.
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having the form as [34,38]

SE1(Eγ , T ) = 1

π

γGDR(Eγ , T )

(Eγ − EGDR)2 + [γGDR(Eγ , T )]2
. (2)

In Eq. (2), EGDR is the GDR energy and γGDR(Eγ , T ), which
is used to calculate the thermal width

�GDR(Eγ , T ) = 2γGDR(Eγ , T ),

is the damping of the GDR phonon given by, e.g., Eq. (4) of
Ref. [33]. For the treatment of pairing, the EP is used and the
EP+PDM formalism is well described, e.g, in Refs. [38–40],
so we do not repeat it here. The model contains two param-
eters F1 [for the coupling to the collective particle-hole (ph)
configurations] and F2 [for the coupling to the noncollective
particle-particle (pp) and hole-hole (hh) configurations]. The
value of F1 is fixed in order to reproduce the experimental
GDR width �GDR at T = 0 or that obtained from the global
parametrization [41] in the case if no experimental width is
available. The F2 value is also selected at T = 0 so that the
GDR energy obtained from the EP+PDM does not signifi-
cantly change with T . Another way to determine the value of
F2 is based on the experimental or empirical width at high T
in Ref. [42], that is, adjusting F2 so that the calculated width
at a given T �= 0 is equal to the corresponding experimental
or empirical value. Both F1 and F2 are, thus, temperature-
independent parameters with F1 � F2. Within the PDM, the
thermal width is described not only at the GDR energy, but
also at each phonon energy ω, resulting in a fully microscopic
temperature-dependent width, which is a realistic feature for
a reliable prediction of the RSF.

The numerical calculations are carried out for 161,162,163Dy,
whose single-particle spectra are calculated by using an axi-
ally deformed Woods-Saxon potential [43]. The parameters
of the Woods-Saxon potential are chosen to be the same as
those in Ref. [37] with the quadrupole deformation param-
eters β2 equal to 0.271, 0.341, and 0.283 for 161Dy, 162Dy,
and 163Dy, respectively [44,45]. The EP calculation is per-
formed by using a truncated space consisting of 12 doubly
degenerated deformed single-particle levels around the Fermi
surface where pairing has the strongest contribution. The
values of the pairing interaction parameter G for neutrons
and protons are adjusted, as usual, to reproduce the corre-
sponding pairing gaps at T = 0 extracted from the odd-even
mass formulas. Beyond the truncated levels, the nucleons
are considered as independent particles (without pairing) and
are, therefore, treated by the finite-temperature independent-
particle model [32]. For 161–163Dy, the latest analysis of the
experimental data by using the phenomenological models in
Ref. [18] has indicated that their total RSF is mostly domi-
nated by the E1 excitations, whereas the M1 spin-flip and E2
excitations are found to be negligible. In particular, Ref. [18]
also indicated that, in addition to two GDRs described by the
GLO model, the total RSFs of 161–163Dy should contain one
M1 scissors resonance (SR) at Eγ ≈ 2.8 MeV and two PDRs
at Eγ ≈ 12.7 and 15.2 MeV, which can be both described by
the SLO, namely, fRSF = fEI

1
+ fEII

1
+ fPDR1 + fPDR2 + fSR.

However, to calculate the total RSF within the EP+PDM, we
need only fEI

1
, fEII

1
, and fSR, that is, the contributions of fPDR1

and fPDR2 are neglected as their effect is already included with

FIG. 1. Exact proton (dashed lines) and neutron (solid lines)
pairing gaps as functions of T for 161–163Dy.

the PDM via the EP. These strength functions fEI
1
, fEII

1
, and

fSR are consistently calculated within the EP+PDM by using
Eq. (1). The GDR and SR parameters (at T = 0) employed
in the calculations of the total RSF within the EP+PDM are
given in Table I. Here, the GDR energies EI

1 and EII
1 and their

widths are taken from the global parametrization obtained
from the hydrodynamic model of Steinwedel-Jensen (SJ) in
Ref. [41]. Moreover, these GDR energies are shifted by using
E2

BW = E2
L − (�/2)2 according to the transform between the

L and BW distributions [40]. In the present Rapid Communi-
cation, to perform systematic calculations for all nuclei, even
when the experimental values for EGDR are not available, we
employ the global values EL taken from Ref. [41]. The param-
eters of the SR are kept unchanged as in Table IV of Ref. [18].
As for the GDR cross sections σEI

1
and σEII

1
used in our

calculations, they are directly calculated from the EP+PDM
strength functions SE1 (Eγ ) at T = 0, namely, σ (Eγ ) =
C×SE1(Eγ )Eγ [40]. Here, C is a normalization factor en-
suring the fulfillment of the GDR sum rule C = TRK(1 +
κ )/

∫
SE1(Eγ )Eγ dEγ , where TRK = 60NZ/A (MeV mb) is

the Thomas-Reich-Kuhn sum rule. The enhancement fac-
tor κ = 0.5–0.7 is caused by the meson-exchange forces. In
the present Rapid Communication, we choose the average
value κ = 0.6. The EP+PDM strength function SE1(Eγ ) =
SEI

