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Abstract: An approach based on the finite temperature quasiparticle phonon nuclear model (FT-QPNM) 
with the couplings to (2p2h) states at finite temperature taken into account is suggested for 
calculations of the damping of giant multipole resonances in hot even-even spherical nuclei. The 
strength functions for the isovector giant dipole resonance (IV-GDR) are calculated in 58Ni and 
9°Zr for a range of temperatures up to 3 MeV. The results show that the contribution of the 
interactions with (2p2h) configurations to the IV-GDR spreading width changes weakly with varying 
temperature. The IV-GDR centroid energy decreases slightly with increasing temperature. The 
nonvanishing superfluid pairing gap due to thermal fluctuations is included. 

1o Introduction 

The properties of nuclear collective states in highly excited nuclei have attracted 
an increasing interest in recent years. Since the first observation of the giant dipole 
resonances (GDR) in thermally excited nuclei produced from proton (and neutron) 
capture 1), in heavy-ion fusion 2-4) and in heavy-ion deep inelastic reactions 5) up 
to now the y-decay of  highly excited nuclei has been measured using large arrays 
of  y-detectors in many experiments 6-9). 

Many general features of  the G D R  in hot nuclei with temperature T ~ 1 - 3 MeV 
and spin I <~ 40h are now known [see ref. ~o) for a review]. Generally, with increasing 
temperature and spin, one observes an enhancement in the broadening of the 
resonance as well as a downward shift of  its centroid energy. 

Due to the statistical nature of these processes in highly excited nuclei, many 
theoretical studies have been performed where the microscopic understanding of 
the giant resonance damping mechanism is crystallized in the stastical formalism. 
As a rule, the background of all these microscopic theories is the random phase 
approximation (RPA) which is generalized to finite temperature (FT-RPA) H-2o). 
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However, these studies have suggested that the RPA, whether temperature dependent 
or not, involving solely couplings within ( l p lh )  subspaces (or ( lp lp ) ,  ( l h lh )  
subspaces additionally at finite temperature) cannot provide a description of the 
giant resonance damping apart from some discrete splitting 11.13.~9). 

As in the case of zero temperature, the giant resonance widths are mainly spreading 
widths F ~ and result from couplings to more complicated configurations, firstly to 
(2p2h) nuclear states. The contribution of  the escape widths F ~ to the total decay 
width is connected with the continuum and its effect turns out to be small even at 
low temperature 17). In fact, at finite temperature one faces the following two 
damping mechanisms of  the giant resonances in spherical nuclei: 

(1) The damping of multi-quasiparticle states in hot nuclei. This problem is inti- 
mately connected with the damping width of  single-particle states in cold nuclei; a 
question that goes beyond the RPA (or FT-RPA). The answer can be found only 
by taking into consideration the residual couplings to (2p2h) states or (2p2p), (2h2h) 
states additionally at finite temperature T, see ref. 32). This is the damping mechanism 
due to the quantal fluctuations (collision damping). 

(2) The Landau damping that is caused by the statistical fluctuations. In the FT-RPA 
treated at the level of  mean field theory, the Landau damping turns out to be 
unimportant damping mechanism or one that does not vary much with tem- 
perature 15-17,19). What role the Landau damping plays when quantal fluctuations 

due to the couplings to (2p2h) configurations from (1), are taken into account at 
finite temperature, is however, still an open question. 

As the theoretical understanding of damping of nuclear collective motion is still 
not clear, the damping mechanism has received much attention in the last years 21 17) 
and the two above-mentioned questions still await quantitative answers. 

In hot and strongly rotating nuclei the shape deformations or high spin that split 
the GDR  into several components give an important contribution to the broadening 
of the giant resonance width. This question has been investigated in detail in many 
papers within the FT-RPA framework 12,23,25,29,30) and we do not touch upon it here. 

Recently, we have extended the quasiparticle-phonon nuclear model (QPNM) 
[see ref. 31) and references therein], which has a successful application in the 
description of many features of collective excitations, including the damping width 
of  giant r e s o n a n c e s  22) in cold nuclei to the case of finite temperature 19,32,33). Using 
the Green function technique at finite temperature we have obtained in refs. 32,33) 
an explicit set of basic equations for the finite temperature QPNM (FT-QPNM) 
including also the effects of  phonon correlations in the ground state and phonon 
scattering. We have also presented in refs. 32,33) a diagrammatic illustration for the 
physical processes in the derived equations, and pointed out the new diagrams that 
appear exceptionally at finite temperature [cf. also refs. 34,35)]. Some time later an 
alternative approach, taking into account the residual couplings to 2p2h states at 
finite temperature, was suggested by Yannouleas and Jang 36) as a generalization 
of their second RPA formalism 37) to finite temperature. Using the finite temperature 
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Matsubara formalism Bortignon et al. 24) have recently calculated the damping of 
single-particle and vibrational motions to lowest order in the coupling between the 
particles and vibrations ( " l p l h • p h o n o n " )  based on the approach of  the nuclear 
field theory (NFT) 2~). Their results have shown that the positions and widths of 
the giant resonances in even-even spherical nuclei are rather stable with varying 
temperature. Although lately there have been some theoretical efforts to consider 
the coupling of the giant vibration to the thermal fluctuations of the nuclear 
surface 23,25,26,38), the full microscopic quantitative calculations including the interac- 

tions with (2p2h) configurations and statistical fluctuations at finite temperature are 
still absent up to now. 

In the present work we therefore follow the microscopic approach of the above- 
mentioned FT-QPNM suggested by us in refs. 19,32,33) to the damping of the giant 

resonances in even-even spherical nuclei at finite temperature. In our approach the 
model hamiltonian is expressed in terms of  the thermal phonon (two-quasiparticle) 
operators whose structure is calculated in the FT-RPA 19). The couplings to the 
(2p2h) configurations are considered by introducing the wave functions of excited 
states consisting of one- and two-phonon components at finite temperature by 
analogy with the zero temperature QPNM 31). We also emphasize the interplay 
between the Landau damping due to statistical (or thermodynamical) fluctuations 
and quantal fluctuations (collision damping or the interactions with (2p2h) configur- 
ations), which is quite important for describing properly the observed width of giant 
resonances at finite temperature 19,28). Although the calculations in the present work 
are performed solely for the IV-GDR at finite temperature, for which a great number 
of experimental data have been collected in hot nuclei, the investigation of higher 
multipole resonances in the framework of  the FT-QPNM is straightforward. They 
will be displayed in our forthcoming publications. 

