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Abstract 

A systematic description of the evolution of the giant dipole resonance (GDR) at non-zero 
temperature T is given within the framework of two versions PDM-1 and PDM-2 of the Phonon 
Damping Model (PDM). The PDM interprets the damping of the GDR as a result of coupling 
to all ph, pp and hh configurations at T ~ 0, where the coupling to pp and hh configurations 
is decisively important for an adequate description of the increase and saturation of the GDR 
width as a function of T. The numerical calculations have been performed for the GDR width, 
the strength function and the integrated yield of the y rays in 12°Sn and 2°spb at 0 ~< T ~< 6 MeV. 
The results obtained are found in a reasonable agreement with the most recent experimental data 
for all these three characteristics including the saturation of the yields within the GDR region and 
in the region above it. Predictions have been made for the GDR shape in both nuclei at T up to 
6 MeV and for the integrated yield of y rays in 2°8pb. (~) 1999 Elsevier Science B.V. 

PACS: 21.10.Pc; 24.10.Pa; 24.30.Cz; 24.60.-k; 25.70.Gh 
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1. Introduct ion 

The giant  dipole resonance ( G D R )  buil t  on compound  states of  highly excited nuclei  

(hot  G D R )  has been studied since the 1980s mostly using heavy-ion fusion reactions 

(see Ref. [ 1 ] for reviews) .  A broadening  of  the GDR  width with increasing excitat ion 

energy E* up to E* ~ 130 MeV in tin isotopes has been observed [ 2 - 6 ] .  At higher E* 

a saturation of  the G D R  width has been reported [7,8] .  Besides the width saturation the 
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heavy-ion fusion measurements also showed that the integrated yield of the ),-rays from 
the decay of the hot GDR in tin isotopes seemed to saturate at E* /> 350 MeV in the 
GDR region within 12 MeV ~< Er ~< 20 MeV [9,10] and in the region above 20 MeV 
(20 MeV~< E~ ~< 35 MeV) [10]. 

Considerable attention was paid to the effects of angular momentum J and temperature 
T on the evolution of the hot GDR. By gating on the ),-ray multiplicity in fusion- 
evaporation reactions one could select the angular momentum J and study its effects on 
the GDR at a given temperature T [4,5]. Existing data and calculations showed that the 
angular momentum effects seemed to be unimportant at least for spins J ~< 36 h and 
mass number A >~ 120 [5,7,11]. 

Recently a new method employing small-angle light-ion scattering to excite the nu- 
cleus has been proposed to study the evolution of the GDR as a function of temperature 
T independently of angular momentum effects [ 12,13]. Detailed systematics of the tem- 
perature dependence of both the width [ 12,13 ] and shape [ 13 ] of the GDR have been 
extracted with rather small errors in the temperature intervals 0~< T ~< 3.12 MeV for 
12°Sn and 0~< T ~< 2.05 MeV for 2°spb. In particular, Ref. [ 13] has shown that the 

GDR widths measured in inelastic a-scattering experiments and in fusion reactions do 
not differ much in their evolution with T while the angular momentum is about 10 to 20 
h lower in case of the inelastic scattering data. This is a clear indication that the effect 
of spin on the hot GDR in tin isotopes is not significant. 

These experimental systematics opened new challenges facing the theoretical study of 
the hot GDR. In fact in the present situation an adequate approach to the damping of 
the hot GDR must give a consistent description of three following issues: 

(i) the width increase and its saturation of the GDR as a function of T; 
(ii) the observed shape evolution of the GDR at various temperatures; 

(iii) the saturation of the integrated yield of y rays at E* > 300 MeV in the GDR 
region and in the region above it. 

Among the most intensive theoretical studies devoted to the damping of the hot 
GDR in recent years we refer two models, which have been proposed by the Milan 
group [ 14,15] and Catania group [16-18], respectively. Their predictions have been 
frequently quoted by several experimental groups and compared with the data. The 
Milan model in Ref. [15] interprets the GDR broadening (issue ( i))  via adiabatic 
coupling of the collective vibration to nuclear shape fluctuations. It describes well the 
width increase in both nuclei 12°Sn and 2°spb at T ~< 3 MeV. The Catania model is based 
on the interplay between one-body Landau damping and two-body collisional damping 
of nucleons within the linearized Landau-Vlasov theory. It describes satisfactorily the 
width increase in 2°spb but underestimates the width in 12°Sn by ,-~ 20-30% within the 
same temperature region [13]. In the region T > 3 MeV where the observed width 
saturates these models give different trends for the GDR width. The Milan model in 
Ref. [ 14] interprets the width saturation as a consequence of the limitation of the 
maximum spin which a compound nucleus could reach. The Catania model gives a 
continuously increasing width, which becomes larger than 20 MeV at T > 3-4 MeV. 
With such a large width the existence of the GDR itself is questionable. The result of 
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the Catania model is in favor of the disappearance of the GDR at high T. As a matter 
of fact, in order to fit their data on the saturation of the y-ray yield in the GDR region 

in tin isotopes (issue (iii)) the authors of Ref. [9] have also introduced a width in the 

multistep CASCADE calculations, which increases sharply with increasing T. From this 
parametrization it has been concluded in Ref. [9] that the GDR gradually disappears 

at high temperature. However, recent measurements by the MEDEA collaboration [ 10] 
have shown that such a large width overestimates strongly the integrated yield of the 