1
(Eγ ) + SEII

1
(Eγ ) is used for axially deformed nuclei. The

satisfaction of the GDR sum rule leads to the total inte-
grated cross-section σ = ∫

σ (Eγ )dEγ = TRK(1 + κ ). The
cross sections of two GDR components, which are referred
to as the EP+PDM cross sections, are calculated based on an
assumption that the total area is equal to the integrated cross
section of the two GDR components in an axially deformed
nucleus and, thus, σE1�E1 = σEI

1
�EI

1
+ σEII

1
�EII

1
[46], where

σEII
1

�EII
1

σEI
1
�EI

1

= 1.9 ± 0.07 [47]. The obtained EP+PDM cross sec-

tions shown in Table I are within the range of those taken from
the GLO fitting [18] and global parametrization of SJ [41].

Figure 1 shows the neutron and proton pairing gaps as
functions of T obtained within the EP for 161–163Dy. These
pairing gaps are calculated within the canonical ensemble
in order to mimic the mean-field pairing ones [38]. It is
clear to see in this figure that the exact neutron and proton
gaps decrease with increasing T and remain finite even at
T = 3 MeV. This feature of the EP gap is well known for
finite nuclei [48–50]. In addition, the exact neutron gaps of
odd 161,163Dy nuclei [Figs. 1(a) and 1(c)] slightly increase
at low T ≈ 0.2 MeV due to the weakening of the blocking
effect at finite T [51]. Figure 2 depicts the total RSFs obtained
within the PDM with and without the EP in Fig. 1 versus
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TABLE I. Parameters used for the E1 and scissors resonance RSFs. SJ denotes the Steinwedel-Jensen model [41].

Nucleus EI
1 σEI

1
�EI

1
EII

1 σEII
1

�EII
1

ESR σSR �SR

Method (MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)

161Dy SJ [41] 12.50 137.30 3.30 15.60 247.70 5.10 2.78 0.50 0.79
GLO [18] 12.70 262.00 3.00 15.20 175.00 2.20 2.78 0.50 0.79
EP+PDM 12.50 187.70 3.30 15.60 231.00 5.10 2.78 0.50 0.79

162Dy SJ [41] 12.00 138.30 3.10 15.90 278.60 5.30 2.81 0.54 0.76
GLO [18] 12.70 264.00 3.10 15.20 176.00 2.20 2.81 0.54 0.76
EP+PDM 12.00 198.20 3.10 15.90 218.70 5.30 2.81 0.54 0.76

162Dy SJ [41] 12.40 139.30 3.20 15.60 278.60 5.10 2.84 0.73 0.69
GLO [18] 12.70 262.00 3.20 15.20 175.00 2.20 2.84 0.73 0.69
EP+PDM 12.40 198.20 3.20 15.60 239.50 5.10 2.84 0.73 0.69

the experimental data in Ref. [18] as well as those obtained
within the microscopic D1M+QRPA (E1 and E1+M1) and
phenomenological GLO-SLO models. Here, the QRPA RSFs
for E1 and E1+M1 are taken from Fig. 10 of Ref. [18]. The
GLO-SLO is divided into three cases, namely, with two PDRs,
with one PDR, and without a PDR. It is seen in Fig. 2 that
the total RSFs obtained within the GLO-SLO without and
with one PDR significantly underestimate the experimental
data. The PDM calculations without the EP and at finite T
overestimate the experimental RSF, whereas due to the effect
of the EP, the RSFs obtained within the EP+PDM agree
reasonably well with the measured data in both Eγ regions

FIG. 2. (a)–(c) Total RSFs obtained within the PDM (thin solid
lines), EP+PDM (thick solid lines) versus the QRPA RSFs for the
E1 and E1+M1 excitations and the experimental data taken from
Ref. [18] for 161–163Dy. The dashed, dash-dotted, and dotted lines
stand for the RSFs obtained within the phenomenological GLO-SLO
models with two PDRs, one PDR, and without a PDR, respectively.
The QRPA E1 and E1+M1 RSFs are taken from Fig. 10 of Ref. [18].
(d)–(f) GDR widths �(Eγ ) for the EI

1 and EII
1 excitations obtained

within the PDM and EP+PDM for 161–163Dy.

below and above Sn. The QRPA E1 RSF agrees with the
experimental data at Eγ � Sn only, whereas adding the M1
excitation to the E1 RSF significantly improves the overall
description of the QRPA. This result of the EP+PDM RSF
can be explained as follows. The PDM itself (without the EP)
includes all the thermal excitations of not only ph, but also
pp and hh configurations, which appear at finite temperature.
These correlations enhance the RSF at low energy (0 < Eγ <

6 MeV) as seen by the thin solid lines in Figs. 2(a)–2(c). When
the EP is included in the PDM, the E1 strength is enhanced,
but at T = 0 only (see, e.g., Ref. [39]). With increasing T , the
EP+PDM E1 strength is slightly reduced as compared to the
PDM one, but this difference between the EP+PDM and the
PDM E1 strengths is relatively small, which insignificantly
changes the RSF. However, the EP+PDM width �E1 (Eγ , T )
is significantly reduced as compared to that given by the PDM
without the EP [see Figs. 2(d)–2(f)]. This result is similar to
that reported in Refs. [35,38]. This decrease in the width leads
to smaller values of the EP+PDM RSFs, which eventually
match the experimental RSF as seen in Figs. 2(a)–2(c). Hence,
pairing plays an important role in this case, namely, reducing
the width of the E1 strength distributions at low T or Eγ . In
other words, pairing makes the collective dipole excitations
more stable than the nonpairing case.