It is noteworthy that our approach includes the superfluid pairing correlations at 
finite temperature in a consequent way. It has been shown in a series of  works 28,39-42) 
that at finite temperature, in virtue of large thermal fluctuations due to the finiteness 
of nuclei, the pairing gap does not vanish and remains sufficiently large even at 
moderate temperatures (up to 3-4 MeV). Therefore, at the temperature of interest 
its effect cannot be neglected. The influence of the pairing correlations at finite 
temperature on the strength distribution for collective excitations has been investi- 
gated in the FT-RPA in many studies 19,20,28,41,42). It has also been included in the 
investigations of fluctuations in selected observables in several works 39,43,44). In our 
approach the superfiuid pairing correlations are included in the definition of the 
Bogolubov quasiparticles at finite temperature. Finally, the microscopic calculations 
taking the couplings to (2p2h) states into consideration at finite temperature in the 
framework of  our approach can provide a reappraisal for the semiclassical descrip- 
tion of IV-GDR in hot nuclei. The latter has recently been proposed in the extended 
Vlasov approach by Cai and Di Toro and apparently gives a width increasing 
moderately with temperature 28). 
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The present paper is organized as follows: 
Sect. 2 summarizes the formalism of  the FT-QPNM, a generalization of the 

QPNM 31) to finite temperature, that has been suggested by us in recent publica- 
tions 19,32) and in ref. 33). The formulae for the damping derived in this approach 

are presented in brief. Even though these formulae are quite complicated in structure, 
they will be cast here in a form showing a simply physical interpretation for the 
most important terms. 

Sect. 3 establishes briefly the connection between the FT-QPNM equations and 
the method of  strength functions that we have extended to finite temperature for 
calculating the centroid energies and spreading widths of giant resonances in hot 
nuclei. We also discuss in this section the choice of parameters we use in our 
approach for numerical calculations at finite temperature. 

Sect. 4 is devoted to the numerical calculated of the strength functions for the 
G DR  in two even-even spherical nuclei 58Ni and 9°Zr for a range of temperatures. 
The contributions of the Landau damping and the quantal fluctuations are considered 
and discussed. The relation with the recent experimental data is pointed out as well. 

Sect. 5 provides a summary and some conclusions. 

2. Formalism of the model 

The FT-QPNM uses the model hamiltonian of the QPNM 31). For the investiga- 
tions of electric transitions (EA-transitions) with multipolarity A (for GDR A = 1) 
we adopt the hamiltonian which consists of the terms describing, respectively the 
nucleon motion in the mean-field Hav, the monopole superfluid pairing interactions 
/"/pair and the residual interactions in the form of separable multipole (ph) forces 
Hph. The effect of the spin-multipole interactions on the generation of EA states 
has been studied in detail within the QPNM in ref 45) for cold nuclei. It turns out 
to be negligible in the strength distribution of  one-phonon states. We therefore 
neglect the contribution of  spin-multipole forces in our consideration. The explicit 
form of  this hamiltonian has already been given and discussed in detail in the 
QPNM elsewhere [see e.g. ref. 31)] and we do not repeat it here. In the following 
subsections we represent the scheme of our approach incorporating one- and 
two-phonon states as well as the superfluid pairing interactions at finite temperature. 

2.1. THE SUPERFLUID PAIRING GAP AT FINITE TEMPERATURE 

By using the Bogolubov canonical transformation one can express the above- 
mentioned FT-QPNM hamiltonian in terms of the quasiparticle operators 31). In 
comparison with the zero temperature case, the difference at finite temperature 
consists, first, in the definition of these quasiparticles. In fact, at finite temperature 
one has to solve the temperature dependent BCS equations (FT-BCS) to find the 
quasiparticle energy eJ which equals 11.46) 

~j(T) = ~/(Ej - A)2+ A~ (1) 



Nguyen Dinh Dang / Damping 147 

where AT is defined by the FT-BCS equation 

AT = G Y~ (j  +½)ujvj(1 - 2nj) (2) 
J 

with nj being the quasiparticle number occupation at temperature T: 

nj = [exp (eJ  T) + 1] -1 , (3) 

ui, vj are the Bogolubov coefficients and G is the pairing constant. The single-particle 
energies E~ and the chemical potential A are found at finite temperature T by the 
average number conserving condition 

N = •  ( j+½) r  I _ E , - A  ( 1 - 2 n , ) ]  (4) 
j L ej 

and depend, in general, also on T. It is well-known in the FT-BCS theory that the 
gap Ar from (2) collapses at a critical temperature Tcrit which equals Tcrit = 
0.567 x AT_ o [refs. 11,46)] with the smooth spacing energy spectrum or is of an order 
of ½Ar=o because the FT-BCS formalism is presented without exact number projec- 
tion. However, by taking the thermal fluctuations into account the pairing gap does 
not vanish at finite temperature and the phase transition from superfluid to normal 
is completely smeared out 38-42). The thermal average pairing gap is defined as 38-42,46) 

/I0 (AT) = ATP(AT, T) dAr P(Ar, T) dAT, (5) 

where P(AT, T) is the probability that the pairing gap takes any given value Ar at 
temperature T 

P(A7-, T) = B(Ar)  exp [ - F ( A r ) / T ] .  (6) 

In eq. (6) F(AT-) is the free energy of the system consisting of the nuclear mean-field 
with the superfluid pairing correlations 11,19,41). B(AT-) is the A-dependence of the 
mass 40). In general, this method can be improved by taking into account the particle 
number fluctuations due to the number nonconserving problem in the Bogolubov 
transformation. There have been several approximate approaches to resolve this 
problem at zero temperature 47,4s). One of them has recently been extended by us 
to finite temperature 41.42). However, as has also been discussed in refi 47) for the 
zero temperature case and in ref. 44) for finite temperature the particle number 
fluctuations can always be considered effectively by some slight renormalization of 
the pairing constant G in eq. (2) which must be chosen in our calculations from 
the experimental pairing energies at T = 0 [cfi e.g. ref. 31)]. Therefore, for simplicity, 
we shall not consider the contribution of the particle number fluctuations in such 
a renormalization in the present work, The detailed studies of the effect of nonvanish- 
ing gap (5) on many nuclear characteristics at finite temperature and high spin have 
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been performed in many papers to which we refer the readers for further consider- 
ation [see e.g. refs. 3 9 - 4 2 , 4 4 ) ]  

