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Abstract

The phonon damping model (PDM) is applied to derive the equations that describe the damping of
three-, andi-phonon giant resonances. As examples of the application of this approach, the results
of numerical calculations for the double giant resonance (DGR} 2) and triple giant dipole
resonance (TGDR): = 3) in 99zr, 1205n and?98Pp are discussed and compared with those obtained
by folding independent giant dipole resonances (GDRs) (the folding results). For the DGDR in the
double magic nucleud®®Pb, we found that these results are very close to the folding results. In the
open-shell nuclei®zr and120sn, a clear deviation from the folding results is observed in calculations
in agreement with the experimental trend. The results for the integrated strength and energy of TGDR
are found to be much closer to the folding results in all three nuclei. The TGDR widths in the open

shell nuclei are found to be larger than the folding results. We also show that the relatiﬁfﬂ@rﬂap
489)8(1), which connects the energy-weighted sum (E\A)Sﬁ) of the DGDR strengths to the

EWS Sil) and the non-energy-weighted sum of strengths (NE\A‘/§3 of GDR, does not hold in

any approximation in which the energy of the two-phonon state is deviated from the sum of energies
of the two one-phonon states due to anharmonicity. A small deviation of the two-phonon energy is
enough to cause a noticeable change in the DGDR strength compared to the independent-phonon
picture. A new sum rule relationship is derived within the PDM2000 Elsevier Science B.V. All

rights reserved.
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1. Introduction

The recent observation of the double giant dipole resonances (DGDR) in relativistic
heavy-ion reactions via Coulomb excitation [1,2] and pion-induced charge exchange
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reactions [3] has sparked intensive studies and hot debates on the issue of multiphonon
excitations (see Ref. [4] for a recent review).

In the simplest picture, the giant dipole resonance (GDR), as a collective motion of
all protons against neutrons in nuclei, corresponds to the transition of the nucleus from
ground state (g.s.) to the first excited state of an idealized dipole vibration that exhausts
all the oscillator strength [5]. This first harmonic oscillator quantum phonon serves as the
building block of the multiple GDR if the latter is understood as a resonance built on top of
other resonances. In such a harmonic picture the energy (frequency}mfi@non dipole
resonance would equal exactlyidimes of the energy of the GDR. In reality, the GDR
photoabsorption cross section has a Lorentzian form with a full width at the half maximum
(FWHM) I", which is particularly small in double magic nuclet @ MeV in 2°8Pb), and
a centroid energy close to the energy of the idealized single dipole phonon. The resonance
width is understood as follows. The GDR strength is redistributed over a collection of
dipole oscillators clustered around the idealized dipole oscillator. This effects is called
the Landau splitting (or damping) of the GDR. It is well described within the random-
phase-approximation (RPA), where each phonon excitation is composed of a coherent
superposition of many particle—hol@X) configurations. The transfer of the energy of
the GDR to other modes of nuclear motions such g&:2(or 1p1h® phonon) ones splits
the RPA phonon states further into a dense distribution of many nuclear levels, each of
which carries a certain portion of the total GDR strength. The envelope of this distribution
can be approximated by a Breit—-Wigner shape whose width is called the spreading width
I'V. The GDR phonon excitations are also coupled to the continuum region. This coupling
leads to an additional contribution called the escaped With Since the escaped width
't is of order of hundreds keV in heavy nuclei, the major contribution to the GDR width
comes from the spreading widfh'.

Such a damping mechanism of the GDR makes the whole picture of the multiple GDR
more complicated. The first correction to the over simplified harmonic picture of the
multiple GDR resonance is to assume that each GDR can be still considered as a single
collective phonon but with a definite damping in such a way that it can be approximated
by a Lorentzian or Breit-Wigner shape with a FWHNgpr ~ I't centered at the
experimentally observed GDR ener@spr. The strength distribution of the multiple
GDR can be then obtained by folding these noninteracting GDRs [6,7]. As a result the
width of the n-phonon GDR is equal ta/gpr. If the Gaussian distribution is used
instead of the Lorentzian one to approximate the GDR, the width ofitilelependent-
phonon GDR comes out agnIcpr after the folding [6,7]. Since such harmonic picture
neglects the coupling between the GDRs, the fundamental question in the study of the
multiphonon resonances is how large the anharmonicity is, or how strongly the coupling
between GDR phonons makes the description of the multiphonon resonance deviate from
the independent-phonon (harmonic) picture. The reason of raising this question comes
from the experimental systematic of the DGDR.

The most representative data for the DGDR have been extracted from the exclusive
experiments in heavy-ion collisions usikt?Xe and?%8Pb projectiles at nearly relativistic
kinetic energies [1,2]. These data have shown that the deviation from the harmonic picture
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of the DGDR in the closed-shell nucled8¥Pb) is much smaller than in the open-shell one
(136Xe). While this deviation from the harmonic picture is not that large in the energy and
the width of the DGDR, the effect is dramatic in the DGDR cross section in the Coulomb
excitation. In298ppb, the cross section is about 33% larger than the value obtained by
folding the cross-sections of two independent GDRs (the folding resultsf®e, the

cross section has been observed (21832 mb) to be strongly enhanced about 2—-3 times

as compared to the folding results (70-87 mb). The most recent data have shown that there
is a certain dependence of the extracted value of the DGDR cross sectlé?Xim on

the thickness of the target nucleus [8]. However, the large enhancement compared to the
folding result remains.

Even though there is a clear indication that anharmonicity and nonlinearity may be the
source of the enhancement in the cross section of the DGDR [9-12], it is far beyond
a practicable modification to include microscopically the coupling between two GDRs
that forms the DGDR. Several attempts have been made in this direction. We mention
here only two approaches, which include the configuration mixing explicitly in the wave
functions. The second RPA (SRPA) has been extended to the DGDR but the spreading has
not been yet treated [13]. Therefore, the DGDR has been obtained to be nearly harmonic.
Another example is the calculations in Refs. [15,16] within the quasiparticle-phonon model
(QPM) [14]. In Ref. [15] the spreading width of each one-phonon state due to coupling to
two-phonon states it?%Xe has been calculated. The DGDR was formed as a direct product
of these two damped GDR one-phonon states. The results in Ref. [15] are more or less
equivalent to those obtained by folding two independent GDRs with a given Wiglti
for each of them. The three-phonon terms are needed in the QPM wave function to calculate
the fragmentation of the two-phonon states [14]. However, because of the large dimension
of the determinant{ 10°~1(P without the three-phonon terms), the QPM equation for the
energy is solved practically only with a substantial truncation of the one-phonon basis [14].
In Ref. [16] the five most collective RPA one-phonon GDR states have been selected to
form the DGDR states if3%Xe. Moreover, these DGDR states are coupled only to the
three-phonon configurations in which two of the three-phonon components coincide with
the DGDR states. In this way, the coupling to three-phonon terms gives the width of the
two-phonon states similarly to what the coupling to two-phonon states does for the width
of the one-phonon states. Once again, this is equivalent to the folding results although there
were several thousands three-phonon states included in the calculations. The quantitative
effect of the anharmonicity in the DGDR still remains an open question.

Any approximated approach to the giant resonances must fulfill certain sum rules. In the
case of the GDR this is the well-known model-independent Thomas—Reiche—Kuhn (TRK)
sum rule. Whether similar model-independent sum rules can be found for multiphonon
resonances is an interesting question, since such a sum rule would be useful to test
the validity of any approximation. In Ref. [17] an identity between the energy-weighted
sum (EWS) of dipole strengths and the ground-state expectation value of the double
commutator of the Hamiltonian and the dipole operdohas been considered also for
the two-body operatob?. The authors of Ref. [17] have then shown that, if the double
commutator{ D, [V, D]] between the dipole operat@ and the potential par¥ of the



534 N. Dinh Dang et al. / Nuclear Physics A 675 (2000) 531-558

model Hamiltonian is zero, the EWS}Z) of the DGDR strength is equal tosél)s(l),
WhereS{D andSél) are the EWS and non-energy weighted sum (NEWS) of strengths of
the GDR, respectively. The folding result of the DGDR, which giV&sspr = 2EGDR,
satisfies this sum rule relationship. If this relationship holds even when the anharmonicity
is included in the DGDR, it would mean that there is no way for the DGDR strength to be
enhanced as compared to the harmonic limit since both the EWS and NEWS of the GDR
strengths are known independently of models. However, the recent study with the complete
Hamiltonian of the QPM in Ref. [18] has shown that, in general, the EWS of the DGDR
strengths can be enhanced due to the anharmonicity caused by such scattering term since
the condition[ D, [V, D]] = 0 does not hold. We notice that the authors of Refs. [9-11]
have also retained thgp andih terms in the dipole operator. This opens a new route that
leads to a certain enhancement of the DGDR cross-section.