9' rays in the region above the GDR (20 MeV ~< Er ~< 30 MeV) within the same 
multistep CASCADE calculations. The GDR cross-sections estimated using the width 

parametrizations by the Catania model and by Ref. [9] are also strongly enhanced in 
comparison with the data [6]. It has also been shown in Ref. [ 10] that the 3' spectra 
in tin isotopes can be well described using a saturated value of 12 MeV for the GDR 

width and a cutoff of y emission from the resonance above E* ~ 250 MeV. Meanwhile 

the authors of Ref. [ 19] have pointed out recently that not only the comparison of the 
calculated full width at half maximum (FWHM) with the experimental GDR width, 

but also the complete shape of the GDR strength function should be considered (issue 
(ii)) to achieve a meaningful comparison between theory and experiment. The detailed 
analysis in Ref. [19], which includes the entire shape of the strength function, has 
shown that neither the Milan model nor the Catania model can reproduce the observed 

GDR shape. 
Recently we have proposed a microscopic model for the damping of the hot GDR 

[20], which will be referred to simply as the Phonon Damping Model (PDM) in short- 
hand hereafter. In the PDM the GDR is generated by a collective vibration (the GDR 
phonon), which is damped via coupling to all ph as well as pp and hh configurations 

appearing at T v~ 0. We have shown that the coupling to particle-particle (pp )  and 
hole-hole (hh)  configurations is decisively important for a consistent description of the 

width increase and its saturation. The application of the PDM in a systematic study 
of the hot GDR width in 9°Zr, 12°Sn, and 2°spb has shown an overall agreement with 

the data [20] in a wide temperature interval 0 ~< T ~< 6 MeV, which covered both the 
regions of the width increase and its saturation. In view of the new revised data from 
the inelastic a-scattering experiments on the width and, in particular, the shape of the 
hot GDR [ 13], we would like to report in the present paper an application of the PDM 

and of its further elaboration to a systematic description for the width and shape of 
the hot GDR in 12°Sn and 2°sPb. The analysis is carried out with the aim to test the 
capability of our model in addressing three issues mentioned above. Finally we hope 
that the present study can shed a further light on the question under debate on whether 
the GDR disappears or still persists at high T. 

The paper is organized as follows. In Section 2 the outline of the PDM is presented. In 
Section 3 the numerical results for the GDR width, its shape and the integrated yield of 
3/rays in 12°Sn and 2°8pb are presented and compared with the most recent experimental 
systematics in Ref. [ 13] and also Refs. [7-10].  Predictions for the shape of the GDR 
at higher temperatures up to T ,-~ 6 MeV are provided as references for measurements 
in future. The paper is summarized in the last section where conclusions are drawn. 



N. Dinh Dang et al . /Nuclear Physics A 645 (1999) 536-558 539 

2. Formalism 

The PDM applies the double-time Green function method [21,22] to determine the 

physical processes which the GDR phonon undergoes and to derive a closed set of 
equations for the Green functions. The final goal is to obtain an approximate equation 

for the propagation of the GDR phonon, which is damped due to the presence of a 

polarization operator containing the effects of coupling to all ss' configurations ( (s, s ') = 

(p,  h ) ,  ( p , p ' )  and (h, h ' ) ) .  The damping of the GDR is defined as the imaginary part 
of the analytic continuation of the polarization operator into the complex energy plane. 

In this section the outline of two approximation schemes of the PDM are presented 
in brief. The first one, which is referred to as PDM-1 hereafter, has been proposed and 
discussed in detail in Ref. [20]. The PDM-1 treats the effects of higher-order graphs 

such as 1 s 1 s '®phonon or/and two-phonon ones by selecting parameters of the model at 
T = 0. The second approximation scheme, which is referred to as PDM-2 hereafter, is a 

further development of our model to include explicitly all the forward-going processes 

up to two-phonon ones at T v~ 0 in the same order of the interaction strength. 

Our formalism is based on a model Hamiitonian, which is composed of three terms, 
namely 

H = ~ - ~ E s a ~ a s +  ~ - ' ~ o ) q Q t q Q q q  - ZL'(q)a'f~',(Q~,\vs, s~s  Or-Qq).  (2.1) 
s q ss'q 

The first term is the single-particle field, where a~ and as are creation and destruction 
operators of a particle or hole state with energy Es = es - eF with es being the single- 
particle energy and eF the Fermi energy. The second term is the phonon field, where Qqt 
and Qq a r e  the creation and destruction operators of a phonon with energy Wq. The last 

term describes the coupling between the first two terms with P(q) denoting the coupling 
• S S  t 

matrix elements. The indices s and s' denote particle (p ,  E l, > 0) or hole (h, Eh < 0), 
while the index q is reserved for the phonon state q = {A, i} with multipolarity A (the 
projection/x of A in the phonon index is omitted for simplicity). The sums over q run 

over a >/ l. For a more detailed discussion of this Hamiltonian we refer to our previous 

papers [20]. 