2.2. THE THERMAL ONE-PHONON STATES IN THE FT-RPA 

After defining the quasiparticles at finite temperature we introduce the thermal 
phonon operators 19,49) 

Q Z , (  T )  = 1 E "~ '  ÷ . . . .  * '  " "  " * '  " "  ~ '  ÷ " "  
G ' B A ; , ( J J  )1 2 jj, {~z'Ah'*(Z ) - ejj,A,~ (JJ) + se~,S,~, ( j j )  - 

Q,~., ( T )  = [ Q ; , , (  T ) ]  + . (7) 

The operators A +, A, B, B + are the well-known two-quasi-particle operators 

+ - ' t  + + aa,,*(JJ ) = Z  (jmj'  m'[Al.~)OejmOej,m,--= [aj+ @aj,]hu,+ 
Ji' 

. . . .  la~)(-) ~m~'-m'=--[~ ®~']h., Bh~,(Sa ) - -  - - ~ , ( j m j ' m '  J ' - "  + --  + " 
jj' 

• .1 A --k~ A = (A+) + , S = (S+) + , AA,~ (JJ) -- ( - )  A , _ ,  ( j j ' ) .  (8) 

In view of  the last two terms containing B and B + in eq. (7), the thermal phonon 
operators Q + ( T )  and Q(T)  are different from the conventional microscopic RPA 
phonon operators employed at zero temperature in the QPNM 31) when (B) ~ n s is 

zero. 
Expressing the FT-QPNM hamiltonian in terms of  the thermal phonon operators 

(7) and applying the linearization method for equations of  motion, we have obtained 
in ref. 19) the set of  the FT-RPA equations for finding the energies wa;(T) of  the 

thermal one-phonon excitations at temperature T and the phonon amplitudes ¢,, ~, 
(, ~" from eq. (7). Such a system of the FT-RPA equations has also been derived by 
other authors based on somewhat  different methods ,,,12). Since these materials are 
now well-known and have already been published we refer the readers to refs. ~*A2"19) 
for a detailed consideration. The expressions for the phonon amplitudes ~, ¢, ~, ~r 

are found to be 

1 f(a). (+) 
d j j '  Ujj' ~/ l  _ n s _  ns, ' "hi 

~ss' = 2v~-~,, (T) e j + e s , - w a ; ( T  ) 

-hi 1 f(a).  (+) 
j j j ,  bljj, %/1 - nj - n j , ,  

~-°' = 2,/2-~,, (T) e s + e j . + w A ; ( T  ) 

f (h) .  (-) "a; 1 d jj' t~jj' ~ (e j  > ej') 

~:J)'= x/2°~a,(T) e j - e j , - w , ~ , ( T )  

f (a ) .  ( ) [~! 1 s w ~w ~ (es>  es,) (9) 
- - J Z ~ , , ( T )  e s - e j , + ~ o , ; ( T )  " v  w ,  
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where the norm ~Yhi(T) has been given in ref. 19) with f~})=- (J'll iRh ( , )  Yh II J> being 
the single-particle matrix elements corresponding to the separable multipole interac- 
tions; ujj,- (÷) -- ujvj,+ uj,vj, v ~ )  = u~u~,- v~v~,. Thus, in this way the ( l p lh )  configurations 
at finite temperature have been interpreted in terms of thermal one-phonon excita- 
tions in the FT-RPA. We note that, as has been discussed in detail in refs. 11,12,19) 

at finite temperature due to the presence of  the operators B and B ÷ in eq. (7) the 
(pp) and (hh) transitions appears besides the usual (ph) transitions. As has been 
considered in detail in refs. 11-13 ,19)  these new configurations lead to a new discrete 

splitting of one-phonon states. In fact, under their influence some low-lying strongly 
collective states can spread over several new states with less collectivity 13,19) .  AS 
concerns high lying states in the resonance region, the new states correspond, as a 
rule, to very small reduced transition probabilities B(EA T, tohi (T))  in the temperature 
region of  interest ( T ~ 5 MeV) 19). Moreover, the Landau splitting calculated in the 
FT-RPA with including these (pp), (hh) configurations changes not much at finite 
temperature 13,19) a s  has been mentioned in the Introduction. Nevertheless, these 

new configurations complicate the thermal one-phonons space. Therefore, in the 
study of the couplings to (2p2h) configurations, they should undoubtedly be taken 
into account, as has been done in the present work making use of eq. (7). 

The inverse transformations for operators A ÷, A, B and B ÷ can be obtained from 
the thermal phonon operators Q-~,~i(T) and Qh~i (T)  (7) and their amplitudes (9) in 
the FT-RPA as 

A,~v(J1J2) = ~ ~xi + + -hi T nk) 1/2 + " ' {~b~o2Qh,i(T) ~jo~Qh~,( ) } ( 1 - n ~ -  
i 

Ah~ (JlJ2) = E "hi ~, + -,~i ..-,+ : {~b:o2Qh.i(~) Cj,,2t2azi(T)}(1 - hi, - nj~) 1/2 
i 

Bx~, ( j l j 2 )  = E "hi + ~hi T {¢j,j~Qa.i(T) - ffj,j~Q.:i( )}(nj~- nj,) 1/2 
i 

B + ( j l j 2 )  = ~ai "hi + Z {~jo~Qh.i( (10) T )  - ~jo~ahr, , (  T)}(nj~ - n~,) 1/~. 
i 

Eqs. (10) are useful in expressing the operators in the FT-QPNM hamiltonian 
through the thermal one-phonon operators (7). 