This situation requires a simple, yet microscopic approach that can account for the
anharmonicity in thea-phonon giant resonance in a transparent way. A step in this direction
has been taken in Ref. [12], where the Phonon Damping Model (PDM) [19-21] was applied
to derive the equation that describe the damping of the DGDR 2). In the present paper,
we will extend this approach to the general case-phonon giant resonances. The explicit
derivation will be present for the TGDR = 3) while the generalization to an arbitraty
will come as a natural extension from the DGDR and TGDR. We will demonstrate
rigorously that, starting from a general many-body Hamiltonian, the relatior:&{ﬁipz
48{1)8((,1) [17] is violated within any approximation that uses the (RPA) phonons to build
the DGDR and that leads to the DGDR energy different frdtggr due to anharmonicity.

We will show that this relationship is fulfilled only in the case when the energy Alfift=
Epcpr—2EcpRis zero. We will also show that a rather small energy shift is enough to

cause a large change in the EWS of strengths. The results of numerical calculations for the
strength function, energy and width of the DGDR and triple GDR (TGDRY#r, 12°Sn,
and?98pp are analyzed in comparison with those obtained by folding independent GDRs.
In particular, this is the first time that the numerical results of the damping of three-phonon
resonances are presented.

The paper is organized as follows. In Section 2 we derive the equations for the three-
phonon resonance within the PDM and propose its extension te-gi@®non resonance.

In Section 3, we present our study of the sum rule relationship between EWS of the DGDR
strengths and the DGDR strengths. The results of numerical calculations are presented and
analyzed in Section 4. The paper is summarized in the last section, where conclusions are
drawn.

2. Multiphonon resonances within the phonon damping model (PDM)

The PDM describes the coupling of collective oscillations (phonons) to the field of
incoherent nucleon pairs [19-21] making use of a Hamiltonian that is composed of three
terms:
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H=Y Eala;+Y 0,010, + > F%alas(0) + 0. (2.1)
s q s,8'.q

The first term on the right-hand side (rhs) of Eq. (2.1) corresponds to the field of

independent single particles, Wheré anda, are the creation and destruction operators

of a particle or hole state with energy; = ¢; — ¢f, ¢, the single-particle energy and

¢r the Fermi energy. The energy; is called the single-particle energy for simplicity

whenever there is no confusion with. The second term is the phonon field, wh@é

and Q, are the creation and destruction operators of a phonon with eagrgyhe last

term describes the coupling between the phonon field and the field of all pogdible

pp, andhh pairs. The indices ands’ denote particle, E, > 0) or hole ¢, E; < 0),

while the indexgq is reserved for the phonon stage= {A, i} with multipolarity 1 (the

projectioniu of A in the phonon index is omitted for simplicity). In general, the sums

in the last two terms are carried out ovee> 1. The form of PDM Hamiltonian (2.1)

is quite common in many microscopic approaches to nuclear collective excitations. The

difference between various models is in the way of calculating the single-particle energy

E, phonon energw, and phonon structure using different effective interactions, which

lead to different verticeEg(f,).

The basic equations for the two-phonon resonance have been derived and discussed
thoroughly in Ref. [12]. Following the same line, we will present in this section the
formalism for the three-phonon resonance and generalize it to-fif@non resonance.

The damping of the three-phonon excitation is considered as the result of coupling of
three single phonon vibrations, which is damped by coupling to incoherent nucleon pairs.
This process can be studied considering the following double-time Green’s functions which
describe:

(1) the propagation of three free phonons:

G rgaasaiaray@ — 1) = ({01 (1) Qg (1) Qg3 (1); Q;,l(t’)Q;é (r’)QZé ")); (2.2)

(2) the transition between “nucleon pair two-phonon” and three-phonon configura-
tions:

Gusiqrazaasas — 1) ={(al Day (104, (1) 00, (0: Q) 1) Q) ()0}, (1)), (2.3)

In Egs. (2.2) and (2.3) the standard notation for the retarded double-time Green'’s function
is used [23,24]:

((A@); B1H))=—i0( —H{{A@®)BE)) F (B )AW))], (2.4)

for any operatorsi(r) and B(¢') with {...) denoting the average over the grand canonical
ensemble at temperatufe The equation of motion for the double-time Green’s function
({A(1); B(t"))) with respect to the HamiltoniaH can be derived from

A0 B =50 ~N([A0, B +{[A0), HoT; Bo) 2.5)

following the standard procedure in Ref. [24].
Applying Eqg. (2.5) to the function (2.2) and Hamiltonian (2.1), we derive the following
exact equation, which couples the function (2.2) to the function (2.3):
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’Equqzqs;q’lqéqé(t =)
=8t — 1) (L4 vgy +vg, +g3) (8 0148020580305 T 0414042430434}

+ 5112(1151111158(13(13 + 8qzq15q3qé8q1qé + 8q3q15qlqé8qzqé + 8q1qé‘3qzq§8q3q’1)

+ (01 + @gp + @45) G gy 051050, — 1)

+ Z[F ;sqfl)gss "goqsidiabal (T =1 N+ Fy (2 Uss'qrgzalayay( =1 )
+ F(?3)gssrqlq2.qiqéqé(t — t/)]. (2.6)
In Eq. (2.6) the phonon occupatlon numbegroccurs as a result of averaging over the
grand canonical ensemb@q Q4) = 844'v4- The equation for the function (2.3), which
enters in the rhs of Eq. (2.6), is derived from Eg. (2.5) in the same way. The exact result
contains the function (2.3), as well as higher-order Green'’s functions in the rhs. Confining
ourselves to the lowest-order coupling, we can close this hierarchy up to the functions (2.2)
and (2.3). This is achieved by applying the decoupling scheme in Ref. [24] to lower the
order of the Green’s functions, e.g.:

(la! (e (1) 001 (1) g, (1) Qg5 (1): Q1) 0}, (1) 2y, (1)

~ 8,55 G (2.7)

q19293: qlqzqs(t )

wheren, is the single-particle occupation numbgr= (a; as) The decoupling is applied
whenever there is a sum over the single-particle indi¢esWithin this approximation
scheme the equation for the function (2.3) can be truncated to the following form:

.d
ldt gss 'q192; ‘11‘12‘13(t ) =(Ey — Es + Wq, t+ waz)g” 'g1q2; ‘11‘12‘13(t l‘/)

(q)
+ (5 —nyr) Z oo Gugugn: 919595 (t—1). (2.8)
q

The Fourier transforms of Egs. (2.6) and (2.8) provide us with the set of two equations in
the energy plan&:

(E — g, —wg, — qu)quqzqs'q’lqéqé(E)

(q1) (92) (93)
- Z[Fss’ gSY 'q2q3; ‘11‘1243(E) + F g” 'q143; ‘Ilqzqs(E) + F gSY 'q192; ‘Ilqzqs(E)]

s,s’

1
= _(1+ Vgy + Vgp + Vg3)

X (8‘11‘11 a2050q3a5 T 0414,0020,0q30, + 842081450434,

+ 84241 9430559195 T 34344 9910504245 T 8414494245543} (2.9)
(E — Ey + Es — wgy — 0g5)Gsy qlqz;qlngg( )
— (ns — FOq E 2.10
(ns —ny’) os Caarqzaiazas (E) =0. (2.10)
Elimination of G,/ (E) by expressing it in terms ot (E) using

55'9192:919595 991921919593
Eg. (2.10) and insertion 'of the resultin Eq. (2.9) produce an equati@n for,... . 2 4. (E).

