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A fully microscopic model for the description of nuclear level density (NLD) in spherical nuclei is 
proposed. The model is derived by combining the partition function of the exact pairing solution plus 
the independent-particle model at finite temperature (EP+IPM) with that obtained by using the collective 
vibrational states calculated from the self-consistent Hartree-Fock mean field with MSk3 interaction plus 
the exact pairing and random-phases approximation (SC-HFEPRPA). Two important factors are taken into 
account in a fully microscopic way, namely the spin cut-off and vibrational enhancement factors are, 
respectively, calculated using the statistical thermodynamics and partition function of the SC-HFEPRPA 
without any fitting parameters. The numerical test for two spherical 60Ni and 90Zr nuclei shows that the 
collective vibrational enhancement is mostly dominated by the quadrupole and octupole excitations. This 
is the first microscopic model confirming such an effect, which was phenomenologically predicted long 
time ago and widely employed in several NLD models. In addition, the influence of collective vibrational 
enhancement on nuclear thermodynamic quantities such as excitation energy, specific heat capacity and 
entropy is also studied by using the proposed model.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The concept of NLD, defined as the number of levels per unit 
of excitation energy, was first introduced a long time ago by Hans 
Bethe [1] by notifying that the number of excited states in atomic 
nuclei increases rapidly with the excitation energy. Consequently, 
it is impossible to individually treat those states, even by using 
advanced experimental and theoretical techniques. Thus, the NLD 
reflects the average properties of excited nuclei and has various 
applications in the study not only of nuclear structure and re-
actions but also of nuclear engineering and astrophysics [2]. The 
NLD also contains various information on the internal structure 
of atomic nuclei such as single-particle levels, pairing correlations, 
spin distributions, collective (vibrational and/or rotational) excita-
tions, nuclear thermodynamics, etc. [3]. Many theoretical studies 
have been carried out during the last seven decades in order to 
find a reliable and fully microscopic model of NLD.
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In general, theoretical approaches to NLD are classified into 
the phenomenological and microscopic models. Phenomenologi-
cal NLD models such as the back-shifted Fermi gas (BSFG) and 
constant temperature [4,5] were derived based on simple analyt-
ical formulas containing some phenomenological parameters such 
as the level density parameter, shell correction, pairing energy, 
temperature, energy shift, spin cut-off factor, etc. The values of 
these parameters are obtained from the local and/or global fit-
tings to a limited number of experimental data such as the ex-
perimental cumulative number of discrete levels at low-excitation 
energy E∗ and the neutron resonance data at E∗ = Bn with Bn

being the neutron binding energy [6]. For nuclei, whose experi-
mental NLD data are completely unknown, the prediction of the 
above models becomes questionable (see e.g., Ref. [7]). In this case, 
the development of microscopic methods should be more favor-
able. Several microscopic NLD models have been developed such 
as the Hartree-Fock BCS (HFBCS) [8], static path approximation 
(SPA) [9], SPA plus random-phase approximation (SPA+RPA) [10,
11], finite-temperature shell model Monte Carlo (SMMC) [12,13], 
and Hartree-Fock-Bogolyubov plus combinatorial method (HFBC) 
[14,15]. They were often derived based on a Hamiltonian, which 
consists of a realistic or phenomenological single-particle/mean-
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field potential of Woods-Saxon (SPA+RPA or SMMC) or Skyrme 
Hartree-Fock (HFBCS) or Hartree-Fock-Bogolyubov (HFBC) com-
bined with the residual interactions (pairing correlation and col-
lective excitations) beyond the single-particle mean field. However, 
some ambiguities within the above microscopic models still re-
main. Firstly, pairing is approximately treated within the HFBCS 
and HFBC, which both violate the particle-number conservation. 
Consequently, the NLD obtained within the HFBCS and HFBC has 
to be normalized by using two additional parameters, whose val-
ues are extracted by fitting to the experimental cumulative number 
of discrete levels at low E∗ and neutron resonance data at E∗ = Bn
(see e.g., Eq. (9) of Ref. [15]), losing certainly their microscopic na-
ture. Secondly, the spin cut-off factor σ , which is important for 
determining the spin distribution of the NLD, is empirically deter-
mined from the rigid-body limit within the HFBCS, HFBC, SPA, and 
SPA+RPA, whereas it is microscopically calculated based on the ex-
act ratio between the total ρ(E∗) and spin projected ρ J (E∗) NLDs 
within the SMMC. Thirdly, the residual correlations are either not 
taken into account (within the HFBCS and HFBC) or taken into ac-
count in a simplified way (within the SPA+RPA). For instance, the 
HFBC considers only excitations built on all uncorrelated particle-
hole configurations, whereas the SPA+RPA employs very simple 
two-body interactions of the quadrupole-quadrupole and/or higher 
excitations, (see e.g., Eq. (1) of Ref. [11]). Lastly, the numerical cal-
culations within the SPA+RPA and SMMC are time consuming, in 
particular for heavy nuclei.