The FT-RPA excitations (the thermal one-phonon excitations) are now described 
by the wave functions 

A- rJMIIT'I/)'(1) k = Oj~,(T)IO, T) , ( 1 1 )  

where I0, T) is the thermal ground-state wave function which is taken to be the 
thermal phonon vacuum in even-even spherical nuclei: 

Q,M,(T)I0, T) = (0, T I Q f M , ( T  ) = 0. (12) 

If one wishes to apply the variational procedure at finite temperature to obtain the 
above-mentioned FT-RPA equations based on the wave functions (11), one must 
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have in mind that the average over the thermal vacuum (11) is identical to the 
average over the canonical ensemble 19,32,33) with the hamiltonian H 

(. • .)-= Sp [ . . .  exp (-H/T)]/Sp [exp (-H/T)] .  (13) 

2.3. THE COUPLINGS TO THE THERMAL TWO-PHONON STATES 

In order to take into account the couplings to (2p2h) configurations we follow 
the analogous way in the zero temperature QPNM. Namely, we construct the wave 
functions of  excited states, which consist of  the thermal one- and two-phonon 
components  32,33) 

where 

/¢ (1-2)\  + ~ , , / T  = O j M , ( T ) I 0 ,  T ) ,  (14) 

, + R~(J)QjM~( T)+ ~ P~,I~,(JI)[ Q~,4( T )®Q~(  T)].,~ 
Alil 
A2i2 

+ ~ S]2,1~(JI)[Q+,4(T)@O;,2,2(T)]jMI (15) 
Alil 3 
A2i2 

with the notation used in eq. (8). The last terms in eq. (15) appear  only at finite 
temperature and lead to the so-called phonon scattering effect 32.33). 

In ref. 32) using the wave functions similar to eqs. (14), (15) whose coefficients 

R, P, S can be put in the one-to-one correspondence with the defined temperature 
Green functions, and by taking into account the backward one- and two-phonon 
amplitudes 51) as well, we have derived explicitly a system of approximate basic 
equations in the framework of the FT-QPNM including the couplings to the forward 
two-phonon configurations, the phonon ground-state correlations 51) and the phonon 
scattering at finite temperature 32) [cf. also ref. 35)]. The diagrams describing these 
physical processes have also been displayed and discussed in detail 32,33). This set 

of  equations is very complicated and in the recent level of  the computation technique 
it is hardly convenient for numerical calculations in realistic nuclei. Therefore, for 
an application of  these equations to the calculations of  the giant resonance damping 
in hot nuclei this set must be simplified. The effect of  phonon ground state correla- 
tions has been evaluated in the QPNM using an oversimplified two level model in 
ref. 5o). In ref. 32) a similar schematic model for the heated phonon gas with the 
phonon structure and energies calculated from the RPA has been considered to 
evaluate the effects of  phonon ground state correlations and phonon scattering at 
finite temperature. These schematic evaluations have shown that at the temperatures 
of  interest the effects of  phonon ground-state correlations and phonon scattering 
can be expected to be small as compared to the effect of two-phonon creation or 
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annihilation (the terms ~ [ Q + ® Q + ]  in eq. (15)). On the other hand, the Pauli 
principle can be taken into account already in an approximate way by analogy with 
the zero temperature case 51). Our calculations in the zero temperature QPNM have 
shown that in the damping of the giant resonances two procedures taking the Pauli 
principle into consideration approximately and exactly 34) give nearly the same 
results in even-even spherical nuclei 22). Furthermore, the approximate procedure 
requires much shorter computer time. Thus, neglecting the phonon ground-state 
correlations and the phonon scattering effects at finite temperature, we can pronoun- 
cedly simplify the set of  basic FT-QPNM equations obtained in refs. 32,33) t o  retain 
only the couplings to the forward two-phonon configurations. This can be done by 
putting all the coefficients ~, V and W in eqs. (21) or ref. 32) to be zero*. In the 
sense of the operators of excited states (14) it is equivalent to neglecting the last 
terms in eq. (15) containing [Q+(T)®(~(T)] and corresponding to the phonon 
scattering effect [in eq. (15) the effect of  phonon ground-state correlations due to 
the backward terms ~ Q(T)  and [Q(T)  ® Q(T)]  has not been taken into account]. 
After some transformations, by analogy with the zero temperature case and having 
in mind the average (13), we obtain from the simplified systems of FT-QPNM 
equations the secular equations for finding energies 7/ of excited states at finite 
temperature in the form 

r rA2i2f J - \  T rA2i21--.tx z 4 
8 1 u,~,,t I ) T U A l i , ~ J I  )T[ l '~ - l JA l i l -~ - l JA2 i2  ) : 0 ,  (16) det [tos,(T)-~7] . , - ~  

~,,, ~oA,i,(T) + oax~,~(T) - r/ 
A2i2 

where vx~ is the phonon occupation number at temperature T 

va, = [exp (coA,( T) /  T) - 1]- '  (17) 

on the thermal one-phonon level with energy to~(T) calculated in the FT-RPA ~9). 
A2i 2 - The terms containing coefficients UA,~,(J1)T appear as manifestation of the anhar- 

monic effects due to the quasipart icle-phonon interactions 31-33). They govern the 

couplings to (2p2h) configurations in the above-mentioned approximation without 
phonon ground-state correlations and phonon scattering at finite temperature. In 
our approach the first-order terms containing B+B (eq. (8)) is included in the 
FT-RPA ~9) while the higher orders associated with the couplings configurations 
more complicated than (2p2h) are neglected. The explicit form of the thermal 
coefficients U~i~(Ji)r can be obtained by using the inverse transformations (10) to 
express the expansion of the operator B(B +) in the order of ~A+A through the 
thermal phonon operators Q+(T) and Q(T)  (eq. (7)). After that one obtains the 
approximated FT-QPNM hamiltonian in terms of the thermal phonon operators 
Q+(T) and Q(T) in the same forms as in the zero temperature case32-34"5°'52). 