19243
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For the propagation of a three-phonon configuratign. g2, g3) = (¢1. 45, q3) this
equation takes a simple form as

3! 1+ vg, +vg, +vgq

G 19205 (E) = 5= , (2.11)

e 210 E — wgy — 0g, — g5~ Pyygoq3(E)

whereP,, ,,4,(E) is the three-phonon polarization operator:
(q1) 1(q1)
P (E)Z (I’l _n/)|: S8 S's
41924 s — s
e ; E—Eg+Es —wg — 0y
(92) 17(q2) (93) 17(q3)
+ Fss’ Fs’s + Fss’ Fs’s j| (2_12)
E—-—Ey+Es—wg —wyg; E—Eg+Ey—wg —wg,

Inthe Ihs of Egs. (2.9) and (2.12) we omit the subscrip{s g5, ¢3) as they coincide with
(91,92, 93)-

The imaginary and real parts of the analytic continuation of polarization operator
Py4245(E) into the complex energy planE = o £ ie (o is real ande — 0) give the
damping and the energy shift of the three-phonon excitation, respectively [19—-21,24]. The
analytical expression of the damping is

> s =) [FIP FIP8(0 — Eg + Ey — g, — wg)

s,s’

+ Fs(g’2) E?(%2)8(w - ES/ + ES — Wqy — qu)

Yarq2q3(@) =70

+ Ey(g/s) EY(/Z3)8((,() —Ey +E; —wy — qu)]" (2.13)
The energy shift has the form
§S S's

w—Eg+ Es —wg, — wy,

Py1g2q2(@) =P Z("s - ns’)[

s,s’
SS S's S8 S'S

+
w—Ey+Es—wg —wgy, ©—Eg+ Es—wg —wy,

} (2.14)

with P denoting the principal value of the corresponding integral.
The excitation energy of the three-phonon state is defined as the solutafnthe
equation for the pole of the Green'’s function (2.11):

® — (wg, + ©g, + ©g3) — Pyrgpgs(@) =0. (2.15)

Egs. (2.13)—(2.15) are the main equations for the study of three-phonon excitations within
the PDM.

Recalling now the main equations for the damping of the GDR [19] and DGDR [12]
within the PDM, we can easily generalize these equations to the casphafnon state by
considering the Green’s functions

Gy gudyqy, = 1) ={{Qqa (1) ... Qg, (0): Q;l(t/) "-Q;r;l («))) and
Gsigsan siapa; 0 = 1) = ([l a0y (1) Qg (07 Q) (1)) Q4 ().
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These equations are given below.
(i) The Green’s function for the propagation/ofphonon state:
n! 1431 vy,
27 E — Y1 0q — Poyq,(E)
(i) The damping ofi-phonon state:

qu---qn (E) =

(2.16)

n n
Varogn @) = 7| Y (g —n) Y FS8(w — Eg + E; — quj)‘. (2.17)
i=1 J#
(i) The energy shift ofn-phonon state compared to the sum of energies single
phonon states:

s,s’

Z 2n: F(q,i)F(,qi)
Pyy..qn (w)="7P (ng —ngr) e . (2.18)
5,8/ i=1 ®—Ey+ Ey — 2?751' Wq;

(iv) The energy ofi-phonon state:
5) - qui - P111-~-!1n ((Z)) = O (219)
i=1

The FWHM I, of the n-phonon resonance is defined as twice the value of the damping
(2.17)taken atv = @ asIy, = 2yy,.. 4, (®).

The strength functior$,, . ,, (») is derived from the spectral intensity,. 4, () in a
similar way as in the case of GDR [19-21] and DGDR [12]. The approximated form of the
strength function is

I’l_! Yq1...qn (w)
7 @—@2trE . @

Sq1..qn (@) = (2.20)

where it is assumed that the spectral intensity has a steep maximue at
The k-moment of the multiphonon resonance is defined in the standard way as

E3
m]((n) :/Sqlmqn (a))a)kda), (2.21)
Ep

where the cases witk = 0 and 1 correspond to the NEV\ASé") and EWSS{") of
strengths, respectively. Putting = ¢ for all i in Egs. (2.16)—(2.21), we obtain the
equations fom identical phonon resonance from which we recover the equations for the
damping of the GDR, DGDR, and TGDR with= 1, 2, and 3, respectively. The phonon
occupation number, and single-particle occupation numbgrin Egs. (2.6)—(2.19) can
be approximated by the Bose—Einstein and Fermi—Dirac distributions at tempeFature
respectively [20]. As we considdir = 0 in the present paper, we hawg=0,n, =0, and
ny =1.

We notice that in the derivation of the equations for the multiphonon resonance we
always neglected the terms that can be decoupled to be proportional to

((afay )0y Qg o Q) (&) ... 0L ) (0 >2).
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As has been discussed in the cases of GDR [19] and DGDR [12], such terms are related
to the single-particle damping caused by the mutual coupling to the phonon field. Their
contribution to the damping of the collective phonon such as GDR can be omitted in the
first order. This is tantamount to omitting the function similar to (2.3) in the hierarchy of
higher-order Green functions, but in which the number of phonon operators at the time
T =1 is smaller tham — 1. In Appendix A, we demonstrate that the contribution of such
terms is really negligible for DGDR and TGDR.

It is also worth noticing that a nucleon pacigas/ can be expanded in an infinite
boson expansion series, e.g., of the Belyaev—Zelevinsky type [25]. Therefore, the derived
damping of (multiple) phonon excitations caused by the last term at the rhs of Eq. (2.1)
in fact describes not only the Landau damping, which is the spreading of a collection of
harmonic oscillators (phonons), but also damping due to the coupling of multiphonon states
with the ph pairs as clearly shown in Eq. (2.17).

3. Onthe sum rule relationship for the DGDR

A general sum rule relationship for thephonon resonance is absent at present.
Moreover, the complexity of all possible transitions betweerntpdonon resonance and
the group of(n — 1)-phonon resonances on which it is built makes such a relationship, if
any, unlikely to be model-independent already /icg 3. In the present section we study
only the EWS and NEWS of the DGDR strengths.

It is well known that for a given Hamiltonian with a two-body interaction the following
identity takes place [25,26]:

S1= Y (E, — Eo)|(v| 0|0} = $(0|[O. [H. O]]|0). (3.2)
v
where O is a Hermitian operator anflv)} the complete set of exact eigenstates with
eigenvalues (energied), of the HamiltonianH. The lhs of Eq. (3.1) is the EWS of
strengths of transitions from the ground stiiewith energyEo to the excited statels))
generated by the operat@r In the case of the dipole operat@r_ D, if the potentialV
in the Hamiltonian were local and had no charge exchange part, it would commut® with
Hence the rhs of Eq. (3.1) would be equalN¢&Z/(2M A) independently of models and
of the structure of the ground sta®. Equation (3.1) becomes thélil) =NZ/2MA),
which is the well known TRK sum rule for the GDR [25,26].
The authors of Ref. [17] have extended the identity (3.1) to the two-phonon excitations

to derive a model-independent sum rule for the DGDR. Putﬁn-g D? instead ofD and
evaluating the rhs of Eq. (3.1) in a similar way, it is easily to obtain that

z 21 — 1o ol
4—2MA (0] D?10) = 485, SV, (3.2)

provided the following condition holds:

S =

[D.[V.D]]=0. (3.3)



540 N. Dinh Dang et al. / Nuclear Physics A 675 (2000) 531-558

The authors of Ref. [17] concluded that Eq. (3.2) is a model-independent relationship and,
since the EWSS,” and NEWSS{" of the GDR on the rhs of Eq. (3.2) are known, the
unknown EWSS‘f) of the DGDR strength on the lhs of Eq. (3.2) cannot exceed the value in
its rhs. Hence, there is no way to get any enhancement of the DGDR strength compared to
the folding result, as the latter satisfies the rhs of Eq. (3.2) [17]. It is easy to see that, starting
from a general many-body Hamiltonian, the condition (3.3) does not hold in general.
For instance, neither the QPM Hamiltonian [14] nor the PDM Hamiltonian (2.1) satisfies
the condition (3.3). Indeed, as the dipole operdiocan be represented in the second
guantization as a superpositioncdbs/ with ss” = ph, pp’ or hh' (see Eq. (3.13) fok =1
below), the commutator betwedn and the last terny =) 'q F(")asag (Q,;r + Q) of

(2.1) is not zero as can be verified by a simple check using the exact commutation relations:

[aTay, as, a, /] = 815, 0 a 4 8sisa;rlay. (3.4)
As a results, we obtain for the commutafdt, D] the following expression:

v.D1=3 Y F9[(s1MEDIs) alas, — (s1l M(ED)|s) al ag](Q) + ). (3.5)

ss'q S1

Similarly, one obtains for the double commutaftér, [V, D]] the following expression:

[D.1V. DI =3 FO[2(s{  M(ED)Is ) (sIM(ED)|s1) al,ayg

sS q ?1?1

— (s M(ED)|s") (s M(ED)Is1) alay
— (st M(ED)Is1) (sIM(ED)Is2) 0, ay [ (QF + Q). (3.6)

Neither the rhs of Egs. (3.5) nor the rhs of Eq. (3.6) is a number. They contain operators,
that do not cancel each other in general case. Therefore, the condition (3.3) does not hold
for (3.6). This means that the relationship (3.2) cannot take place.