2.1. The PDM-1 

The PDM-I considers the following double-time Green functions, which describe in 
the standard notation [22]: 
( 1 ) The propagation of a free particle (or hole) : 

Gs,;.~(t - t ' )  = ( (a s , ( t ) ; a~ ( t ' ) ) } ,  

2) The propagation of a free phonon: 

(2.2) 

aq,;q( t --  t ' )  = ( (Qq,( t);  Q¢q( t ' )  } ), (2.3) 
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(3) The particle-phonon coupling in the single-particle field: 

t / F~q;.,.(t - t ') = ( (as , ( t )Qq( t ) ;a~. ( t ) ) ) ,  (2.4) 
+ 

Fs,q;s(t - t') = ((as, ( t )Q~( t ) ;a~( t ' ) ) ) ,  (2.5) 

(4) The transition between a nucleon pair and a phonon: 

G~,;q(t t') = ((a~(t)as,( t );  t ' - Qq(t ))). (2.6) 

A closed set of coupled equations for Green functions in Eqs. (2.2)-(2.6)  has been 
obtained in Ref. [20], following the standard method of double-time Green functions 
[22] applied to the Hamiltonian in Eq. (2.1). After making the Fourier transform to 
the energy plane E and eliminating functions F - ( E ) ,  F+(E)  and G(E) by expressing 
them in terms of Gs;s,(E) and Gq;q,(E), a set of two equations has been obtained for 
G.~;.e (E) and Gq;q, (E), which describe the p (h) and phonon propagations, respectively. 
For the propagation of a single p (or h) state s = s' and a single phonon state q = q' 
these equations become 

1 1 
Gs(E) = 

27r E -  Es - M s ( E ) '  
1 1 

G(PDM1) ( E )  = _ /z) (PDM 1 ) , (2.7) 
q 2rr E Wq - -  . q (E)  

where the mass operator Ms(E)  and the polarization operator Pq(PDMJ)(E) are 

, , - -  n s, q-- pq,  "~ ns, + . . . .  ! , 
. = "ss' s'.~ \ E -  Es, Wq, E -  Es,  + Wq, / 

Mr (E)  ~ ; ( q ) x  (q) ( p-q'- +- 1 

p(PDMJ) (E) ~--,r,(q)F(q ) n ~ - n s ,  (2.8) 
= /_~" ss' s's E -  Es, + Es" 

S S  t 

The dampings y~(w) of the single-particle state and y(qPDMl) (0)) of the phonon state 
are derived as the imaginary parts of the analytic continuation in the complex energy 
plane E = 0)~ie of the mass Ms (E) and polarization operators pq(r'DMl)(E), respectively 

%,(0)) = Z F ,q' E + 1 - - e s ,  - 
qt st 

+(ns, + ~'q,)6(o) - Es, + 0)q,) ], (2.9) 

y~PDM,) (0)) = cr ~ x)q) F(s,q) (ns - ns, )6(o9 - Es, + Es). (2.10) 
X S  1 

The single-particle occupation number n~ (for phonon ~,q) in Eqs. (2.8)-(2.10) has 
the form of a Fermi (Bose) distribution folded with a distribution of Breit-Wigner 
type with an 0)-dependent width 2ys(0)) (2"yq(0))) and centered at E~ = E~ + Ms(E.s) 
(goq = 0)q + P(qPDM1)(O3q)). If Ys is small, n~ can be well approximated by an exact 
Fermi distribution function with energy /~. For Vq this is not valid because yq can be 
large. 
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The main approximation of the PDM-1 consists of closing the hierarchy of the Green 
functions to Eqs. (2.2)-(2.6) based on the following decoupling approximation, which 
is originated from the approximate second quantization [21] and modified thermody- 
namically for the non-zero temperature case: 

((as~ n t n  ,. a t ~  ~q~,~q ' s / /  : ¢~qqllJqGst;s, 

ata  t (( s s] (Qq, + Qq,); Qt)) = ¢~sslnsaq,;q ' 

((as, Qq, Qt  ; a~) ) = (~qq, (1 "4- ~] q)asl;s , 

(2.11) 

((as, a~l a,,;a~)) = 6s, s, (1 - ns,)G,,;s. 

(2.12) 

This restricts the couplings in the mass operator M s ( E )  to at most 2p lh configurations if 
the phonon operator generates the collective ph excitation. The contribution of coupling 
to higher-order Green functions of "lplhOphonon" or two-phonon type which causes 
the quantal (spreading) width FQ of the ground-state (g.s.) GDR is assumed to be 
independent of T and included effectively by selecting the parameters of the model at 
T = 0. The justification of this approximation comes from the fact that the quantal 
width F a  depends weakly on T as has been shown by several numerical calculations in 
Refs. [23-25] and will be confirmed in the PDM-2 version of our model below. 

2.2. The PDM-2 

The PDM-2 includes explicitly the coupling to all forward-going processes up to 
two-phonon ones by introducing in addition to the Green functions in Eqs. (2.2)-(2.6) 
the following double-time Green functions which describe: 

(5) The transition between a l p  1 h®phonon ( lp lp ®phonon or I h 1 h®phonon) config- 
uration and a phonon: 

- - ,+  
Fss,q,;q(t - t') = ((a~ (t)as,  ( t)Oq, (t); Otq(t'))), (2.13) 

(6) The transition between two- and one-phonon configurations: 

G ~ ' + (  t - tt) = ((Qql ( t ) a q 2 ( t ) ; Q t ( t ' ) ) )  • (2.14) 

The backward-going processes described by the Green functions 

+'+ t -  = Gq,;q( t t) ( ( Q ~ , ( t ) ; Q t ( t ' ) ) ) ,  

F +'+ ss, q,;q(t  - -  t t )  = ( ( a ~  t t ( t )a s , ( t )Oq , ( t )  Otq(t '))),  
++,+ Gqtq2;q(t - t') = ((atq~ ( t ) a t 2 ( t )  ; a t  (t,))) 

are neglected because the poles of their Fourier transforms would be located at negative 
energies faraway from the GDR region. Hence, just like the Y-amplitudes in the random- 
phase approximation (RPA), they are not expected to affect noticeably the damping of 
GDR. 
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A set of coupled equations for an hierarchy of Green functions has been derived 
applying again the standard procedure described in Ref. [22]. Employing the decoupling 
scheme similar to Eqs. (2.11) and (2.12) we closed this set to the functions (2.2)- 
(2.6), (2.13) and (2.14). Making then the Fourier transform to the energy plane E 
and performing several simple manipulations to express the Fourier transforms of other 
functions in the set in terms of the Fourier transform of function (2.3) by using the 
same decoupling scheme, we end up with the final expression for the propagation of a 
single phonon (q = q') as 