Another way to derive the coefficients U]~I~(Ji)T at finite temperature is to replace 
the amplitudes ~b, ~o in the expression for U]2,1~,(Ji) at zero temperature 32-34,50,52) 

* We apologize for using in eq. (9) and ref. 32) the same letter ~" to label different quantities. 
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respectively, by 

N g u y e n  D i n h  D a n g /  D a m p i n g  

II ~ h . i ~  

(Oj;)~o-, ~ ' -  "' ai O j j ,  = "~Ai 

~Ai 

( ~ j ; )  r = o - - '  =- • ( 1 8 )  

Employing now the symmetry properties of the amplitudes ~7 and ( from eq. (9), 
we find that the terms containing the products of the type ~:~:, ~:~: and ~'ff are 

U ~Jha  at T # 0  to retain only the completely cancelled in the expressions for A ~ • Alil \~' ] 

terms containing ~ ,  ~ and ~ .  Thus, we obtain for the coefficients U~{i~(Ji)r at 
finite temperature the same expressions as for tthose at zero temperature 32-34,50,52) 

Uaa2,1](Ji)r = (-)*'+a2-'~/(2A, + 1)(222+ 1) 

f(J) {A, A2 J}  • I j l j 2  V(--) ~A.l.li ~A22i ~A i 2 "AIi  1 
×~a,,2,3 ~ .hJ2 j2 j, J3 (Oa3a'~O'2"+~J;53~J3J') 

JlJ2 (--) h l  1~2 J (t~A. 2i2#~tq i . -4- ~Ji -A  i2: 

+ 4 2 ~ ( T )  vj,j~ J, J3 j2 (O'J~"Ji?OJ2J3+~°J2~3~J3Jm) " (19) 

A2i 2 • However, although there is a formal similarity in the expression for UA,i,(Ji) at zero 
and finite temperatures, the difference in the two cases is radical. Indeed, the 
amplitudes ~, ff and the norm °~(T) in eq. (19) are calculated from the FR-RPA 
equations 19) (eqs. (9)) whose structure is drastically different from the one of the 
RPA equations. The coefficients vJ~2 in eq. (19) are defined by solving the FT-BCS 
equations and therefore depend also upon temperature T. Eqs. (16) are the central 
equations taking into account the interactions with (2p2h) configurations at finite 
temperature in our approach. 

In the diagrammatic representation of the QPNM (FT-QPNM)31-35) eqs. (16) 
correspond to the graph in fig. la. The phonon ground-state correlations and phonon 
scattering, neglected in the present work, are illustrated respectively by the graphs 
lb and lc. There are also mutual combinations between the vertices of graphs la-c  
which we do not depict here. It has been shown in refs. 22,31,34) that by replacing 
one intermediate noncollective phonon in these graphs by two quasiparticles, one 
obtains from them the graphs of the NFT. In fig. 1 this transition is denoted by the 
arrows and the corresponding NFT graphs are depicted in fig. ld-f.  Therefore, eqs. 
(16) incorporate the NFT graphs given in fig. ld which are the most important 
graphs 24). In ref. 24), the results obtained in the Matsubara Green function formalism 
correspond to the sum of all time orderings of the NFT graphs in fig. ld-f .  However, 
as has been discussed by Bortingnon et al. in ref. 24), the graphs le, fwill be important 
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Fig. 1. Basic graphs of the FT-QPNM; (a) the two-phonon creation or annihilation process; (b) the 
phonon ground-state correlations; (c) the phonon scattering. The graphs (d)-(f) are the graphs of the 
NFT at finite temperature, which can be obtained from the FT-QPNM graphs (a)-(c) as discussed in text. 

only if the vibrational states are strongly collective in the sense that the backward-  
going ampli tudes  o f  the R P A  solution are significant. As in the giant resonance 

region these ampli tudes are small as compared  to the forward-going ones, the 

contr ibut ion o f  the N F T  graphs  in fig. le,  f can be expected to be negligible at 

modera te  temperatures.  For  a more  detailed discussion of  the N F T  graphs at T ~ 0 
we refer the reader  to the paper  by Broglia et al. in ref. 24). In  the present work, 

eqs. (16) are used to calculate the G D R  damping  in hot  even-even  spherical  nuclei. 

3. The connection between the FT-QPNM equations and the strength function method 
at finite temperature. The choice of  parameters and details of  calculations 

We employ  the s tandard  strength funct ion method  52) that has successfully been 
applied in s tudying the giant  resonance damping  in cold nuclei in the zero tem- 
perature Q P N M  31). This me thod  has also been developed in different contexts o f  
the response funct ions 12.15,21) or  the r a n d o m  matrix ensemble 26). Thus,  we define 
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the strength function at finite temperature by analogy with the zero temperature 
case 31) 

b ( ~ ,  7 )  = Y~ I q'.,,,12p(w - w, , ) ,  (20)  

where ~ is the amplitude of  the excited state (14). If the excitation of  the state 
(14) proceeds through the thermal one-phonon components of  the wave function, 
we have 

~J~ = Z R;(J)~j ,  (21)  
i 

with R~(J) being the thermal one-phonon amplitudes defined in eq. (14). The density 
function p ( B -  ~7~) is parametrized as a lorentzian 31) 

1 "/v (22)  
p ( n  - ,7~) = 2 -7  (,7 - n ~ ) 2 +  ( k ~ , ) 2  • 

The matrix elements ~tj; are defined by the process under consideration. In our 
case they are the matrix elements of the E1 transitions from the thermal ground 
state (12) to the thermal one-phonon states 19). In a form convenient to numerical 
calculations the strength functions (20) have been performed as 31.52) 

b( ~, ~7 ) = l  Im {~ ~,r( 71+ ½iy~)~j,~j,,/ ~( ~l +½iy~) (23) 

where ~ ( , /+½iy , )  is the determinant in the 1.h.s. of  eq. (16) at complex values of 
energy and ~ , ,  is its minor. This determinant is calculated in the study of the giant 
resonance damping instead of solving the secular equations (16). 