The nonzero value of the commutatdr, D] in (3.5) also leads to the violation of
the TKR sum rule. However, under a certain approximation, the expectation value of
this commutator in the ground state can be considered to be equal zero, conserving the
TKR sum rule. Within the PDM, the decoupling approximation of type (2.7) is made to
close the hierarchy of the Green functions. We show below that this kind of decoupling
approximation eventually makes the ground-state ave(@g#&, D]|0) vanish, while it is
not the case fo(0|[D, [V, D]]10).

Applying (2.7) to ground -state average values of Egs. (3.5) and (3.6), we obtain:

OV, D110} 2 Y Y FQ[(s1 M(ED)S) 85,5
ss'q S1

— (sIM(ED)|s1) 85,ny ](01 Q) + Q4100 =0 (3.7)

becaus€0| Q; + Q,10) is zero. Itis important to emphasize that the decoupling scheme
of type (2.7) (see also Ref. [20]) only allows the single-particle ingdegor s2) of the
dipole-operator matrix elemenriz| M (E1)|s1) to coincide with the index (or s’) of the
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coupling matrix eIemenE;j,). Taking now the same level of decoupling into account, we
obtain, in the same way, the following expression for the ground-state expectatiorkvalue
of Eq. (3.6):

K =(0|[D.[V, D1]|0)
~ 23N FE (s IMED)S) (sIMEDs1)(0] ¢ ag (O + 0)10)  (3.8)

ss'q s1s1
because the decoupling scheme allows the ground-state average values of the last two terms
at the rhs of (3.6) vanish as in (3.7), but not the one of the first term, as has been mentioned
above.
Let us now derive the modified sum rule relationship within the approximation (3.7)
and (3.8). Applying the identity (3.1) witth = D?, we calculate the EWS of the DGDR
strengthsf) as

8@ = L(0/[D? [T + Vv, D?]]10) =4SV S + L0y [D?, [V, D?]][0)
=45"s{P + 1[0 DD, [V, D1]10) + 2(0| D[D, [V, DI] D |0)
+(0|[D. [V, D1]D?|0)]. (3.9)

The term 5&1)8(()1) in this derivation comes from the double commutator between the
double-dipole operatab? and the kinetic parf’ of the Hamiltonian [17]. The EWS’{D

is the TKR sum rule, while the NEWS(()D is equal to(0] D?|0). Replacing the double
commutato D, [V, D]] in the last term at the rhs of (3.9) by its ground-state expectation
valueK from (3.8), we obtain the new sum rule relationship:

8P ~ a8 + 1k)SEP. (3.10)

We have just shown that the PDM, which uses the decoupling scheme (2.7), conserves
the TKR sum rule (in average), but violates the relationship (3.2). Instead of (3.2), the new
relationship (3.10) holds, taking into account the nonzero ground-state expectation value
of [D, [V, D]]. Itis worth noticing that this modification is not quite the same as in the case
when the Hamiltonian includes nonlocal and/or exchange-current forces such as isospin-
dependent, Majorana exchange or one-pion exchange forces, etc. These interactions lead
to an additional violation of TKR sum rule with an enhancement factor up to 30—40% [27].

In view of several popular microscopic theories that use the RPA phonon operators to
generate the giant resonances and to study their damping by mixing these single RPA
phonons with two-, three-phonon configurations, we will show below how anharmonicities
between the RPA phonons really make the EWS of the DGDR strengths deviate from the
relationship (3.2).

The RPA one-phonon statd® with numberi and multipolarityx is define as

i)™ = o] |RPA), (3.11)

where|RPA) is the correlated RPA ground state (phonon vacuum), @¢;|RPA) = 0,

and the phonon operat@li is defined as a linear superposition of thie pair operator

B;h = a;r,ah as
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0L =>"[x00B!, — v By). (3.12)
ph

The equation of motion applied to a model Hamiltonian with two-body interaction can be
linearized in the space of one-phonon states (3.11) assuming the quasiboson approximation
(QBA) of the phonon operator (3.12). TIX%’) andYéZ’) amplitudes satisfy then the well-
known orthogonality and closure relationships within the QBA. This RPA equation defines
the energleso(’\) E(” Eo, and theX, Y amplitudes of the one-phonon state (3.11)
[25,26,28].

The electric multipole operato(f)} can be expressed in terms of the RPA phonon
operatorsQL. andQ;; as

Or=Y FP(0L,+0u)+ Y. (IMENIs)alay, where  (3.13)
i ss'=pp’, hh'

FP =3 MMEN|p) (X5 + 75, (3.14)
ph

with the matrix elements of the)Etransitions(z| M (E)L)|p). The EWSS?) and NEWS

S(A) of strengths of E-transitions from the ground staiBPA) to the one-phonon state
i) (” (3.11) can be easily calculated as
. 2 2
8P =3 M0 RPA o = [FV ] 0,
i i
LA 2 2
S =3 W10 RPA P = D [P TR (3.15)
i i

The product of the type at the rhs of (3.2) can be now evaluated using (3.15) as

1) @) (2))2 ()») ()») (k) (M2 (M)
485 Sy =2{Z(]~" )w (7 Z}" Y (F) ,2}
i i2
=23 [FPPIFP T (0 +w(“). (3.16)
i1ip
Let us now define the two-phonon state that is constructed from two RPA phonon
operators (3.12) as

|iVig?) = ————0] . 0] . IRPA), (3.17)

\V 8A1A2 1112 1
where the facto(s;,,5,8i,i, + 1)~ 1/2is introduced to avoid double counting when= 1,
andii; = ip. To be precise, the introduction of two-phonon excitation also modifies the
ground-statéRPA) to |0) due to phonon correlations in the ground state, whose effect can
be neglected so long @8] QT Q|0) ~ 0. In the giant resonance region at zero temperature
we can safely pu0) = |RPA). The matrix element of the transition from the ground state
IRPA) to the two-phonon state (3.17) that is caused by the two-body ope:ﬁ;;gg =
(’9}1(’9}2 can be now easily calculated using Egs. (3.13) and (3.17). It is equal to

< (A1) ()»2)‘ D11, IRPA) = (]_-()»1)]_—()»2) +8, -7:5(2)»1)]:['(1)\2))' (3.18)

VvV 8)»1)»2 1112 +1
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Putting A1 = A2 = A, we get from Eq. (3.18) the matrix element of the double-phonon
transition:

. 2
(iVi)| O IRPA) = ————FP 7). (3.19)

The EWSS{’W of the double-phonon strength is

S(M»)_ (A) (A) O RPA 2 () —4 (A) f'()") 2 () 3.20
Z| | O1.IRPA) [“w Z 1112+1 1172wl (3.20)

1112 1112
i1i2 i1ip
Wherea) iin )is the energy of the two-phonon statg\) i3 ), which, in general, is not equal

to a)l(f) + a)l(;) Comparing now the Ihs of Eqg. (3.20) and the Ihs of Eq. (3.16), we see that
they would be equal to each other if their rhs coincided. This would take place only if the
following conditions were fulfilled:

(@) i1=ir=i, (b) wl(iwl);) _ ()») +w()») — 2w l()»).