Recently, we have proposed a microscopic NLD method based 
on the exact pairing plus independent-particle model at finite tem-
perature (EP+IPM) [16]. This model, which contains no fitting pa-
rameters to the experimental NLD data and has very short comput-
ing time, has provided a good description for the NLDs and ther-
modynamic properties of not only hot 170−172Yb [16] and 60−62Ni 
[17] nuclei but also hot rotating 96Tc [18], 184Re, 200Tl, 211Po, and 
212At [19] isotopes. However, it still contains two shortcomings. 
The first shortcoming is the spin cut-off factor taken from the em-
pirical formula in the rigid-body limit for axially deformed nuclei, 
namely σ⊥ ≈ 0.015A5/3T and σ‖ = σ⊥

√
(3 − 2β2)/(3 + β2), where 

T , β2, σ⊥ , and σ‖ are nuclear temperature, quadrupole deformation 
parameter, perpendicular and parallel spin cut-off factors, respec-
tively [16]. The second shortcoming is the collective enhancement 
factor kcoll consisting the vibrational kvib and rotational krot excita-
tions, which are also empirically described as

kvib = exp[0.0555A2/3T 4/3] , (1)

krot = (σ 2⊥ − 1)/[1 + e(E∗−UC )/DC ] + 1 , (2)

where DC = 1400β2
2 A−2/3 and UC = 120β2

2 A1/3. The second short-
coming is the most difficult problem of the present NLD models. 
Regarding the spin cut-off factor, it can be microscopically cal-
culated by using the statistical thermodynamic method e.g., in 
Refs. [20,21], namely,

σ 2 = 1

2

∑

k

m2
k sech2 1

2
βEk , (3)

where mk is the single-particle spin projection (written in the de-
formed basis), β = 1/T is the inverse of temperature T , and the 
quasiparticle energy Ek is calculated from Ek = √

(εk − λ)2 + �2

if pairing is included or Ek = εk − λ if no pairing is considered 
(�, εk , and λ are pairing gap, single-particle energies and chem-
ical potential, respectively). Within the EP, the pairing gap � and 
quasiparticle energy Ek are exactly calculated by using e.g., Eqs. 
(11) and (12) of Ref. [22]. As for the vibrational enhancement, 
there exists another approximate formula given in Refs. [14,23,24], 
namely
2

kvib = exp[δS − δU/T ) , (4)

where δS = ∑
i(2λi + 1)[(1 + ni)ln(1 + ni) − ni lnni] and δU =∑

i(2λi + 1)ωini are the changes in the entropy and excita-
tion energy, respectively, due to vibrational modes with ωi , 
λi , and ni being the energies, multipolarities, and temperature-
dependent occupation numbers, respectively. The occupation num-
bers ni are defined as ni = exp(−γi/2ωi)/[exp(ωi/T ) − 1] with 
γi = 0.0075A1/3(ω2

i + 4π2T 2) being the spreading widths of 
the vibrational excitations. As for the phonon energies ωi , the 
modified equations including shell correction Eshell are consid-
ered, namely ω2 = 65A−5/6/(1 + 0.05Eshell) for the quadrupole 
and ω3 = 100A−5/6/(1 + 0.05Eshell) for the octupole [14]. It is 
clear to see that Eq. (4) adopts only the lowest energies ω2,3 of 
the quadrupole (λ = 2) and octupole (λ = 3) vibrations and ne-
glects higher vibrational energies and other multipolarities such 
as monopole (λ = 0), dipole (λ = 1), hexadecapole (λ = 4), etc. 
Indeed, such vibrational energies and multipolarities can be mi-
croscopically calculated within the random-phase approximation 
(RPA), one of the most extensive approximations for nuclear col-
lective vibrational excitations. In this case, one should construct a 
vibrational partition function of the following form

Zvib(T ) =
∑

λ

(2λ + 1)
∑

i

e−Eλ
i /T , (5)

in the canonical ensemble, where Eλ
i are all the eigenvalues (ener-

gies) obtained by solving the RPA equation for the corresponding 
multipolarity λ, which runs from 0 to 4 or 5. Similarly, one can 
construct a partition function for rotational excitation Zrot(T ) sim-
ilar to Eq. (5) by replacing the energies Eλ

i with rotational states 
obtained from different rotational bands.