The temperatures at which the EP+PDM RSFs agree with
the experimental data are found to be 0.56 MeV for 162Dy and
0.59 MeV for both 161Dy and 163Dy. These temperatures are
close to the TCT values obtained independently from the analy-
sis of the corresponding NLDs using the constant-temperature
(CT) model as well as those which provide the right pairing
strength and lead to the good description of nuclear structure.
The most interesting result here is that, while the GLO-SLO
analysis for the RSF needs to add two PDRs on top of the
GDRs, our EP+PDM as well as the QRPA do not need to
include any extra strength function. In the other words, the
presence of the PDRs in the RSFs of dysprosium isotopes
can be microscopically explained by the effect of ground-state
pairing within the QRPA as well as the effect of the EP
within the EP+PDM. Moreover, within the PDM and/or the
EP+PDM, the RSF at Eγ � Sn increases with T , whereas its
value at Eγ > Sn is insignificantly changed as T varies, similar
to that reported in Ref. [32]. The above results indicate that
the Brink-Axel hypothesis is unlikely to hold, which is in line
with our previous study for 170–172Yb in Ref. [32].
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FIG. 3. Total RSFs obtained within the EP+PDM for the E1
(thin solid line) and the E1 + SR (thick solid line) excitations ver-
sus the QRPA RSFs for the lower (QRPA + 0lim−) (dash-dotted
line) and upper (QRPA + 0lim+) (dashed line) limits taken from
Refs. [30,31] for 162Dy. The RSF obtained for the E1 excitation
only within the PDM (dotted line) is also shown for comparison.
Experimental RSF data are the same as those in Fig. 2(b).

Since the EP+PDM is able to describe the RSF without the
need of adding any extra PDR as discussed above, we have
eliminated, at least, eight free parameters as compared to the
phenomenological description within the GLO-SLO model,
significantly reducing the uncertainty in the theoretical pre-
diction. This is an important advantage of using a microscopic
model rather than the phenomenological ones. In Fig. 3, we
make a comparison for the RSFs of 162Dy obtained within our
EP+PDM (with and without using the SR) and the results
of the D1M + QRPA + 0lim+ and D1M+QRPA + 0lim−

calculations taken from Refs. [30,31] as well as the PDM cal-
culation for the E1 excitation only. This figure clearly shows
that, although the PDM E1 RSF overestimates the experimen-
tal data, it has reproduced a part of the enhancement of RSF
around Eγ = 1–4 MeV, where the SR was experimentally ob-
served [18]. This is due to the thermal couplings of the ph, pp,
and hh excitations within the PDM. As the EP is taken into ac-
count, the EP+PDM E1 RSF decreases to match nicely with
the experimental values around Eγ = 1–2 MeV, whereas it

underestimates the experimental RSF in the SR region (around
Eγ = 2–4 MeV). Hence, by adding the SR excitation, the
full EP+PDM RSF for the Eγ = 2–4 MeV agrees well with
the experimental RSF in the entire energy range. Meanwhile,
although both QRPA + 0lim− and QRPA + 0lim+ RSFs are
in overall agreement with the measured RSF data, they under-
estimate the experimental data in the SR region. The reason
might be due to the thermal effect caused by the ph, pp, and hh
couplings, which are not taken into account within the above
QRPA calculations. A similar result is also seen in 161,163Dy,
but the contribution of the EP+PDM peak to the SR in 163Dy
is weaker than that in 161,162Dy.

In conclusion, the present Rapid Communication has ap-
plied the EP+PDM developed in Ref. [32] to microscopically
study the total RSFs in 161–163Dy nuclei. The results ob-
tained show that, due to the effect of the EP, the EP+PDM
can describe reasonably well the RSF data in both low
(below Sn) and high-energy (above Sn) regions without the
need for using any extra strength function. As a result, at
least, eight free parameters have been eliminated within the
EP+PDM calculations as compared to the description by the
phenomenological GLO-SLO model. Temperature is found
to have a significant effect on the RSF at the low-energy
Eγ � Sn, whereas it does not change much the RSF in the
high-energy one Eγ > Sn, questioning again the validity of
the Brink-Axel hypothesis. In addition, due to the effects of
the EP and couplings of all ph, pp, and hh configurations,
the EP+PDM can also partially reproduce the effect of scis-
sors resonance in the 161–163Dy nuclei at low Eγ without the
need for including a SR strength function in the RSF. These
findings indicate the importance of the EP and couplings to
noncollective pp and hh configurations at finite temperatures
in the microscopic description of total RSF in excited nuclei.
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