Indeed, if (a) is fulfilled, Eq. (3.20) becomes
(M) (x) 4 (m
. 1_22 [7; : (3.21)

while Eq. (3.16) becomes
4884 =4 [FP . (3.22)

i1=ipx=i

The Ihs of Egs. (3.21) and (3.22) would be equal to each other if their rhs were equal, i.e.,
if
23 [FIT 0~ 20) =0 3239

Equation (3.23), with arbitrary ", takes place only it’*) = 20, i.e., if condition
(b) holds. If only (a) is fulfilled, we can estimate the shﬁtoff” of the two-phonon
energwal.“) from 2(1)} from the differenceASi“) between the EWS of the double-phonon
strengths and&{*)s(()*)

(A2 _ () 1) o) )74 A, (A1)
ASYY = 81| 48Vs§ =2Z[;ﬁ. 1" A0, (3.24)

i=ip=i
Equation (3.24) shows that a small energy shié* in the two-phonon energy'’* as
compared to af ) is sufficient to cause a large difference in the EWS of the two-phonon
strengths compared tos#’ S\ because of the sum with the multiplie/s” in front

of AwM". This means that a small anharmonicity in the DGDR energy leads to the big
difference in its EWS of strengths compared to the harmonic limit. It is worth noticing
that the derivation discussed above is applied for any multipolariby particular, for the
dipole case. = 1, it does not depend on whether the DGDR is formed in a one- or two-step
process.
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We have shown how the relationship (3.2) should be replaced with the new relation-
ship (3.10) because the condition (3.3) required for (3.2) does not hold for the PDM Hamil-
tonian. We have also shown that the deviation from the relationship (3.2) is ultimately
related to the shift of the two-phonon energy from its value obtained within the harmonic
limit, which is equal to the sum of the energies of two single phonon excitations. In the next
section, we will demonstrate that, by removing the energy shift so that the DGDR energy
is equal to twice the GDR energy, i.e., its value in the harmonic limit, one can restore the
relationship (3.2). An evaluation of the energy slzﬁtbf?’\) (3.24) is given in Appendix B
making use of a general model Hamiltonian with two-body force. Of course, this does
not exclude a possibility that anharmonicity, local terms in the Hamiltonian, etc., acting
together may eventually lead to the zero value of the commug&taP], and therefore,
to the relationship (3.2). In order to demonstrate this, at least numerically, the consistent
inclusion of ground-state correlations, anharmonicities of the one phonon state and correc-
tions to the transition operator, and other effects, which are left out in this work should be
explicitly taken into account. The anharmonicity in the energy and the transition strength
of two-phonon giant resonances have also been studied in detail by several authors within
different models in recent papers [29-31].

4. Numerical results

In this section we present the results of the calculations of the energy, FWHM, strength
function and first moment of the DGDR and TGDR¥zr, 12°Sn, and®°8Pb within the
formalism developed in Section 2. In these calculations we assume that the properties of
the GDR are known and can be well described within a microscopic model such as the
QPM [14]. Therefore, in order to maintain the simplicity and transparency, we employ
the same scenario, which has been successfully used to describe the damping of the hot
GDR within the PDM-1 [20]. According to this scenario, the GDR is generated by a single
collective and structureless phonon with eneigythat is close to the energyspr of the
ground-state GDR and exhausts all the oscillator strength.

As has been pointed out in Section 3, the PDM conserves the TKR sum rule for the GDR
in average since0| [V, D]10) is zero (Eq. (3.7)). In this case, the EV@’“ and NEWS
S(()”) are just proportional to the momeng’) andmg”) (2.21), respectively, with a factor
N™ = N" whereN is the strength normalization factor for the dipole case. The value of
the latter is 84.4 mb fof%Zr, 136.9 mb for'2%Sn, and 262.8 mb fot°%Pb. Multiplying
these values by those m‘(ll) from Table 3 of Ref. [12], one easily obtains the absolute
values of the EWSS\" as 1334.36 mbMeV fo?%zr, 1870.05 mb MeV fort2°Sn, and
3221.93 mb MeV foP%8pPb. The ratios between these values and the corresponding TRK
sum rules values 60VZ/A (mbMeV) are 1, 1.07, and 1.08, respectively. They are in
good agreement with the experimental values of the averaged integrated cross section,
which are equal to 1.05%: 0.07 TRK sum rule units for average upper integration limit
Ey = 282 MeV [32]. With the integration extended to higher energy, the experimental
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integrated cross sections may reach the values of 1.4 times the TRK sum rule due to the
contribution of exchange forces.

The absolute values of the EWS and NEWS strengths for the DGDR can also be obtained
in the same way, multiplying respectiveby(lz) andm(()z) in Table 3 of Ref. [12] byN2.
It should be noticed, however, that when- 1, as in the case of DGDR (e.@.= 2) the
absolute values of the EWS of strengths of the DGDR cannot be compared directly with the
experimental integrated cross-sectmnextracted from the Coulomb excitations because
the latter is related to the DGDR photoabsorption cross seatiéh as

oc= /N(E)o(E)dE. (4.1)
Emin

The function ' (E) is the photon spectral function which, according to the Weiséker—
Williams method, appears after the integration of the spectrum of virtual ptidtdh b)

over the impact parametér Since in the present work we are interested in the anharmonic
effects in the strength functions of the multiphonon resonances compared to the values
obtained within the independent phonon pictures, we prefer to consider the relative
differences rather than the absolute values to avoid complication related to reaction
mechanisms. Therefore, we are going to check in the present section the relationship

n? — G (4.2)

which is equivalent to (3.2), based on the discussion above.

We use the realistic single-particle energies obtained in the Woods—Saxon potentials
at T = 0 for the nuclei under consideration. These discrete spectra cover an energy
interval from around-35 to 25 MeV, i.e., including the continuum region. In the PDM-1
reasonable agreement between theory and data has been achieved via coupling of GDR
phonon to allph, pp, andhh configurations [19,20]. The phonon energy and the

matrix elements of the coupling tek and pp or hh F;(a(;t) = F1 for (s,s") = (p,h), and

F,(,‘,’,) = F,EZ) = Fy for (s,s") = (p, p) or (h, h') are introduced as parameters of the model.
Even though the higher-order graphs were not included explicitly in the equations within
the PDM-1, this procedure implies that their effects are incorporated effectively in the
parameterg; and F>. The PDM-2, which includes these coupling explicitly up to two-
phonon terms [21], gives the similar results for the hot GDR. The eneggand the
temperature-independent paramet@rand F> for the couplings have been chosen so that
the experimental width and energy of the GDR'at 0 are reproduced, and that the GDR
energy does not vary appreciably whErthanges (see the details in Ref. [20]). The same
parameters, andF; are used for the calculations of the DGDR and TGDR in the present
paper. The experimental values for the GDR energy reproduced by these parameters are
Ecpr= 16.8 MeV for 29Zr, 15.4 MeV for12%Sn, and 13.5 MeV fof%®Pb. The calculated

2A systematic study of the cross sectians using the PDM strength functions for the DGDRY#Xe and
208ppy is now being carried out. The results will be compared directly with the experimental data and will be
reported in a subsequent publication [33].
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values of the GDR FWHM arégpr = 4.2 MeV for9zr, 4.9 MeV for29Sn, and 4.0 MeV
for 298P, which are the same as the empirical values. The paratfigtemot needed at
zero-temperature.

For open-shell nuclei at nonzero temperature, superfluid pairing contributes at
T <1 MeV because the pairing gap decrease® @screases up to a critical temperature
Ter where the gap vanishes as in the finite-temperature BCS or remains small if thermal
fluctuations due to nuclear finiteness are taken into account. Since the increase of the GDR
width at low temperatures is caused by the coupling of the GDR phongm &mdii con-
figuration [20], the decrease of the paring gap, which is also dwe tandii interaction
near the Fermi surface, slows down the increase of the hot GDR width&f;,. The GDR
strength functions if2%Sn obtained within the PDM-1 & = 0.1, 0.4, and 0.6 MeV are
shown in Fig. 1. The dashed curves have been obtained including a temperature-dependent
neutron pairing gap\ (7)) with A(0) = 1.4 MeV within the approximation mentioned in

1.5 T T T T T

() T=0.1MeV 7 1205

05

S(E) (MeV'x107Y)

1.0 -

S(E) (MeV'x107)

(©)T=06MeV /| 120gp
10} Al .