1 1 
G(PDM2) (E) = - -  _CPDM2 ) . (2.15) 

q 2~ E - O)q - -  Pt) ( E )  

The explicit for of the polarization operator PDM2 Pq (E) in Eq. (2.15) is 

Fs 
q) 

PP c "I X-" S I 
" q D M 2 " E '  = ~ E -  E s, - } - E  s 

SS t S I qt 

F (q') A.4 r ' ' / -  ,~'(q') AA qq' (K'~ ~ tE~ StSI JV~SSI \ ] • SIS "* 'LSISI \~]  

x E - E s ~  + E s - w q ,  - E - E s , + E s z - W q ,  

where the vertex function .Ms.e is 

(2.16) 

Mqq'  ~ { ( 1 - - n s ' q - V q ' ) ( n s - - n s 2 ) , ; ( q ' ) p ( q )  
ss' ( E )  = E - Es2 + Es " ,'s2 " .~2s 

( n s  if- P q ' ) ( r t s  2 --  r i d )  F ( q , ) F ( q  ) 
E -  Es, + Es2 s:s s% 

F ( q ) F ( q ,  ) ~ ( q l ) F ( q l )  ] } " s ' s _  szs2_ 
, ' ,  s2_,~ + & q q ' ~ - ~ E - w q . - W q , ]  " +n,2(n.~ - ns,) E - Wq - Wq, q, (2.17) 

The phonon damping ,y(PDM2)(09)  is again defined as the analytic continuation of the 
polarization operator p(PDM2)(E) in Eq. (2.16) into the complex energy plane, namely - q  

,y(PDM2) (O9) __D(PDM2) = Ih,,~q ( w  i i e )  I. (2.18) 

The function pqPDM2(E) in Eq. (2.16) includes all l s l s ' ,  l s l s ' ® p h o n o n  ( ( s , s ' )  = 

(p, h), (p, p')  and (h, h '))  and two-phonon processes at the same second order in Fs% q). 
qq' 

In the limit of high temperature the vertex function .Mss, ( E )  in Eqs. (2.16) and (2.17) 
tends to 

1 1 E; 2 - Es F(q')F~q ) + F,s% 
Ad.q~.;'(E)lr-'°°-+~ ,. E ~ - E ~  + Es s' s2 , E - Es, + Es2 

. . . . .  q- 8qq' Z + ~ ( E , ,  Es) E - Wq - (.Oq, ql E - -  g.Oql - -  W q ,  1 ' 

(2.19) 
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which means that it decreases as O(T -1) with increasing T because of the factor T - l  

in front of two-phonon terms on the r.h.s, of Eq. (2.19). Neglecting these two-phonon 
processes would lead to a constant width at high temperature because the first two terms 
on the r.h.s, of Eq. (2.19) are independent of T provided F¢s q), Es and toq do not or 
depend weakly on T. More details on the derivation of the PDM-2 equations and their 
diagrammatic illustration in connection with the NFT [23] are given elsewhere [26]. 

2.3. GDR parameters and integrated yield of y rays 

The GDR energy toGDR is determined within the PDM at the pole r.b of G (i) ( w ) ,  i.e. 

6J -- toq -- p(qi) ( go) = 0, ( 2 . 2 0 )  

where & is real and pq¢0(&) is the real part of pq{i)(E) with P¢qO(E) being defined 

from Eq. (2.8) (i = PDMI)  or Eq. (2.16) (i = PDM2). 

The FWHM F6DR of the GDR at energy WGDR is defined as twice as much as the 
phonon damping y{qO ( w ) 

F(i)GDR = 2Y  (i) (W = &)  . (2.21) 

The shape of the GDR is described by the strength function S¢q i) (w), which is derived 

from the spectral intensity j(qO (w) in the standard way using the analytic continuation 
of the Green function G¢qO(W 4-ie) [21] and by expanding p{qO(to) around & [22]. 
The final form of S~q i) (w) is 

S(v i) ( w ) = 1 y~i) (to) (2.22) 
'77" ( to  --  (7))2 Jr- [ y ( i ) ( t o )  ]2" 

Since the damping y(qi) ( to )  depends on the energy variable to, which runs over the y-ray 
energy E~,, the shape of the strength function S¢q 0 (to), strictly speaking, is not given 
by a single Breit-Wigner curve. The spectral intensity j{qi) (to) is related to the strength 
function S¢q 0 (to) as 

4 (to) - (to) e-g~/r _-- ~ . (2.23) 

This form is proportional to the exponential shape of the y-ray spectra observed in 
experiments while the strength function S(qi)(to) can be directly compared with the 
divided spectra in the linear scale normalized by a strength constant. 

