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Abstract 

A systematic study of the damping of the giant dipole resonance (GDR) in 9°Zr, 12°Sn and 
2°sPb as a function of temperature T is performed. The double-time Green function technique 
is employed to determine the single-particle and GDR dampings. The single-particle energies, 
obtained in the Woods-Saxon potential for these nuclei, are used in the calculations. The results 
show that the coupling of collective vibration to the pp and hh excitations, which causes the 
thermal damping width, is responsible for the enlargement of the total width with increasing 
temperature up to T ~ 3 MeV and its saturation at higher temperatures. The quantal width, 
which arises from the coupling of the collective mode to the ph excitations decreases slowly with 
increasing temperature. The effect of single-particle damping on the GDR width is small. The 
results are found in an overall agreement with the experimental data for the GDR width, obtained 
in the inelastic a scattering and heavy-ion fusion reactions at excitation energies E* ~< 450 MeV. 
At high excitation energies (E* > 400 MeV) a behavior similar to the transition from zero to 
ordinary sounds is observed. @ 1998 Elsevier Science B.V. 

PACS: 21.10.Pc; 24.10.Pa; 24.30.Cz 
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I.  Introduct ion  

The study of the giant dipole resonance (GDR),  built on compound nuclear states (hot 

GDR),  has been the subject of a considerable number of experimental and theoretical 
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efforts during the last fifteen years (See Refs. [1,2] for the reviews). The main issue of 
many debates on the hot GDR phenomenon can be summarized as follows. The energy 
of the hot GDR is about the same as of the one built on the ground state (the g.s. 
GDR) and can be well described within the framework of existing theories. However, 
its width increases rapidly with increasing the excitation energy E* (or temperature T) 
up to around 130 MeV in Sn isotopes. At higher excitation energies the width increases 
slowly and even saturates. 

Most important information about the behavior of the hot GDR has been extracted so 
far from the compound-nuclear reactions induced in heavy-ion collisions [ 3-9].  In these 
experiments the hot compound nucleus was usually formed at high angular momentum. 
The dependence of the width of the hot GDR as a function of the excitation energy E* 
contains then both effects of the angular momentum and the temperature. Recently two 
new experimental methods, involving compound nuclear reactions [ 10] and inelastic a 
scattering [ 11 ], have been undertaken. In Ref. [ 10] large arrays of 3~ detectors have been 
set up to measure the GDR of a hot system at a definite angular momentum. Ref. [ 11 ] 
introduced a new technique using a particles to excite the target nucleus via inelastic 
scattering at a small angular momentum. These methods have opened a possibility to 
study individually the effects due to thermal fluctuations and due to angular momentum 
on the damping of the hot GDR in a direct comparison with theoretical predictions. 

From the microscopic point of view the g.s. GDR (T = 0) can be represented 
within the random phase approximation (RPA) as one or a group of several collective 
phonons, each of which is a coherent superposition of ph excitations. Once this picture 
is established, the phonons can be considered as undamped harmonic oscillators. An 
accurate description of the energy and sum rule of the g.s. GDR has been achieved within 
the RPA. The RPA cannot account for the width of the GDR except for some Landau 
splitting [ 12-15], which turns out to be rather stable against temperature [12,14,15]. 

The g.s. GDR acquires an escape width F T via a direct y or particle emission and a 
spreading width F l by coupling to more complicated configurations beyond the RPA. 
The latter can be described via the coupling of one-phonon to two-phonon states as in 
the quasiparticle-phonon model (QPM) [ 16], to " lp  1 h ® phonon"-configurations as in 
the nuclear-field theory (NFT) [ 17] or directly to 2p2h-configuration mixing as in the 
second RPA (SRPA) [18] and extended SRPA [ 19]. Since such kind of coupling is 
purely a quantal effect, the spreading width F l is also called the quantal width ira. The 
extension of such a description to T 4 : 0  has shown a little change of F ~ [20,21]. As 
concerned the escape width, its value is relatively small (within hundreds keV) for the 
g.s. GDR. The stability of the dipole response function against varying the temperature 
in the self-consistent RPA calculations by Sagawa and Bertsch [ 14], including the 
unbound continuum in the space for the particle states, is a clear demonstration that the 
escape width of the GDR is mostly independent of temperature. Hence the source of the 
increase of the hot GDR's width in the temperature interval 0 ~< T ~< 5 - 6  MeV must 
come mainly from the thermal effects. In finite systems such as nuclei thermal effects 
increase, while quantal effects are expected to decrease with increasing temperature. 
So far most thermal effects have been included via the thermal fluctuations of nuclear 