‘
‘
\
\
05 | \ -
/
/

S(E) (MeV'x107h)

0 1 1 1 N 1
0 5 10 15 20 25 30
E (MeV)

Fig. 1. Strength function of the GDR if20Sn obtained in PDM-1 at several temperatures
T < 0.8 MeV. The dashed curves are results when superfluid pairing is included, while solid curves
are those obtained neglecting the pairing.
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Ref. [34]. It is seen from this figure that the effect of pairing starts to show up clearly
only at temperatures close Tg; ~ 0.8 MeV. At T = 0.6 MeV (A(T) ~ 0.9 MeV) e.g., the
GDR width becomes slightly smaller than the value obtained neglecting pairing (Fig. 1(c)).
At very low temperatures, e.dl; = 0.1 MeV, the strength functions calculated with and
without pairing look almost the same, except for some slight difference around 10 MeV
and at the GDR peak (Fig. 1(a)). When the average shape of the hot GDR was generated in
the CASCADE calculations [34], the contribution of small changes in the strength func-
tion due to pairing at each temperature enters coherently in the sumrfrem.2 MeV
downtoT = 0.1 MeV. This leads to a better agreement between the PDM prediction and
the data, especially arounl = 10 MeV. However, for the ground-state GDR & 0)
considered in the present work, the effect can be safely omitted by the reason discussed
above (Fig. 1(a)). Moreover, we compare here the DGDR and TGDR calculated within the
present model with the results obtained in the folding model. As we employ for the calcula-
tions in both models the same ground-state GDR obtained within the PDM-1, the inclusion
or omission of pairing should not modify substantially the relative difference between the
results obtained in these two models for the open-shell nuclei.

The energy-weighted (EW) strength functio$i€) x E for the DGDR in®9Zr, 1205n,
and 2%8pb calculated using Eq. (2.20) far= 2 are shown in Fig. 2. The left panels
(Fig. 2(a)—(c)) are the results obtained using a smearing paramet€5 MeV in the
s-function, while a value = 0.05 MeV has been used for the results displayed on the right
panels (Fig. 2(d)—(f)). We will call these results “results with anharmonicity” to distinguish
with the “folding results” obtained by folding the strength functions of two independent
GDRs [6,35]. The latter have been calculated in PDM-1, i.e., based on Egs. (2.16)—(2.20)
with n = 1. The folding results are shown as dashed curves on the left panels. From
the dense fine structure of the strength functions on the right panels, it is seen that the
damping of the DGDR due to coupling to incoherent nucleon pairs is really complex.
The gross structure of the DGDR obtained with the lakgen the left panels, however,
is very close to a single Breit—-Wigner shape. The largest difference between the results
with anharmonicity and the folding results of the DGDR is seetffi$n (Fig. 2(b)). The
magnitude of the DGDR peak is about two times larger that the folding result, i.e., about
the same order of the difference reported for the DGDR3fiXe [1,4,8]. In2%8Pp the
DGDR looks quite harmonic as this difference is rather small.

Since the interaction between phonon and nucleon pairs is put to be theFsaime
all levels, the difference between the DGDRs in open-shell and closed-shell nuclei can
be understood based on the properties of their single-particle spectra alone. In the double
magic nucleug$%8pPb the Fermi surface lies just between two shells with a gap between
shells of about 3—4 MeV. Thefilog excitation, which corresponds to the GDR, can be
generated by a group of 5-6 single-particle levels just below the Fermi surface to a group
of 67 levels of the next shell situated just above the Fermi surface. The GB¥Ah,
therefore, is very collective with a FWHM of about 4 MeV. In the open-shell nuclei the
distant between the occupied and unoccupied levels that belong to neighbor shells from
two sides of the Fermi surface is about 2 MeV betwepf,2and Igg/2 proton levels in
907y, and particularly small (less than 1 MeV) between,3 and 23, neutron levels in
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Fig. 2. EW strength functionSg,(E) x E) of the DGDR. The solid curves are results with
anharmonicity. The dashed curves corresponds to the results obtained by folding the strength
functions of two independent GDRs within PDM-1. Results in panels (a)—(c) have been obtained
using the smearing parametee= 0.5 MeV, while the value = 0.05 MeV was used to calculate
those in (d)—(f).

1205, In%9zr there are only four occupied levels in the shell just below the Fermi surface,
while in 129Sn this number is only three. The strength s} transition is also shared to
1g9/2 level in°9Zr, and to 23/, and Jh11/2 in 12°Sn, while going across them to reach the
next shell above above the Fermi surface. As a result the GOR8n is less collective
with the largest FWHM of 4.9 MeV. This is the reason why the effect of anharmonicity is
expected to be strongestif’Sn and weakest if*®Pb. In Ref. [12] it has been also found
that the harmonicity in the DGDR seems to be restored in all three nuclei at temperature
T > 1.5 MeV. This is another evident in favor of the analysis discussed above since shell
effects and other quantal effects disappear starting from around this value of temperature.
The calculated DGDR centroid ener@y,cpr = E2 and the energy of the DGDR peak
E» are listed in Table 1. The values show that the difference between the results with
anharmonicity and the folding results is quite small (around 1-2%). The ratio between the
energy of the DGDR peak, and twice the GDR energyE varies from 0.96 irf%Zr to
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Table 1
Centroid energieg» and the energy» of the main peak of DGDR in comparison with the folding
resultE>(f) and twice the GDR energyE? . The values of energy are in MeV

Ep Ep E>(f) E2/Ea(f) E2/(2E1) Ey/(2E7)
90zy 32.2 32.2 32.6 0.99 0.96 0.96
1205 30.8 30.0 305 1.01 0.97 1.00
208py, 27.6 28.2 27.5 1.00 1.04 1.02

Table 2
FWHM I» of the DGDR in comparison with the folding resufy( f) and twice the DGDR width
2I1. The values of width are in MeV

I I2(f) I/ (f) Io/(2I7)
90zy 6.49 8.3 0.78 0.77
1205 6.05 9.4 0.64 0.62
208py, 7.95 6.4 1.24 0.99

Table 3
MomentSm(lz) (EWS) of the DGDR in comparison with the folding resuh%z)(f) and the product

4m(11)m(()1) of the EWS and NEWS of GDR. The moments have been calculated witkim Q<
80 MeV

m? mP(f) am P m? im P (f)
90z¢ 57.69 59.14 59.45 0.98
1205 58.37 45.46 45,51 1.284
208py, 47.57 41.88 41.27 1.136

1.04 in?%8pPb. The energy shifhw = E» — 2E; is —1.4, 0.3, and 1.2 MeV fot°Zr, 1205n
and2%8pp, respectively.

The calculated values of the DGDR FWHNpgpr are shown in Table 2. The results
with anharmonicity/» are smaller than the folding resulfs(f) by around 22% ir?9Zr,
and 36% in2%Sn. In2%8pPb, on the contrary, the width obtained with anharmonicity is
larger by 24% than the folding result in reasonable agreement with the data [2,8]. It is also
interesting to notice that the folding results give the FWHM that is quite closéttspr
in 29Zr and129Sn, but not in?%8Pb where it is almost equal tol2pr (indicated in the
Table 2 as 7).

The values of the momer‘vts,((”) (k=0,1andn = 1, 2) obtained in the calculations with
anharmonicity and by folding two independent GDRs are presented in Table 3. Comparing
the folding results fom(lz) (i.e.,m(lz)(f) in the third column) with the values omfll)mél)
in the fourth column, it is seen that the relationship (4.2) holds reasonably well with the
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folding results. However, it is violated when the results with anharmonicity in the second
column Qn(lz)) are compared Withrﬁ(ll)m(()l). The violation is strongest for the DGDR in
1205n, where the EWS of the DGDR strengths with anharmonicity is larger than the folding
result by almost 30%. IA°8Pb the result with anharmonicity is larger than the folding result
by 13.6%, while in®°Zr it is smaller by 2%.