The value of the FWHM of the GDR F(~i)DR given by Eq. (2.21) is more reliable than 
the width extracted from the energy dispersion 

o,= tokSq to)dto 
f~{2 Sq(to)dto (k = 1,2),  (2.24) 

because the variance o- is sensitive to the choice of cutoff energies El and E2 introduced 
in the distant wings of the strength distribution, especially when the strength function 
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is described by a Lorentzian or a Breit-Wigner curve. Meanwhile the empirical widths 
are the FWHM, which can be described by FCDR in Eq. (2.21). 

The present formalism considers the hot GDR, its width and shape as a result of 

averaging over the grand canonical ensemble at a given temperature. This temperature 
of a one-step statistical process may be compatible with the effective temperature that 
one would obtain by averaging over the multistep process in the CASCADE calculations. 
Therefore the yield of the y-ray can be calculated here following the standard statistical 

model using simplifying assumptions. They include a T2-dependence for the neutron- 

decay width and the first-order of the logarithmic expansion of the level density [27]. 

This allows us to calculate the integrated yield y(i) within the interval E1 ~< (o ~< E2 as 
follows: 

E2 

1 f o)3j(qi)(o))e(B,,/r)dw ' (2.25) 

El 

where B, represents the neutron binding energy and Jq(w) is the spectral intensity 

defined in Eq. (2.23). This quantity should be compared with the empirically extracted 

yield, where a Lorentzian strength function fODR(w) multiplied by exp( -~o/T)  was 
used instead of J(i)(w) [1]. We have checked that in the region of the GDR peak 

a Lorentzian distribution centered at OJODR with a FWHM /'~DR has almost the same 
shape as the Breit-Wigner one divided by w~oa with the same width. 

3. Numerical results 

3.1. Ingredients of numerical calculations 

The PDM assumes that the GDR is generated by a single collective and structureless 
phonon with energy O)q close to the energy o)OOR. The single-particle energies defined 

in the Woods-Saxon potentials at T = 0 were used in calculations. The levels near the 
Fermi surface for 2°spb are replaced with the empirical ones. The procedure of selecting 

Wq and the matrix elements Fs(sq, ) of the coupling to ph, pp and hh configurations is as 

follows. 
In the PDM-1 the coupling matrix elements ~7'(q) P(q) • ss' are parametrized as -ph = F~ for 

(s,s') = (p,h) and F;q! = Ft(zq! = F2 for (s,s') = (p,p') or (h,h'). As the ph 
interaction in the GDR is dominated only across two major shells, that are closest to 
the both sides of the Fermi surface, the uniform distribution of the ph matrix elements 
over all the levels can be justified if F12 << F~, as has been mentioned in Ref. [20]. 
Winthin a fully microscopic approach, where the phonon structure can be determined 
from the RPA, the PDM parameters can be expressed in terms of the X, Y amplitudes, 
and the matrix elements of the effective two-body interaction. However, this is beyond 
the scope of the present approach. In general, the PDM-2 contains the explicit coupling 
to phonons with different multipolarities A. The calculations in Ref. [ 15] have shown 
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Table 1 
PDM-2 parameters. 

~Oq (MeV) F(1) (MeV) F~ l) (MeV) r 

J2°Sn 17.0 6.261 x 10 -3  1.845 x 10- J 8.603 x 10 -2  
2°spb 13.8 2.7x 10 -3  9.95x 10 -2  8.8x 10-l  

that the major contribution of the shape fluctuations in the increase of the GDR width 

at T 4 : 0  comes from the quadrupole shape fluctuations. In the present application of 
the PDM-2, as a test for the effect of coupling to quadrupole vibration we retain only 
dipole and quadrupole phonons in the two-phonon configuration mixing. Consequently, 

from the sums on the r.h.s, of Eqs. (2.16) and (2.17) there remain only one dipole 
phonon with q = q', which corresponds to the GDR (,t = 1 ) and one quadrupole phonon 

with ql with energy close to the energy Ee~ of the first quadrupole state (,t = 2). 

The values of toq and F1 (within PDM-1) or F(1) (within PDM-2) have been selected 

so that the solution 6~ of Eq. (2.20) is equal to the empirical value of toCDR while 
FCDR (&) reproduces the empirical FWHM of the g.s. GDR (i.e. the quantal width / 'Q  

at T = 0). The value of F2 (for PDM-1) or F~ l) (for PDM-2) has been chosen so that 
the energy & is stable against varying T. In PDM-2 we first set the ratio r = F~2)/F/~r) 

(i = 1,2) when choosing toq, F(1) and F(2) in order to achieve a stable solution for 
Eq. (2.20). These parameters are kept unchanged when T is varied. This ensures that 
all the T-dependence comes from dynamical effects of configuration mixing, and not 
due to adjusting parameters. The smearing parameter e in Eq. (2.18) was chosen to be 

0.5 MeV. The results were found to be stable against varying e within 0.2 MeV ~< e ~< 
1.0 MeV. The dipole sum rule was also checked to be conserved against varying T. The 

PDM-1 parameters toq, FI and F2 (three parameters) have been given in Ref. [20]. The 
selected values of the PDM-2 parameters tog, F(1), F~ 1) and r (four parameters) for 
12°Sn and 2°spb are presented in Table I. The values of the PDM-2 parameters differ 

noticeably from those in PDM-1 because the effects of higher-order graphs are explicitly 
included in the equations of the PDM-2. 