In the present Letter, we develop a fully microscopic method for 
the description of NLD, limited to spherical nuclei (no rotational 
enhancement or krot = 1), although the proposed idea is also ap-
plicable to deformed systems. The model is derived based on the 
EP+IPM in Ref. [16], however, three significant improvements have 
been proposed. First, the single-particle spectra are taken from 
the Hartree-Fock mean field plus exact pairing (HF+EP) with an 
effective Skyrme interaction (MSk3) as developed in Ref. [25], in-
stead of the phenomenological Woods-Saxon potential. This HF+EP 
with MSk3 force has provided a very good description not only 
for binding and two nucleon-separation energies but also for nu-
cleon densities and single-particle occupation numbers of light and 
spherical 22O and 34Si nuclei at zero and finite temperatures. Sec-
ond, the spin cut-off parameter is calculated using Eq. (3), instead 
of empirical formula. Third, the vibrational enhancement is mi-
croscopically treated by combining the EP+IPM partition function 
with that given in Eq. (5), in which the self-consistent Hartree-
Fock+EP+RPA (SC-HFEPRPA) with the same MSk3 force [26] is used 
instead of the conventional HF+RPA, namely

ln Z ′
total(T ) = ln Z ′

EP+IPM(T ) + ln Z ′
SC−HFEPRPA(T ) , (6)

where Z ′(T ) denotes the excitation partition function [27]. Know-
ing the total partition function (6), one can easily calculate the ex-
citation energy E(T ), entropy S(T ), and heat capacity C(T ), which 
are later used together with the spin cut-off factor σ to calculate 
the total NLD ρtot(E∗), as has been done in Ref. [16]. Thus, the 
collective vibrational enhancement is directly included in the to-
tal partition function and the vibrational enhancement factor kvib
can be calculated via kvib(E∗) = ρtot(E∗)/ρint(E∗), where ρint(E∗)
is the intrinsic NLD, that is, the NLD obtained by using ZEP+IPM
only. The model in this case is fully microscopic as it does not con-
tain any empirical expressions and fitting parameters to the NLD 
data.
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Fig. 1. (a) The total NLD obtained within the fully microscopic EP+IPM by gradually 
adding higher collective vibrational modes λ to the vibrational partition function 
(5) versus the experimental data for 60Ni. (b) The best total NLD obtained from (a) 
with λ = 0+, 1−, 2+ , and 3− (thick solid line) in comparison with those obtained 
within the HFBCs (for positive +π and negative −π parities) and HFBCS as well as 
those obtained within the EP+IPM with phenomenological (kPhen.

vib ), empirical (kEmp.

vib ), 
and without (kvib = 1) vibrational enhancements. (c) The vibrational enhancement 
factor (kvib) obtained by using empirical (1), phenomenological (4), and microscopic 
formulas. (d) The spin cut-off parameter σ 2 obtained by using empirical (rigid-body 
limit) and microscopic (3) formulas.

Fig. 2. Same as Fig. 1 but for 90Zr.

To test the proposed model, we select the spherical 60Ni nu-
cleus, which is the only nucleus whose experimental NLD data 
are presently available from E∗ ∼ 0 up to ∼ 23 MeV, well above 
E∗ = Bn = 11.358 MeV [7,28,29]. The high-energy part of the NLD 
is very important to test the validity of the microscopic calcula-
tions. The average binding energy BE/A and energy E2+

1
of the first 

2+ state obtained within the SC-HFEPRPA calculation for 60Ni are 
−8.736 and 1.336 MeV, respectively, which are in excellent agree-
ment with the experimental data (BE/A = −8.780 MeV and E2+

1= 1.333 MeV). Moreover, the energy-weighted sum rules for the 
isoscalar (IS) and isovector (IV) excitations are perfectly conserved 
for all the multipolarities λ = 0+, 1−, 2+, 3−, 4+ , and 5− with nat-
ural parities. The results obtained are shown in Figs. 1 and 3. A 
similar test for another spherical 90Zr nucleus is also performed 
and the results are illustrated in Fig. 2. The pairing interaction G is 
selected, as usual, so that the neutron and proton pairing gaps at 
T = 0 agree with those obtained from the experimental odd-even 
mass differences for 60Ni and 90Zr, respectively [16].
3

Fig. 3. The neutron pairing gap �N (a), excitation energy E∗ (b), heat capacity C
(c), and entropy S (d) as functions of T obtained within the EP+IPM for 60Ni with 
(solid line) and without (dotted line) collective vibrational enhancement. In (b), the 
excitation energies E∗ obtained within the HFBC and HFBCS are also plotted for 
comparison with the EP+IPM calculations (with and without collective enhance-
ment).