In Appendix B we have shown that the origin of the deviation from the harmonic limit of
the DGDR lies in a four-boson term of the boson expansion of the PDM Hamiltonian (2.1)
as well as of any Hamiltonian with two body interaction. In order to illustrate this
numerically, we show here that by introducing artificially a four-boson term that removes
the energy shifAw, we can restore the relationship (4.2) in open shell nuclei. Indeed, the
inclusion of a term of type (B.13) leads to the shift in the pole of Eq. (2.19). For the DGDR
(n = 2) this ultimately causes some additional siitb, of the parametesw, . Therefore,
varying the parametep, would be somewhat equivalent to this effect. Shown in Fig. 3
and Table 4 are the results for the DGDR#Sn obtained using two parameterg =
11.2 MeV andw,, = 13.0 MeV in the equations for DGDR (see Egs. (2.13)—(2.17) of
Ref. [12]) instead of one paramete; = 17 MeV to cancel artificially the energy shift of
the DGDR centroid energy. The results obtained are quite close to the folding ones and,
therefore, the relationship (4.2) are satisfactorily reproduced. We notice, however, that the

6 . . . , ;
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Fig. 3. EW strength function of the DGDR #£9Sn. The solid curve has been obtained using new
parameterso,, andwy, instead ofw, to cancel the shift of the DGDR centroid energy (see text).
The dashed curve is the same as in Fig. 2(b).

Table 4

Momentr%(lz) (EWS), energyE, and FHWM/ of DGDR in129Sn obtained using parametesg,
andwy, instead ofw, to cancel artificially the shift of the centroid energy (see text). The values
are compared with the folding results indicated(5%). The moments have been calculated within
0< 0 < 80 MeV

EWS FWHM Energy
w2 w2 mP ) I Bo/ra(f) E, Eo/Ea(f)

1205, 48.46 1.07 10.2 1.09 30.5 1.00
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good description of the GDR (using,; ) no longer holds using these new parameters.

The EW strength functions of the TGDR #9Zr, 12Sn, and?%8Pb calculated with
anharmonicity are presented in Fig. 4 (solid curves) in comparison with the folding results
(dashed curves). The results for the FWHM, energy, and the EWS are shown in Table 5.
We can see that the values of the EWS and energy obtained with anharmonicity are very

20 T T T L) T T T T T T T T T T T T T T
90 : 40 90. 7
15 L (@ “Zr . triple GDR | (a) *zr triple GDR
w w 30
X 10r 1 =
w o 20r
7] 7]
5t 1 10 F
0 N, 0 R
15 — T T e e e SR B s e
120 ; 40r 120 ]
(b) “"Sn triple GDR (b) *°sn triple GDR
w 10F 1 w 30Ff 1
X X
) T 20f
(] 5F 4 %]
10
o (RS U o LV W RN T B =t | 0 1eenabenditied.
20 — T T T T T — T T T T
i 40 208, |
15k triple GDR | (©) ®Pb triple GDR
w w 30
= 10 1 =
w o 2r
%) 7]
5 T 10 |
0 '} 1 o 1 bine,
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
E (MeV) E (MeV)
Fig. 4. EW strength function of the TGDR. The notation is the same as in Fig. 2.
Table 5

First momentm(l3), FWHM (in MeV) and energy (in MeV) of TGDR. The moments have been
calculated within 0< w < 100 MeV

EWS FWHM Energy

@ @ B, 3 . ) — — -
Nucleus my(f) my” /my7(f)  I's I3(f) I3/I3(f) I3/(Br'y) Ez  E3(f) E3/E3(f) E3/(3E1)
90z 23715 253.24 094 157 135 1.16 125 524 495 1.06 1.04
1205 231.07 229.68 1.01 202 165 1.22 137 512 480 1.07 1.11

208ph  210.18 189.09 111 9.6 10.0 0.96 0.80 422 42.0 1.01 1.04
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Fig. 5. Comparison of quantities for the DGDR and TGDR with thoseX(;) obtained by folding

independent GDRs. Diamonds denote result®ir; crosses, results i0Sn; squares, results in
208pp,

close to the folding results. Similarly to the DGDR, the TGDR in the double magic nucleus
208pp js found to be very harmonic. The main peaks of the TGDR with anharmonicity are
located at slightly higher energies than the folding results. However, their shapes are more
symmetric as compared to the folding results. Therefore the resulting centroid energies are
nearly the same as given by the folding results, i.&3.3rom Fig. 4 it is also seen that

the TGDR peak in open shell nuclei splits slightly. This leads to a FWHM that is larger
than the prediction of the folding resultg’8by 25% in®%Zr, and by 37% in2°Sn. On the
contrary, the TGDR width ig%Pb is smaller than B; by 20%.

A systematic comparison between the results with anharmonicity and the folding results
for the DGDR and TGDR in all three nuclei is displayed in Fig. 5 as the r&ji& ¢
where X = E,, I, and S\’ with » = 2 (DGDR) and 3 (TGDR) and the subscrift
denoting the folding results. From this systematic we can predict that the TGDR looks
more harmonic than the DGDR. The experimental data for the triple resonances are not
yet available at present. Therefore, the measurements of triple giant resonances like those
under consideration at GANIL are highly desirable to test the capability of the present
model.

5. Conclusions

In this work we have extended the Phonon Damping Model (PDM) to the description of
multiphonon giant resonances. The equations for the damping of the three-phonon and
n-phonon giant resonances have been derived using the double-time Green’s function
method. The numerical calculations have been carried out for the first time for TGDR in
907r,1205n, and?98pPh. The results for DGDR and TGDR are compared with the prediction
by folding independent GDRs. We have also performed a detailed study of the sum rule



N. Dinh Dang et al. / Nuclear Physics A 675 (2000) 531-558 553

relationship (3.2) between the EWS of the DGDR strengths and four times of the product
of the EWS and NEWS of GDR strengths.

The analysis of the results obtained allows us to make the following conclusions.

() Relationship (3.2) is violated if there is a nonzero shift of the DGDR energy from
twice the GDR energy due to anharmonicities. A small anharmonicity in the DGDR
energy can lead to a large deviation of the EWS of the DGDR strengths from the
results within the independent-phonon picture. A new sum rule relationship (3.10)
is derived within the PDM.

(i) Itis observed, for the first time in the calculated strength functions, that there is a
noticeable difference between the DGDRs in open-shell and double-magic nuclei.
In (neutron) open-shell nuclei, such #9Sn, the difference between the results
with anharmonicity and the folding results is dramatic with the EWS of the DGDR
strengths exceeding the harmonic prediction by nearly 30%. The magnitude of the
resonance peak is about two times larger than the one obtained in the folding model.
In the double magic nucled#8®Pb the DGDR is rather harmonic. This observation
is in agreement with the experimental trend for the DGDRfiXe and?°8Pb.

(iii) The TGDR is more harmonic than the DGDR in all three nuclei. The TGDR energy

is well described by Bgpr. The TGDR width, however, is larger thad'@pr by
25-40% in open shell nuclei. B8Pb it is smaller than Bgpr by around 20%.

The present work has been dedicated solely to the study of the anharmonicity in the
multiphonon resonances. We have not yet performed the calculations of the cross section
in the Coulomb excitation of the DGDR, which has been observed experimentally to be
enhanced strongly compared to the prediction by the folding results. There is a number of
other factors that are left out in this study and that may also contribute to this enhancement
such as the charge-exchange part in the residual interaction, the effects of higher-order
configuration mixing, the nonlinearity of the external electromagnetic field, etc. It is also
true that, while the two components of the DGDR with the total momentirs: 0+ and
2T are degenerate [16], the explicit introduction of the angular momentum coupling as
well as isospin may also contribute fefphonon resonances with> 2. At the same time,
further experimental measurements are also required to reduce the large error bars in the
present data as well as to establish a systematic dependence of the cross section on the
thickness of the targets. Nonetheless, the results in the present work has definitely shown
that anharmonicity plays a significant role in the deviation of the DGDR from the harmonic
picture especially in the open shell nuclei.
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Appendix A. Contribution of the single-particle damping

As has been discussed thoroughly within the PDM-1 [20], we consider here only the part
of the single-particle damping that is caused by the mutual coupling to the phonon field.
The interparticle interactions, etc., may also contribute to increase the total single-particle
width, but they do not affect the damping of the collective phonon because there is no
direct coupling between them and the phonon field or the coupling enters in higher-order
in the boson expansion. In this appendix we will show that the contribution of the Green’s
function

s an zatq @ =1 =@ (D ()04, (1) .. 0, (0 Q) (7). Q4 (1)),
n>2, (A.1)

to the damping of the multiple GDR is negligible. Below we present in brief the derivation
of the equation for the Green'’s function (A.1) with= 2 and make the generalization to
an arbitraryz. Following the standard procedure of Ref. [24] we foundfes 2:

(2
ng 19145 (- ) (Es — ES)gw 191495 (r— )
+ Y[l an(2) 0 + 0,0); 0], a0}, 1)

qs1
— Fyffal,(0ay (] (1) + 0y (10): 01, 10} )] (A2)
The Fourier transform of Eq. (A.2) in the energy plahgields

@ _ 1 @ @)
9y, 9143 (E)= E—Eg+E; qu[F? 1 9ssq:q505 E) = Fsis Gsisqiqigs (B)]. (A3

In the spirit of the perturbation theory, the lhs of Eq. (A.3) can be estimated by replacing
functions g . (E) in the rhs with their expressions obtained in Ref. [12] where

SaSpq3d1d7
functlong( Vgl ,(E) was omitted. The result is

G = g 3|t

Ys‘/q’q’ E E,+E P E_ES1+ES_wq1

(ns1 —ng )Fy(fyl) Fy(qgi)

_ G /E A.4

For the DGDR, Eq. (A.4) has a simple form as

2 2
G\ gq (E) = Gyq (E)ASIN(E), (A.5)
where the correction factor to the DGDR strength is
@ 1
AS(E)=————
w B =TT T E,

(@) (!1)[ Ny — Ny ng, —ny ]
x Y FF, . (A6
” S E B 4+ Eg—w, E—Eg+Ey —ay, (A-6)
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After an average over all the single-particle levels, this factor yields an overall correction

to the EWS in the form

>822 [ASj/(w)dw
Q- 2))? ’

The similar derivation can be done for= 3, etc. The general expression of the correction

due to the function (A.1) ta-phonon resonance is

1 ng —n
(n) _ @) -(q) s 51
AS E F ' F [
T E-— Eg+E;—(n— 2)a)q " s'sp 1918 | E, + Es — (1 — Do,

AS@ =

Q;=2j+1. (A7)

Ng, — Ny
E—-Ey+Ey —(n— Doy, ] (A-8)

The numerical estimation ok S for DGDR (z = 2) and TGDR £=3) has been carried

out for all three nuclei. If2°Sn, where the enhancement compared to the folding results of

the DGDR is the largesty S reduces the EWS by less than 0.03%. A similar result has

been obtained for TDGDR. We conclude that the contribution of the terms of type (A.1)

can be safely omitted.

Appendix B. Derivation of the shift of the DGDR energy due to anharmonicity

In this appendix we derive the shift due to anharmonicity of the two-phonon energy from
the sum of two one-phonon energies. If the two-phonon state (3.17) are the eigenstates of

the HamiltonianH with the eigenenergapmm, we have the equation

i1ip
H |l()»1) ()nz)) a)l(l)nllz)»z) |l()~1) ()»2)> (B.1)
The Ihs of (B.1) can be calculated using the explicit form|zr§1‘1) “2) in the rhs of
Eq. (3.17) assuming that the one-phonon s@igo is also an e|genstate @f with the
eigenenergybf”. The ground state (phonon vacuuid) is equal to|RPA) if the structure
of the one-phonon states are determined within the RPA. A simple calculation yields for
the Ihs of (B.1):
H |i¥”1)i¥"2)>= (w(kl) + (kz)) |l()~1) ()»2)>

i1

N
+ ——————[IH, 01", 0,,]10). (B.2)
/75)»1)»251'11'2 1 [ 1 Az]
Equalizing the rhs of (B.2) and the rhs of (B.1), we obtain:
(A142) (A)(k) (A142) (1) (A2\11; A0 :(A2)
Aoy iz ?) = [ = (0 + o) linViz ?)
1

= ol 0.,1". 0] ]10). (B.3)
1A2%1112

Acting (i{"?i$?| on the left of the Ihs and rhs of Eq. (B.3), we come to

A1) _ 1

t T
iy | W(OI Qiir Q11 [[H, Q5. 1, 0;,]10). (B.4)
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In the case of two identical phonohs = A2 = A, i1 =i2 =1, EqQ. (B.4) yields:
Awi? =101 05 Qx[[H. 0];1. 0},]10). (B.5)

which is not zero with a Hamiltonian containing a two-body interaction as we shall see
below.

Without a loss of generality, let us consider a model Hamiltonian with a separable two-
body force:

;
Hy=Y EBL+Hy, Hy= Y fufu B} Biysre (B.6)

$ 51875255

WhereB;rs, =alay (ss’" = ph, pp’, hi'). The interaction partly can be represented as the
sum of

Hy = thph + (thpp + hC) + (thhh + hC) + prpp + Hpnhn,s (B7)

where the subscripts in the rhs indicate the summations carried(enet, s2, s5) =
(phph)—, (phpp)—, (phhh)—, (pppp)—, and(hhhh)— indices, respectively. Expressing
Hpppi in terms of RPA phonon operato’ and Q using Eq. (3.12), it is simple to show
that the expectation value at the rhs of Eq. (B.5) yields zero with respétjitg,. The pp

(hh) pair operatorsB,,, (Byy) in the other terms at the rhs of (B7) can also be expressed
in terms of the RPA phonons using the boson mapping [36]:

t t t t
B,,— Y ByByn, By, — 0w —Y BBy (B.8)
h p

Applying the mapping (B.8), it is easy to see that the tefips,, and H,, at the rhs of
(B.7) also yield zero in the expectation value at the rhs of Eq. (B.5) because they contains
odd number of phonon operators of typeD 7070, 0700, 0T0TOT andQ Q. Those
are the terms that lead to the spreading width of the single-phonon giant resonance due to
two-phonon or three-phonon configuration mixing. This result shows that the part causing
the major spreading of the GDR does not contribute to the shift of the DGDR energy in
Eq. (B.5).

The last two termgd,,,,, and Hy,,,;, at the rhs of Eq. (B.7) are those whose contribution
to the rhs of (B.5) gives a nonzero value. Applying the mapping (B.8) in combination with
the definition (3.12), we obtain, after a simple derivation, the remaining pafs,f, and
Hunnn, Whose expectation values in the RPA ground-state are not zero. They are:

1 .
HI/JPPP = VV(133V2V4 QIl QIa 01, Qvys vj = (Ajij), where (B.9)
Vv1v2V3V04
@ _ (V1) y(v2) 3 (v3) 3/ (v4) (v2) (1) v/ (v4) v/ (v3)
VU1V3U2U4 - Z f plp’lf p2ry (X pih X pih X phh X p2h +7Y p1h Y pih Yp’2h szh
p1pLp2pshh
(V1) 3, (v3) v, (V2) y-(va) (va) 3 (v2) 3 (V3) v, (V1)
+ XI’lh Yp’lh Yp’2h szh + YPlh Xp’lh Xp’zh szh )’ (B.10)

2
Hyypp = Z Vl)(1133u2u4QIJ_QI3QI)2QI}4a where (B.11)

Vv1Vv2V3Vv4
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(2) _ , (v1) v (12) 3 (v3) - (v4) (v2)y, (V1) v, (v4) 1, (V3)
Vvll)3vzv4 - Z fhlh;lfhth(X])hélXpthp’hZXp’h’z + th& YPhl YP/hZYp’h/z

hlhihgh/zpp’

(1) v (13) 1, (v2) 3/ (va) (va) 3 (12) 3 (v3) v, (V1)
+ XY GOV IR X0 4y OOX X YOy, (B.12)

Therefore, the part of the Hamiltonian that yields nonzero expectation value for the rhs
of (B.5) is

t ot 1 2
H/ = Z VV1V2V3V4 Qvl Ql)3 sz QV47 Vvlvgvgm = VV(132V3,)4 + Vl)(1132U3V4' (513)

Vv1v2V3Vv4

Using Egs. (B.5) and (B.13) we obtain for the energy shift:

1
(A1A2)
Aw; i7" = —————(Vi221+ Viz212+ V2121 + V2112, B.14
e = 5o ? (8.14)
whereVi221= Vi riz. roin,1ai1 €IC. If the phonons are identicadl & i> =i, A1 = A2 =
A) the shift of two-phonon energy from twice the one-phonon energy is

Aa)?i)lf) =2Viininini- (B.15)

As has been mentioned at the end of Section 2, a nucleomzlmircan be expressed in
term of an infinite boson expansion series of Belyaev—Zelevinsky type [25]. Therefore, the
last term of the Hamiltonian (2.1) contains also the four-boson terms of type (B.13), which
causes the energy shift.
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