3.2. Temperature dependence of GDR width 

The GDR widths /-'GDR calculated within two versions of the PDM are shown in 
Fig. la for 12°Sn and in Fig. lb for 2°8pb. They are compared with the revised data 

from inelastic a-scattering experiments [13] and also from Refs. [7,8]. The values of 
the width obtained within the PDM-1 (dotted and dashed curves) have been reported 
previously Ref. [20]. It is seen that the theoretical curves in both versions of the PDM 
reproduce reasonably well the data including the width saturation at T ~> 3-4 MeV in 
case of 12°Sn [7,8]. The values of the width obtained within the PDM-2 (solid and 
dash-dotted curves) are somewhat smaller than those calculated in PDM-1 at T ~> 1.5- 
2 MeV in 12°Sn and T/>  0.7-0.8 MeV in 2°spb. The reason is that in the PDM-1 the 
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Fig. 1. Total width of GDR as a function of T for (a) 12°Sn and (b) 2°spb. Dotted: results within PDM-1 
without the effect of single-particle damping. Dashed: results within PDM-2 including the effect of sin- 
gle-particle damping. Solid: results within PDM-2 without the effect of single-particle damping. Dash-dotted: 
results within PDM-2 including the effect of single-particle damping. Squares, triangles and diamonds: data 
from Refs. [ 7 ], [ 8 ] and [ 13 ], respectively. 

coupling to all multipolarities is included effectively in a sense of  average, while in the 

PDM-2 the present calculation includes only one dipole phonon and one quadrupole 

phonon in the doorways.  On the other hand the slight difference between the results 

obtained in two approximations indicates the importance of  mixings with ,~ = 1 and 2 

in reproducing the hot GDR width and shape as will be seen later. The effect of  the 

single-particle damping on the GDR width is seen to be weak in both versions of  the 

PDM by comparing the solid curve obtained without this effect with the dash-dotted 

curve calculated with taking into account this effect in PDM-2. Similarly, one should 

compare the dotted and dashed curves for PDM-1. 

It has been shown in PDM-1 [20] that the total width is composed of  the quantal 

width /~Q due to coupling of  the GDR phonon to ph configurations and the thermal 

width FT due to coupling to pp and hh configurations at T ~ 0. One of  the main 

conclusions of  Ref. [20] was that the behavior of  the total width at high temperatures is 

mostly driven by the thermal width Fr since the quantal w id th / 'Q  decreases slightly as 

temperature increases. In order to see whether this conclusion still holds within the PDM- 

2 which includes higher-order processes up to two-phonon ones, we have performed the 

calculations of  FQ by switching off the coupling to pp and hh configurations in the 

sums on the r.h.s, of  Eqs. (2.16) and (2.17).  The results are displayed in Fig. 2 by 

solid curves which show a clear decrease as T increases. Exclusion of  two-phonon terms 
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at T ~ 0 in Eq. (2.17) results in a quantal width, which is practically independent of  

T (dashed curves) in agreement with the conclusion of  Refs. [23,25].  

3.3. E v o l u t i o n  o f  G D R  shape  

The GDR strength function S~ °Ml ( w )  calculated within the PDM-1 is compared with 

the normalized experimental  one f eJ  (Ez,) [ 13] in Fig. 3 for 12°Sn and Fig. 4 for 2°8pb. 

The experimental  values of  Er  have been shifted up by 1.5 MeV in t2°Sn and by 

1 MeV in 2°8pb in order to achieve a best agreement. This is due to the fact that the 

PDM assumes a temperature-independent GDR energy oJGDR equal to the energy of  the 

g.s. GDR. The solution 6) of  Eq. (2.20) has been found to be stable around 15.4 MeV 

for 12°Sn and 13.5 MeV for 2°spb at all temperatures using the selected values of  the 

parameters in both versions PDM-1 and PDM-2. Meanwhile the experimental resonance 

energy was found in Ref. [13] to be lower than the g.s. GDR energy by an amount 

roughly equal to this shift. In other measurements the g.s. GDR energy (T = 0) has been 

used for the best fit o f  the data at T v~ 0 [2 ,4 -9] .  At  present no systematic dependence 

of  the GDR energy on the excitation energy E* (or  temperature T) has been confirmed 

and more studies are called for to resolve this issue. Therefore we do not consider 

reasonable at this stage to vary the parameters of our model with temperature to achieve 

the decrease of  the GDR energy in Ref. [ 13]. Inclusion of this energy shift yields 
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a good agreement between the calculations in PDM-1 and the available data for the 

evolution of  the GDR shape in 12°Sn (Fig.  3).  The PDM-1 could even reproduce the 

fine structure on two shoulders of  the experimental resonance peak, especially the one 

in the low-energy region. For 2°spb the data do not strictly follow a Brei t -Wigner  or 

Lorentzian shape. At  T = 1.85 MeV the experimental shape of  the GDR has even a 

pronounced structure between 20-25 MeV while the resonance peak seems to be too 
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the corresponding values of A% 

low. None the less  the agreement  be tween  the results o f  calculat ions in the PDM-1 and 

the data for  2°spb is also satisfactory (Fig.  4) .  