Fig. 1(a) depicts the total NLDs ρ(E∗) obtained within our fully 
microscopic EP+IPM by gradually adding the higher multipolarities 
λ to the vibrational partition function (5). It is clear to see in this 
figure that the monopole and dipole excitations (λ = 0+ and 1−) 
(dotted line) have very small enhancement to ρint (thin solid line). 
Adding the quadrupole λ = 2+ vibration significantly increases the 
NLD and the result obtained (dash line) agrees well with not only 
the low-energy (E∗ < Bn) but also the high-energy (E∗ ≥ Bn) NLD 
data. Adding the octupole λ = 3− excitation (thick solid line) does 
not enhance much the NLD. However, adding higher hexadecapole 
λ = 4+ (dash dotted line) and quintupole λ = 5− (dash-dot dotted 
line) excitations enhances the NLD further but the results obtained 
slightly overestimate the experimental data, in particular the data 
at E∗ ≥ Bn . This is because these states of higher multipolari-
ties are always located at a very high excitation energy, which 
goes beyond the vibrational excitation region and thus, should not 
be included in the vibrational partition function. The analysis in 
Fig. 1(a) strongly indicates that the vibrational enhancement of 
NLD is mainly due to the quadrupole and octupole excitations. In-
deed, this suggestion was initiated long time ago in Ref. [23] but 
without any microscopic justification. Since then, it was widely 
used in various NLD models, e.g., Refs. [14,24,30]. Therefore, the 
results shown in Fig. 1(a) are of particular valuable as they are the 
first microscopic calculation, which confirms the important role of 
the quadrupole and octupole excitations in the NLD.

In Fig. 1(b), the best NLD obtained within the EP+IPM with 
λ = 0+, 1−, 2+ , and 3− is compared with those obtained within 
other microscopic HFBCS and HFBC (for positive +π and negative 
−π parities) approaches taken, respectively, from RIPL-2 [31] and 
RIPL-3 [32] nuclear database as well as those calculated within the 
EP+IPM without vibrational enhancement (kvib = 1) and with em-
pirical (1) and phenomenological (4) formulas for kvib. It is seen 
that the HFBC over estimates the data, whereas the HFBCS agrees 
only with the data in Ref. [7] (open squares) at E∗ > ∼4 MeV be-
cause this method was normalized to fit to these data. Once the 
data are updated and extended to higher E∗ as in Ref. [29], the 
HFBCS NLD deviates from the new data. This result clearly shows 
the main drawback of the HFBC and HFBCS models. The EP+IPM 
NLDs, which employ the empirical kEmp.

vib and phenomenological 
kPhen.

vib , agree with the data at 5 MeV < E∗ < Bn only due to the fact 
that the values of kEmp.

vib and kPhen.
vib are larger than the correspond-

ing microscopic calculation kMicr. [Fig. 1(c)]. The later is calculated 
vib
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by taking the ratio between the EP+IPM NLD with λ = 0+, 1−, 2+ , 
and 3− and its state density (kvib = 1).1 Moreover, the microscopic 
spin cut-off factor calculated within the EP+IPM using Eq. (3) is 
found to be larger than that calculated from the empirical formula 
of rigid body [Fig. 1(d)]. Similar results can be seen in Fig. 2 but 
for the 90Zr nucleus, whose NLD data are available below E∗ < Bn

[33]. The EP+IPM NLD with the quadrupole and octupole excita-
tions is found in the best agreement with the experimental data 
[Fig. 2(a)], whereas the HFBCS (HFBC) overestimates (underesti-
mates) the data [Fig. 2(b)]. The values of kEmp.

vib and kPhen.
vib are larger 

than that of kMicro.
vib [Fig. 2(c)], while the microscopic spin cut-off 

factor is larger than the empirical one [Fig. 2(d)], similar to those 
obtained for 60Ni in Fig. 1. All the results shown in Figs. 1 and 
2 are particularly important because it ensures the validity of our 
fully microscopic NLD model, in which pairing is exactly treated 
and the spin cut-off and collective vibrational enhancement fac-
tors are microscopically calculated.