The centroid energy/~ and the spreading width F ~ of the strength function (23) 
are calculated in the energy interval El ~< ~7 <~ E2 in a standard way 31) 

/~ = N -~ b ( ~ ,  r / ) r / d r / ,  
El 

1/2 
F*={2.35N-l feI2b(~,71)(*l-F.)2d*l , 

N - -  b(~,  ,/) dr/. (24) 
El 

In practice the energy interval E1 ~< 7/~< E 2 is chosen to be nearly the energy region 
where the experimental giant resonance is localized. Nevertheless, the comparison 
with the experimental width should be taken with some caution since the experi- 
mental data are derived as the lorentzian parameters, namely the full width at half 
maximum (FWHM) F ~ and its energy position /~. Having in mind the width F ~ 
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from (24), we have chosen in the present work the interval (E~, E2) to be IV-GDR 
region for cold nuclei 58Ni and 9°Zr, namely 8 <~ 77 <~ 24 MeV for 58Ni and 10 <~ ~7 <~ 

22 MeV (see sect. 4) for 9°Zr. This energy interval is fixed at finite temperature. Due 
to eqs. (16) all the quantities included in eqs. (20)-(24) do depend now upon the 

temperature and the average values (13) are always understood. 
We now focus on the physical insight into parameter  3,~ in eqs. (22)-(23) at finite 

temperature.  It can be viewed as the damping of  the thermal one-phonon state (13). 
Its inverse value (3,~) -~ is therefore understood as the hopping time needed for the 
transition from the thermal ground state to the thermal one-phonon excited state 
[cf. ref. 26)]. In the zero temperature QPNM the parameter  3,~ is state-independent 
(3,~ =- 6) and defines the way of  representing the calculated results. It should be 
larger than an average distance between two-phonon states and much less than the 
region of  location of  a physical quantity calculated. In spherical cold nuclei 3,~ =- ~5 
has usually been chosen in the interval 0.1 <~ 6 <~ 1 MeV. At finite temperature T, the 
parameter  3,~ can depend also upon T. In the theory of Fermi-liquids the damping 
of giant resonances is described as the absorption of the nuclear zero sounds. The 
absorption coefficient 3' for a single G D R  mode with energy r / is  found analytically 
from the Landau collisional integral as 53) 

3' = a[r /2+ 4~r2T2] • (25) 

In eq. (25) the first term --r/2 in the r.h.s, corresponds to the damping of  the G D R  
in cold systems whereas the second term contains a T2-dependence of the damping 
at finite temperature. As the damping of the single-particle motion is not yet well 
understood we assume here that the parameter  3' for every microscopic thermal 
phonon state with energy 77(T) has analogy with eq. (25). Moreover,  as our calcula- 
tions are performed only for the giant resonance region we put the energy dependence 
in eq. (25) to be on average 77 ~ ~7~DR(T) where ~TCDR(T) is the G D R  energy at 

temperature T. Therefore, we have for 3' the simple relation 

3,,7 ~ 6[ 1 + ( 2 7r T / r/CDR( T))2],  (26) 

with 6 = a[~TcDR(T)] 2. In our calculations at T ~ 0, eq. (26) should also be used. 
We note, however that the full microscopic knowledge of  the parameter  3,n at T ~ 0 
is still absent. In general, more detailed investigations are required. In the finite 
surface dominated systems, for example, a linear dependence on ~ and T for 3, in 
eq. (25) has been suggested 24). As is seen in refs. ~s.19.42), although there is a larger 

splitting for giant resonance modes in the FT-RPA, we still have a narrowing of 
the strength distribution with respect to the observed widths. The Landau splitting 
has not changed so much 19) even with taking into account the temperature depen- 
dence of  damping of  3,-lines as in eq. (25) [ref. 42)]. This means the Landau damping 
alone is not enough to reproduce the experimental  one, as has been mentioned in 
the Introduction. On the other hand, our approach in the FT-QPNM indeed can 
estimate the spreading width F ~ connected with quantal fluctuations. In this work 
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we shall consider how a combination of the two mechanisms can influence the G D R 
damping in hot even-even spherical nuclei. 

Let us now summarize briefly the choice of parameters we use in our approach 
and some details of  calculations. At zero temperature the form of  the mean-field in 
the QPNM is postulated by the Woods-Saxon potential W, whose parameters have 
been defined following ref. 54). The single-particle energies calculated in this potential 
and employed in the QPNM calculations include discrete and quasidiscrete states 
arising from the centrifugal and Coulomb barriers. This truncation of the basis is 
apparently a good approximation for description of state characteristics up to 
energies - 2 5 - 3 0  MeV in medium and heavy nuclei. In any case the calculations 
performed in a full basis 55) and with taking into account only bound and quasibound 
levels 56) have given similar results for lowest (2~, 3~, 4~-, 5~) states as well as for 
IV-E1 and IS-E2, E3 giant resonances. This has also been pointed out by Vdovin 
and Soloviev in ref. 57). The radial part of the single-particle matrix elements f ) ~  
is described preferably by R~ (r) = 0 W(r)/Or [ref. 57)]. In principle, the phonon space 
in QPNM includes all multipolarities A 1> 1. However, the number of collective 
phonons decreases drastically with increasing multipolarity A. On the other hand, 
we do not take into account the continuum. This allows us to truncate the multipole 
phonon space to retain in our present calculations only the multipolarities up to 
h = 5. For each multipolarity we take into account the whole one-phonon spectrum 
up to to~-~24 MeV. In constructions of  two-phonon configurations in order to 
exclude the spurious states violating the Pauli principle we require at least one of 
two intermediate phonons be collective. It is the effective procedure for taking into 
account the Pauli principle approximately which has been mentioned above and 
discussed in detail in ref. s~). Together with the approximation leading to eq. (16) 
at T # 0 discussed above this makes the very complicated computation task realiz- 
able, incorporating at the same time quantitatively physical effects of interest. The 
separable multipole forces are included with the multipole isoscalar ~0 A~ and isovec- 
tor x~ ~ constants 3~). The method of choosing these multipole constants has been 
presented previously and discussed thoroughly in many works within the QPNM 
framework [see e.g. refs. 31.57)]. A detailed review of  the prescription for these 
parameters has been given recently by Gal~s, Stoyanov and Vdovin 58). Its repetition 
here should be therefore superfluous. These authors have also pointed out that on 
average the spin-multipole interaction influences the fragmentation of single-particle 
states weakly. We do not therefore include the spin-multipole forces at all in our 
calculations. In general, at finite temperature, all the parameters of  the potential, 
the coupling constants and, consequently, the single-particle spectrum etc., do 
depend upon the temperature. However, several numerical estimations 59) have 
shown that the temperature dependence of the single-particle energies is rather 
smooth and weak up to T ~  6 MeV. For this reason at the temperature of interest 
(T  < 6 MeV) its effect can be neglected and we shall use the same single-particle 
energies Ej defined in the zero-temperature Woods-Saxon potential. Concerning 
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Fig. 2. Pairing gap versus temperature for 9°Zr: (a) FT-BCS gap a r  from eq. (2); (b) average gap (a t>  
from eq. (5) with the a -dependence  of the mass B ( a r )  omitted; (c) average gap ( a t (B)>  from eq. (5) 
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the effective multipole interactions, the question about their temperature dependence 
is still open apart from some efforts to study the behaviour of  the isoscalar multipole 
constants X~o ~) as a functions of  temperature 1~,6o) that have shown nevertheless their 
very weak temperature dependence. We therefore shall also use at finite temperature 

-(~) defined at zero temperature by the above- the same values of the constants ,~o.1 
mentioned method [cf. ref. 19)]. 