N. Dinh Dang, A. Arima/Nuclear Physics A 636 (1998) 427-451 429 

shapes [22,23]. They have also been taken into account in the recent theory on the hot 
GDR's width [24]. The authors of Ref. [9] have pointed out, however, that the increase 
of the width, offered by the theory in Ref. [24], is still quite slow in order to account 
for the experimental systematics. Ref. [9], therefore, has called for a search of a missing 
effect, emphasizing the role played by thermal and angular momentum effects in the low 
excitation energy region (E* ~< 200 MeV). The most recent theoretical evaluations in 
Ref. [ 25 ], which include the thermal shape fluctuations within an adiabatic model, agree 
nicely with the a-scattering data in Ref. [ 11] for the GDR width in 12°Sn and 2°spb 
at temperatures 1 MeV < T <~ 3 MeV (30 MeV ~< E* ~< 130 MeV). The increase of 
the evaporation width Fev due to a finite life-time of the compound nuclear states [26], 
has been also included to improve the results at T ,-~ 3 MeV. The theoretical predictions 
of Ref. [25] are given for T ~< 3.4 MeV, so the region of the width saturation (E* > 
130 MeV), where a considerable number of heavy-ion fusion data has been accumulated 
up to E* ~ 450 MeV, is left out in this description. These achievements have also shown 
that the effects due to angular momentum on the data set of interest are negligible. The 
width of the GDR has been shown to depend noticeably on the angular momentum J 
only above a rather high value of J ~> 35h at T _~ 1.5-1.8 MeV and only in a lighter 
nucleus 1°6Sn [27]. The angular momentum effects are unimportant for A/> 120. 

From the macroscopic point of view, the g.s. GDR is an analogue of the Landau 
zero sound [28]. The damping of the hot GDR has been studied intensively within 
the framework of the Landau-Vlasov theory using the Landau integral including the 
collision term (See Refs. [29,30] and references therein). This approach and its further 
modification have shown a continuously increasing width of the GDR as increasing the 
temperature. The width saturation at T ~> 3 MeV and the "disappearance" of the GDR 
at high temperature (T > 4.5~5 MeV), observed in the heavy-ion fusion experiments, 
is interpreted within this approach mainly as a result of an exceedingly large width. In 
the recent Ref. [ 31 ], it has been shown, however, that at T ~> 2 MeV the regime of rare 
collisions, where the RPA method can be applied in the theory of Fermi liquid, must be 
replaced with the regime of frequent collisions. Including the memory effects in the col- 
lisional integral and the quadrupole distortion of the Fermi surface, the collisional width 
of the GDR, obtained in Ref. [31 ], turns out to be rather independent of temperature 
in an agreement with the predictions of microscopic theories [20,21]. Thermal shape 
fluctuations have been also taken into account based on the Landau theory of nuclear 
shape transitions in Ref. [32]. The latter provides a nice macroscopic description of 
thermal fluctuations in all quadrupole shape degrees of freedom. With all parameters 
fixed at zero temperature this theory shows a good agreement with the data for hot GDR 
up to T = 2~3 MeV. 

In the present situation, of particular importance in the theories of the hot GDR is 
the understanding in a consistent and microscopic way the behavior of the the hot GDR 
as a function of temperature in a large interval. Such a theory must cover the region 
of the width's increase at low temperatures (0 ~< T ~< 3 MeV) as well as the region 
of the width's saturation (T ~> 3 MeV) up to the region where the GDR is thought to 
disappear (T > 4.5,-~5 MeV). There are a number of questions to be answered, such as 
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the role of motional narrowing [33] in the saturation of the GDR at high temperature. 
The question of a phase transition, which seems to take place at around E* = 100 MeV 

in tin isotopes in the recent theory in Ref. [24] due to the limitation of the maximal 

angular momentum, has also opened room for debates. A similar question arises in the 
semiclassical approaches on whether the saturation of the GDR width is a signature of 

the phase transition from zero to ordinary sounds in hot nuclei [30]. While there is no 

doubt that these issues cannot be answered in one work, they certainly have created a 
good motivation for our present study. 