Because of the collective excitations, not only the NLD but also 
the thermodynamic quantities of excited nuclei are enhanced. We 
show in Fig. 3 the thermodynamic quantities such as neutron pair-
ing gap �N (a), excitation energy E∗ (b), heat capacity C (c), and 
entropy S (d) as functions of T obtained within the EP+IPM for 
60Ni with and without the contribution of collective vibrational 
enhancement. For E∗(T ), the predictions of the HFBC and HFBCS 
taken from Refs. [31,32] are also plotted in Fig. 3(b). Obviously, 
the neutron pairing gap �N (proton pairing gap is zero because 
60Ni has a proton magic number) calculated within the exact pair-
ing decreases with increasing T and remains finite even at T = 3
MeV, in agreement with many microscopic calculations (see e.g., 
Ref. [34]). Consequently, one can see an S-shaped heat capacity, 
which indicates the signature of superfluid-normal phase transi-
tion in finite nuclear systems. The collective vibrational enhance-
ment is seen to enhance all the thermodynamic quantities, except 
the exact pairing gap, which is a mean-field concept, whereas the 
collective enhancement goes beyond the mean field. It is also seen 
that the HFBC predicts a rather small excitation energy in compari-
son with the HFBCS and our EP+IPM [Fig. 3(b)]. This result of HFBC 
can be easily understood because this method is constructed based 
only on all the combinations of uncorrelated particle-hole excita-
tions, meaning that some correlated excitations are not taken into 
account [14,15]. The HFBCS excitation energy is very close to that 
of the EP+IPM calculated without collective enhancement. This re-
sult is reasonable because the HFBCS does not explicitly treat the 
collective enhancement [8]. The results shown in Fig. 3 are very in-
teresting, being obtained from the first microscopic model, which 
explores the effect of collective enhancement on nuclear thermo-
dynamic quantities.

The present Letter proposes a fully microscopic model for 
the description of total NLD. The model is proposed by com-
bining the thermodynamic partition function of the exact pair-
ing solution with that obtained within the finite-temperature 
independent-particle model (EP+IPM) and collective vibrational ex-
citation modes. The latter are calculated from the Hartree-Fock 
mean field with MSk3 interaction and self-consistently combined 
with the exact pairing solution and random-phase approxima-
tion (SC-HFEPRPA). In addition, the spin cut-off parameter is also 
microscopically calculated within the EP+IPM using the statisti-
cal thermodynamics. The numerical test has been carried out for 
the spherical 60Ni nucleus, the only nucleus whose NLD data are 
available from the excitation energy of 0 to about 23 MeV. A sim-

1 It is seen in Fig. 1(c) that the value of kMicr.
vib does not start from 1 at E∗ → 0

as those of kEmp.

vib and kPhen.
vib . This is due to the well-known unphysical divergence 

of the saddle-point approximation at very low T or E∗ , which has been widely 
employed in most microscopic NLD models [35].
4

ilar test has also been performed for the spherical 90Zr nucleus, 
whose NLD data are provided below the neutron binding energy. 
The results obtained show that, by combining the EP+IPM partition 
function with that obtained using the collective vibrational states 
taken from the SC-HFEPRPA calculation, which excellently repro-
duces the experimental binding energy and energy of the first 2+
state, we are able to study the contributions of different vibra-
tional modes from the monopole (0+) to quintupole (5−) states, 
from which the quadrupole and octupole excitations are found 
to be the most importance. This is, indeed, the first microscopic 
confirmation for the important role of the vibrational quadrupole 
and octupole excitations in the NLD. The NLD obtained within this 
model is found in a much better agreement with the experimental 
data than those calculated within other approaches such as HFBCS 
and HFBC as well as those obtained by using the empirically/phe-
nomenologically vibrational enhancement and spin cut-off factors. 
It has also been found that the vibrational enhancement factor 
obtained within our fully microscopic approach is smaller than 
that calculated using the empirical and phenomenological formu-
las. Regarding the spin cut-off factor, its value obtained within our 
microscopic model is larger than that obtained by using the em-
pirical formula. The effect of vibrational enhancement on nuclear 
thermodynamic quantities such as excitation energy, entropy, and 
heat capacity is also studied, for the first time, within our fully 
microscopic model. Finally, the present model does not consume 
much computing time, namely the EP+IPM calculation takes less 
than 5 min [16], whereas the SC-HFEPRPA takes about 1 hour for 
the calculation of each multipolarity. Therefore, one calculation for 
one nucleus, even a heavy one, takes less than 6 hours and thus 
can be performed on a PC. Although the present Letter considers 
only the NLD in spherical nuclei, the proposed method can also be 
applied to deformed isotopes, that is, the rotational enhancement 
factor can also be microscopically calculated from the partition 
function of all the excited states coming from the rotational bands. 
The result obtained for deformed nuclei will be reported in the 
forthcoming papers.
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