The thermal average superfluid pairing gaps computed from eqs. (5) and (6) in 
9°Zr are  plotted against temperatures in fig. 2. Although the A-dependence of the 
mass B(AT) [ref. 4o)] noticeably reduces the gap (AT) to the values (At(B)), its 
effect on the strength distribution of the electric isovector dipole transitions computed 
from a formula in the FT-RPA framework 19) is negligible (fig. 3). We therefore 

shall also reject this A-dependence of  the mass everywhere throughout our calcula- 
tions of the G D R  dampings at finite temperature by omitting B(Ar) in eq. (6). 

4. Numerical calculations 

In the following, the strength functions b(E1, 77) for the IV-GDR in even-even 
spherical nuclei 58Ni and 9°Ar are calculated at several temperatures. For methodical 

consideration the calculations have been performed with several values of  the 
parameter  y (eq. (22)). Namely, it has been taken temperature-independent y = 6 
or temperature-dependent  as in eq. (26). The effect of  nonvanishing superfluid 
pairing gap at finite temperature on the strength distribution can be seen by compar- 
ing the results calculated by using the pairing gap (5) and with the temperature- 

independent pairing gap AT = A r - o .  

The strength functions b(E1, ~) are displayed in fig. 4 at T = 0 ,  1 and 3 MeV for 
58Ni. The results have been performed with the temperature-dependent  gap (5) and 
with the temperature-independent y = 6 which takes the value 1 MeV in fig. 4a and 
0.5 MeV in fig. 4b. The IV-GDR strength is distributed over a considerably wide 
energy interval from about 8 MeV to 24 MeV. The spreading width F ~ at zero 
temperature computed from eqs. (24) is 4.61 MeV. The IV-GDR centroid energy 
E1 is 17 MeV [cf. ref. 61)]. At finite temperature the centroid energy E1 is shifted 
to lower values while the width F + increases slightly. At T = 3 MeV the value of F ~ 
is 5.7 MeV while the centroid energy E1 is localized at 15.2 MeV. The energy- 
weighted sum rule (EWSR) for the IV G D R  in our calculations is exhausted by 
85-90% and is considerably stable with varying temperature. By comparing fig. 4a 
and fig. 4b we can see how a larger value of y = 6 smooths the finite structure of  
the IV-GDR. The calculations using a smaller 6 = 0.5 MeV also indicate a clear 
enhancement of the lower lying G D R  modes at finite temperature (fig. 4b). As 
concerns the role of  the superfluid pairing interaction, we find it to effect very 
slightly the values of  the IV-GDR spreading width I "~ as well as the centroid energy 
El. In fact, the calculations performed with the gap AT = AT-o ~ 1.4 MeV in 58Ni 

give even at T = 3 M e V  the value 4.58MeV for F + and 15.6MeV for E1 of the 
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Fig. 4. IV-GDR strength functions b(E1, r/) at several temperatures for SSNi calculated with the gap 
(AT). Results are displayed with the parameter y-= 8: (a) 8 = 1 MeV; (b) 8 = 0.5 MeV. 

IV-GDR. However,  the forms of  the strength distribution in the two cases (with the 
temperature dependent average gap (AT> and with AT = AT=O) are somewhat  different 
as can be clearly seen by comparing fig. 4 and fig. 5. The strengths in the case with 
AT = AT-O are more concentrated around the centroid energy (fig. 5) and the shift 
this centroid energy with increasing T is rather weak. In general, the calculated 
fragmentation of  the IV-GDR does not change much with varying temperature. 

24 

20 

16 

~ 2  

e,l 
~ 4  

(a) T= 0.6MeV 

o - ~ /  , 

8 12 

58Ni 

1~5 20 24 
~(MeV) 

40. (b) T=0,SMeV 

1 
8 12 16 

~,(Mev) 

58Ni 

20 24 
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Fig. 6. The same as in fig. 4 with 3' given by eq. (26) and (a) A =AT_O; (b) A =(AT). 

By taking into account the temperature-dependent  parameter  7 (T)  from eq. (26) 
we find its value to increase with temperature T. Therefore, the Landau damping 
of this kind tends to smooth out the finite structures of  the G D R  while leaving the 
strong collective states visible (fig. 6). At T = 3 MeV the effect of  the temperature 
dependence of 7 (T)  is so strong that it smears out all the finite structures in a single 
large bump localized in the region of the IV-GDR. The form of  the strength 
distribution in the considered energy interval changes noticeably. Nevertheless, for 

T - - 3  MeV the spreading width F ;  in this energy interval increases weakly as 
compared to the case with the temperature independent 7 = & 

The widths F $ and the centroid energies E1 are plotted against temperature T in 
fig. 7 for 58Ni. The results displayed in this figure clearly show the effect of  the 
nonvanishing pairing gap at finite temperature on these giant resonance characteris- 
tics. In fact, at each value of  T, the width F ~ calculated with AT = AT_O is always 
smaller than the one calculated with the gap (AT) whereas the corresponding centroid 
energy E1 is always higher. The tendency of the centroid energy E1 to shift down 
and the broadening o f f  ~ observed in experiments with increasing T are also evident. 
However, the broadening turns out to be rather small at finite T and systematically 
much lower than the experimental values obtained in this mass number  region with 
the same given value of T (excitation energy E*) 7). This situation is not surprising. 
Indeed our calculations have been performed for spherical hot nuclei without the 
angular momentum effects, while the experimental data have been obtained in highly 
excited nuclei with a given temperature T and a given grazing angular momentum 
lo [refs. 6-10)]. Therefore, we can conclude that the contribution of the interaction 
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with (2p2h) configurations to the sizeable spread of the G D R  at finite temperature 
changes weakly, while the shape deformation leading to the presence of spin could 
be the principal cause. 