In the recent works [ 34,35 ] we have shown that the coupling of the RPA phonon to 

the pp and hh configurations, which appear at non-zero temperature, leads to the thermal 
damping of the phonon excitation. The contribution of the additional configurations at 

T v~ 0 in the increase of the Landau damping has also been studied in Ref. [36]. 
In the present paper we will elaborate further this concept, and perform a systematic 
study of the GDR width in 9°Zr, 12°Sn and 2°8pb as a function of temperature in 

comparison with recent experimental data from inelastic a scattering [ 11 ] as well as 

from heavy-ion fusion reactions [3-9] .  This study over a wide range of temperatures, 
which includes both the region of the width's increase and width's saturation, allows us 

to draw conclusions on the role of the coupling to pp and hh in an accurate description 

of the GDR width in realistic hot nuclei. The formalism of the approach is presented in 

Section 2. Section 3 is devoted to the analysis and discussion of numerical results. The 
comparison with the experimental data as well as with other theoretical descriptions is 

discussed. A possible relation between the behavior of the GDR width in finite nuclei 

and the transition from zero to ordinary sounds in a Fermi liquid is also studied. The 

paper is summarized in the last section, where conclusions are provided. 

2. Formalism 

We consider a model Hamiltonian for the description of the coupling of collective 

oscillations (phonons) to the field of ph, pp and hh pairs in a form of a sum of three 
terms: 

n =  na + nb  + n c .  (2.1) 

The first term Ha is the field of independent single particles: 

Ha = ~ Esa~as, (2.2) 
S 

where a~ and as are creation and destruction operators of a particle or hole state with 
energy Es = es - eF with es being the single-particle energy and eF the Fermi surface's 
energy. Hereafter the energy Es is also called the single-particle energy whenever there 
is no confusion with e~. 

The second term Hb in Eq. (2.1) stands for the phonon field as the field of harmonic 
oscillators: 



Hb = 

where Qqt 

O)q. 

The last 
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toqatqaq , (2.3) 
q 

and Oq a r e  the creation and destruction operators of a phonon with energy 

term Hc in Eq. (2.1) describes the coupling between the first two: 

~ '~  lz'(q).-~t,., , (D'~ ~- Qq) (2.4) Hc = 7--, "ss' "s~'s ~ q  
ss;q 

From now on the indices s and s I denote particle (p, Ep > 0) or hole (h, Eh < 0), 
while the index q is reserved for the phonon state q = {,~, i} with multipolarity ,~ 
(the projection /z of ,~ in the phonon index is omitted in the writing for simplicity). 

The sum in Eq. (2.4) is carried over ,~ ~> 1. This form of the model Hamiltonian 
in Eqs. (2 .1)-(2 .4)  is quite general and common in many microscopic approaches 
to nuclear collective excitations. The difference is in the way of defining the single- 
particle energy Es, phonon energy O.)q and phonon structure under a specific effective 
coupling F~ q). In the QPM [ 16] or NFT [ 17], e.g., the coupling vertex Fs ~q) is a sum 
of products of the coupling strength and the coupling-matrix elements. The coupling 
strength contains the RPA amplitudes of ph configurations in the collective oscillation. 
The coupling matrix elements can be obtained through the derivative of the central 
potential. In the QPM, e.g., phonon operators Qqt and Qq have the fermion structure, 
being built from the coherent ph or quasiparticle pairs. The form in Eqs. (2.1)-(2.4)  has 
been derived rigorously from the QPM Hamiltonian in Ref. [35]. In the simplest case 
when the two-body term consist of only a separable isovector dipole-dipole interaction, 
one recovers from Eqs. (2 .1)-(2.4)  the Hamiltonian, widely used in the literature to 
describe the g.s. GDR [37]. There is only one term, which is omitted in Eq. (2.1). 
This term is a sum of products of two pp (hh) pairs. In the literature this term is 
also called the scattering term. It represents the interparticle interactions, which are not 
included in the particle-phonon couplings Hc in Eq. (2.4). As it contains no coupling 
to one-phonon terms, it has a little influence on the damping of phonon excitations built 