Shown in the left  co lumns  ( a - d )  o f  Figs. 5 and 6 are the results o f  calculat ions within 

P D M - 2  and the same data f rom Figs. 3 and 4. Since the present  vers ion o f  the P D M - 2  

restricts the coupl ing  to ph, pp and hh configurat ions via  the doorways ,  which included 

only d ipole  and quadrupole  phonons,  the calculated shape is found slightly narrower  and 

higher  at its peak posit ion.  This  restriction also causes some  structure be tween  15 and 
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20 MeV at energies around (.Oq -}- O)ql. Nonetheless an overall agreement between theory 

and data is achieved also in PDM-2. Taking into account more collective quadrupole 
phonons or/and phonons of higher multipolarities can improve the agreement. However, 
it would certainly make the calculations within the PDM-2 more complicate. At least 
it would increase the number of the parameters of the model unless the structure of 
phonon operators is defined microscopically in terms of ph pairs as in the RPA. In the 
meantime a simple way to include effectively the contribution of the missing doorway 
configurations in the present calculations within the PDM-2 is to add a parameter 
A T to "v(PDM2)(W) to minimize the discrepancy between F (PDM2) and r(PDM~) The / q  GDR ~GDR " 
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strength functions calculated with increasing y~qO°M2)(w) by Ay are shown in the right 
columns (e-h)  of Figs. 5 and 6. The overall agreement between theory and experiment 
is clearly improved. In our opinion it is unlikely that the main features of the results 
obtained within PDM-1 or PDM-2 (with this additional parameter Ay) will be altered 
significantly by more sophisticated microscopic calculations, given the fact that the hot 
GDR occurs in the stochastization region of high level densities and high excitation 

energies [28]. 
This comparison also shows that, despite its simplicity, the PDM-1 has offered a quite 

reasonable agreement with the data for the width and shape of the hot GDR. The PDM-2, 
on the other hand, has demonstrated that including explicitly the coupling to higher-order 
configurations does not change the conclusions of the PDM-1, in particular regarding the 
weak temperature dependence of the quantal width FQ. This is a clear indication that the 
quantal effect of complex configurations mixing is relatively insensitive to the change 
of temperature. Therefore, it can be well incorporated in the parameters of the model 
selected at T = 0 as has been done in PDM- 1. The evolution of the GDR shape at T 4= 0, 
therefore, does not depend much on the complexity of the doorway components, but is 
governed mostly by the presence of the coupling to incoherent pp and hh configurations. 

As a prediction of our model we show in Fig. 7 the strength functions of the GDR 
calculated within PDM-1 at several values of T > 4 MeV in 12°Sn and T ~> 2.8 MeV 
in 2°spb. The same quantities obtained within PDM-2 are displayed in Fig. 8 using 
Ay = 0 (Figs. 8a, b) as well as by  = 2 MeV for 12°Sn (Fig. 8c) and 0.8 MeV for 
2°sPb (Fig. 8d). The saturation of the GDR shape is clearly seen at T ~> 4 MeV in 
both nuclei. We hope that these shapes, especially those given in Fig. 7, may serve as 
references for experimental measurements in future. 

3.4. Integrated yield o f  y rays 

The integrated yields y~i) of y rays in 12°Sn calculated within PDM-1 and PDM-2 
are plotted as a function of excitation energy E* in Fig. 9a, b. The results have been 
obtained upon performing the integration in Eq. (2.25) within two intervals 12 MeV 
~< E~, ~< 20 MeV +2xE r and 12 MeV +AE~, ~< E~, ~< 35 MeV. Since the width calculated 
in PDM-1 is larger than the one obtained within PDM-2, the value of AE z, has been 
chosen to be 1 MeV (dashed curve) and 2 MeV (dash-dotted curve) within PDM-1, 
and 0 (solid curve) within PDM-2. These results are compared with the data within 
12-20 MeV [9,10] (Fig. 9a) and within 20-35 MeV [10] (Fig. 9b), respectively. 
The results reproduce reasonably well the observed saturation of the yield in the GDR 
region. In the region 20-35 MeV (Fig. 9b) the PDM-1 gives somewhat larger values for 
the integrated yield (dashed and dash-dotted curves) as compared to the data while the 
results obtained within the PDM-2 (solid curve) are found in a better agreement with 
the data. In general the trend of saturation of the yield is also reproduced by the PDM in 
this region. The saturation of the yield at E* ~> 300 MeV is understood here as a natural 
consequence of the saturation of the GDR shape and its width at T > 4 MeV, not by an 
exceedingly large value of the width as has been proposed previously in Refs. [9,16] - 
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[ 18]. It is worth noticing that the value of  the integrated yield in the region above the 

GDR (within 20-35 MeV) is more sensitive to the change in the value of  AEr than 

within the GDR region 12-20 MeV. The reason is that the integration in Eq. (2.25) 

involved larger energies in the region above the GDR and also that the distribution of  

the GDR is rather flat in the tail above 20 MeV. As seen in Fig. 9b an increase of  AE~, 

from 2 MeV to 3 MeV reduced noticeably the saturated value of the integrated yield in 

the region above the GDR. We emphasize that the microscopic structure of  the strength 

function S~q i~ (w) with an w-dependent damping y~qi)(to) is decisively important for an 

adequate description of  both the shape as well as the integrated yield. As shown in 

Fig. 9c and 9d a Breit-Wigner distribution with a width equal to F ~  R and centered at 

W~DR can describe the integrated yield within the GDR region (Fig. 9c) but strongly 

overestimates it in the region above 20 MeV (Fig. 9d). Using the FWHM from the 

Milan model [ 14] leads to a similar behavior as shown by the dotted curves in Figs. 9c, 

d. Both the parametrizations for the width proposed in the Catania model [ 16,17] cannot 
account for the data of  the yields in the GDR region as well as in the region above it 
as shown by the dash-dotted curves and the curves with crosses. Finally, as a prediction 
of  our model we plot in Fig. 10 the integrated yield of  y rays calculated in the PDM1 

and PDM2 within the interval 10-18 MeV and 18-33 MeV for 2°8pb. The saturated 
values of  the yield within these intervals amount to around 8 × 10 -3 and 1.2 x 10 -3, 
respectively. 
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T h e  p re sen t  ca l cu la t ions  d id  not  inc lude  the  effects  of  evapora t ion  wid th  [29]  and  

the G D R  equ i l i b ra t ion  t ime  [30 ]  on  the d a m p i n g  of  the  ho t  GDR.  The re  is e v i d e n c e  

that  these  effects  are smal l  even  at h igh  tempera tu res .  Indeed ,  it has  been  s h o w n  in 