A similar situation is seen in 9°Zr nucleus. Fig. 8 represents the strength functions 
calculated at several temperatures with the temperature dependent  averaging pairing 
gap (AT} in 9°Zr for two cases: with the temperature independent parameter  y = 6 = 

1 MeV with y ( T )  given by eq. (26). The IV-GDR characteristics in this nucleus are 
more stable with varying temperature T, as compared to the case of  the hot 5SNi. 
The IV-GDR spreading widths F ;  and the centroid energies ~,1 in 9°Zr at T = 0, 1, 2 
and 3 MeV are collected in table 1. At zero temperature F ~ is 3.7 MeV and E1 is 
16.23 MeV [cf. ref. 62)]. At finite temperature,  while the centroid energy E1 is shifted 
down noticeably, the spreading with F ~ increases very smoothly and weakly with 
increasing temPerature T. The experimental data have been obtained in the highly 
excited 9°Zr [ref. 8)], where a strongly broadened FWHM F ~ 8.8 MeV has been 
observed at T ~ 1.7 MeV and grazing angular momentum l0 ~ 5 h. The discrepancy 
between them and our theoretical microscopic calculations taking into account the 
couplings to (2p2h) states at finite temperature without rotation demonstrates again 
the important  role of  the shape deformation in the broadening of G D R  in highly 
excited nuclei. 
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Fig. 8. The same as in fig. 4 for 9°Zr. Solid curves denote the results calculated with y = 1 MeV while 
the dashed curves correspond to the results obtained with y given by eq. (26). 

Qualitatively,  our  numer ica l  calculat ions give a similar  conclus ion  as compared  

to the calculat ions per formed in the finite temperature  Matsubara  formalism 

taking into account  the coupl ings  " l p l h • p h o n o n "  in the NFT24). This indicates 

the main  cont r ibut ion  of the o n e - p h o n o n  collective degrees of f reedom in the 

damping  of  giant  resonances  at zero as well as at finite temperature  in the case with 

the rotat ion omitted. On the other hand,  our  approach neatly gives a larger increase 

in the I V - G D R  spreading width with T. This fact of  course is germane to the 

cont r ibut ion  of different graphs in both the approaches.  Indeed,  as has been dis- 

TABLE 1 

IV-GDR spreading widths F ~ and centroid 
energies F.1 calculated with the average pair- 
ing gaps (,:IT) and y = 1 MeV at several tem- 
peratures for 9°Zr. (All the values are given 

in MeV) 

T F ~ E,I 

0 3.70 16.23 
1 4.11 15.53 
2 4.42 15.20 
3 4.60 15.01 
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cussed above, our calculations include the graph in fig. l a, which contains as a 
special case the most important NFT graphs in fig. ld. However, we have neglected 
le, f in the finite temperature Matsubara formalism of the NFT 24). Although the 
contribution of  the graphs lb, c is assumed to be small, their incorporation would 
alter slightly the results. A similar broadening of  the IV-GDR at moderate tem- 
perature has also been obtained recently within the framework of a semiclassical 
approach based on the Landau-Vlasov equations suggested in ref. 27) for hot nuclei 
without rotation. This comparison can shed light on the question which still remains 
to be answered about the relation between the microscopic approaches including 
those of the present work and ref. 24), and the semiclassical ones. Of course, we 
have neglected in our calculations the temperature dependence of the interactions, 
the effect of phonon ground-state correlations and phonon scattering at finite 
temperature etc., as has been mentioned above. However, the investigations in hot 
and strongly rotating nuclei 23"25'29'3°) together with the experimental data H0) 

obviously confirm the key role of the angular momentum effects in the description 
of the broadening of the IV-GDR width in highly excited nuclei. 

5. Conclusions 

In this work to study the damping of the IV-GDR in hot even-even spherical 
nuclei, we have applied our approach, the FT-QPNM, which extends the QPNM 
to finite temperature. This model therefore allows us to take consequently the 
couplings to (2p2h) configurations into account at finite temperature. Summarizing 
the numerical results we find: 

(i) Although the account of the couplings to (2p2h) states can reproduce rather 
well the damping width and the centroid energy of IV-GDR at zero temperature, 
this is not sufficient to describe the large broadening of  the IV-GDR damping width 
with increasing temperature T. The shift down of the IV-GDR centroid energy at 
finite T seems to be in reasonable agreement with the experimental data, while the 
spreading width F ~ (eq. (24)) in the considered energy interval increases not so 
much with T. 

(ii) The zero-sound Landau damping effect, included in our calculations at the 
temperature dependence of  the parameter 3, from eq. (26), tends to smooth out the 
fine structure of the IV-GDR and leaves only a broad peak of  the Lorentz form 
with increasing temperature. 

(iii) The account of  the nonvanishing average superfluid pairing gap due to 
thermal fluctuations enlarges slightly the damping width and reduces the centroid 
energy of IV-GDR at each value of  the temperature. 

Therefore, we conclude that the contribution of the couplings to (2p2h) configur- 
ations to the IV-GDR spreading width does not change much with temperature 
T ~  < 5 MeV. To describe the data (i.e. the sizeable width of the IV-GDR at T ~  0) 
one has to take into account at least: 

(i) deformations together with the angular momentum effect. 
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(ii) the effects of phonon ground-state correlations, phonon scattering and the 
continuum which can be noticeable at moderate temperatures; 

(iii) the couplings to states more complicated than 2p2h. 
The temperature-dependence of residual interactions is also a problem that 

remains to be studied in detail. 
It is worth recognizing that the width and structure of the GDR at high tem- 

peratures ( T > 5 - 6  MeV) may not follow the pattern observed at lower T. Indeed 
a narrow GDR  has been implied from the data 9), suggesting a different coupling 
mechanism of the GDR to deformation. Recently, a simple model of  motional 
narrowing has been suggested by Broglia et aL 26). As this phenomenon takes place 
in the high-temperature region and cannot be considered without deformation, it 
goes beyond the framework of our present study. A microscopic quantitative investi- 
gation of  this effect is of course highly desirable. 
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