Ref.  [ 29 ]  tha t  the  G D R  wid th  shou ld  r each  a va lue  o f  a r o u n d  30 M e V  due  to the  
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increase of  evaporation width at E* = 400 MeV. However, the same reference has also 

pointed out that, in order to fit the data, one needs to introduce an explicit suppression 

of  the GDR strength when the compound nucleus reaches an excitation energy around 
300 MeV. In such a case, the question of  the GDR width may become irrelevant above 

the excitation energy where its strength vanishes or becomes too small. Existing data so 

far indicate a saturation, rather than an increase, of  the GDR width at E* > 250 MeV 

in good agreement with the results of  our calculations. The authors of  Ref. [ 19] have 

also calculated the strength function of  the hot GDR including the evaporation width. 

They found that the overall spectra resulting from a complete CASCADE calculations 

are essentially identical to the ones obtained without the evaporation width even for 

E* > 120 MeV. The contribution of  the evaporation width to the total spectrum has been 

found to be small relatively to the total spectrum including all decay steps. The authors 
of  Ref. [30] proposed to take into account the equilibration time of  the GDR, assuming 
that no GDR is present at the time of  formation of the compound nucleus. However, 

Ref. [ 10] has pointed out that such a hypothesis is probably reasonable if the projectile 
and target have the same N / Z  ratio. Meanwhile, in Ref. [ 10], where the saturation of  
the integrated yield of  y rays has been reported within and above the GDR regions, 
the N / Z  ratios of  the two partners are quite different and a substantial dipole moment 
is present in the entrance channel. This indicates the presence of  GDR already before 
the equilibration is achieved. In our opinion, the quantitative role of  the evaporation 
width and equilibration time in the damping of the hot GDR requires further detailed 
theoretical studies. More experimental evidence are also needed to confirm whether the 
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effects of evaporation width and equilibration time on the GDR are really small at high 

T. 

4. Conclusions 

In the present paper two versions PDM-1 and PDM-2 of the Phonon Damping Model 

(PDM) have been applied to a systematic description of three main characteristics of 
the hot GDR, namely the GDR width, its shape and the integrated yield of 3' rays. The 
results of calculations have been compared with the most recent experimental systematics 
assessed for these characteristics in 12°Sn and 2°spb in the heavy-ion fusion and inelastic 

a-scattering reactions. An overall agreement between theory and experiment has been 
consistently achieved for all three characteristics. Predictions have been made for the 

future measurements of the GDR shapes at higher temperatures up to T ~ 6 MeV in 
12°Sn and 2°spb, and for the integrated yield of 3/rays in 2°spb in both regions of the 

GDR and above it. 
The analysis in the present paper allows us to draw the following conclusions. 

(1) The PDM describes consistently the rapid increase of the width at low T and its 
saturation at T ) 4 MeV taking into account the coupling of the GDR to pp and hh 

configurations at T 4: 0. Both the PDM1 and PDM2 have confirmed that the quantal 

width FQ of the GDR due to coupling to only ph configurations decreases slightly as 
T increases. It becomes independent of T only when the contribution of two-phonon 
processes in the expansion to higher-order propagators is neglected. 

(2) The PDM is a simple microscopic model yet able to reproduce reasonably well 
the measured shape of the GDR including some details of its fine structure. 

(3) Based on the simplifying assumption of the statistical model the PDM provides 
a reasonable account for the experimental integrated yield of 3' rays using the micro- 
scopically calculated width of the GDR. Our model describes well the saturation of the 

yield in both regions of the GDR and above it, showing a well defined GDR shape 
up to T ,,~ 6 MeV. This indicates the existence of the hot GDR even at rather high 

temperatures, provided that the energy-weighted sum rule value is well conserved. As a 
matter of fact the hot GDR has been observed in ~2°Sn at rather high excitation energies 
with a width of around 12 MeV [4,6,10]. In our opinion, since the observed FWHM of 
the GDR is an averaged quantity, the continuously increasing width, which was inserted 
in the CASCADE calculations in Ref. [9], should undergo an appropriate averaging 

procedure before it can be compared with the observed width. 
(4) The present versions of the PDM did not yet include a number of effects discussed 

in the literature, e.g. coupling to continuum, the temperature dependence of single- 
particle energies, the evaporation width, the GDR equilibration time, the dependence 
on angular momentum, etc. There have been several references showing that these 
effects may not be significant at least up to T ~ 3 MeV in nuclei with mass number 
A ~> 120 [7,10,11,13,19,31]. The agreement between the results of PDM and the data 
discussed in the present paper may also serve as an indirect indication that the total 
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con t r i bu t i on  o f  these  ef fec ts  m a y  not  s igni f icant ly  al ter  the  ob ta ined  resul ts  up to T ,,~ 5 -  

6 MeV. N o n e t h e l e s s  m o r e  de ta i led  s tudies  are requ i red  to c lar i fy  the  expl ic i t  con t r i bu t ion  

o f  these  ef fec ts  in the  h i g h - t e m p e r a t u r e  region.  
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