at T = 0. Indeed, the estimation in Ref. [38] has shown that the effect caused by this 
term to the phonon energies is negligible within the RPA except for very low-lying 
states in transitional nuclei. This is the reason why in the description of the multipole 
g.s. giant resonances in the QPM [16], this term was always neglected (See, e.g., 
Ref. [39]) .  Our interest in the present paper is to study the damping of the collective 
mode, generated by phonon operators via its coupling to the single-particle field at non- 
zero temperature. Therefore, we also neglect this scattering term at T v~ 0. Meanwhile, 
it should be noticed that as the excitation energy and level density increase, the residual 
interaction becomes more and more important. Incoherent collision-like processes and 
anharmonicity of collective modes lead to the stochastization of actual stationary states, 
which also contributes in the saturation of the width of the GDR at high temperatures. 
This question has been studied in detail by Zelevinsky et al. in Ref. [40], where the 
damping of GDR in highly excited nuclei was considered within the chaotic dynamics. 
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We derive the main equations of the formalism, making use of the temperature- 
dependent double-time Green functions [41-43]. This method has been proved to be 
very convenient for application in statistical systems as the advanced and retarded 
double-time Green functions can be analytically continued in the complex-energy plane, 
which facilitate the explicit derivation of the single-particle and phonon dampings. 

Let us introduce the following double-time Green functions, which describe: 
(i) The propagation of  a free particle (or hole): 

Gs , ; s ( t -  t') = ((as,( t);a~(tt)>),  (2.5) 

(ii) The propagation of  a free phonon: 

Gq,;q( t -- t') = ( <Qq, ( t); Qtq( t') ) ) , (2.6) 

(iii) The particle-phonon coupling in the single-particle field: 

F~q;s( t - t') = ( (as,( t)Qq( t);a~ ( fl) ) ) , (2.7) 
+ 

Fs,q:s( t -  t') = ((a~,(t)Qtq(t);a~(t ')  )> , (2.8) 

(iv) The transition between a nucleon pair and a phonon: 

G~ , ;q ( t -  t') = ( (a~( t )as , ( t ) ;Q~( t ' ) ) ) ,  (2.9) 

In Eqs. (2 .5)- (2 .9)  the standard notation for the double-time retarded Green function 
is used: 

G( t - t') = ( (a(  t); B(  t') ) ) =_ - iO(  t - t ' )([  A( t ) , B (  t') ]±> , (2.10) 

where [ A ( t ) , B ( t ' ) ] ±  = ( A ( t ) B ( t ' )  - ~ l B ( t ' ) A ( t ) )  with r /=  1 if A and B are boson 
and - 1  if A and B are fermion operators; ( . . . )  denotes the average over the the grand 
canonical ensemble: 

( . . . )  = T r ( . . . e x p ( - f l H ) )  , f l = T _  1 , (2.11) 
Tr (exp ( - / 3 H ) )  

Applying now the standard method of the equation of motion for the double-time Green 
function [42,43], we obtain a set of coupled equations for an hierarchy of double- 
time Green functions. Apart from the functions in Eqs. (2 .5)-(2.9) ,  this hierarchy 
contains also higher-order ones. In order to close the set to the functions in Eqs. (2 .5) -  
(2.9), we employ the following decoupling approximation, which is originated from 
the approximate second quantization [41] and improved thermodynamically for the 
non-zero temperature case: 

()~ ¢3 ,. a~f~ ~ = 6qq, l.'qGs~;s ((. as~ ~ q ~ q  , , , ,  

( ( a l a s l  (Q~, -k- Qq, ); Qtq> ) = ~ss~nsGq,;q , 

Q ,n~. at \ \  ((asl q ~ q ,  s / /  = 6qq , ( l  -~- l. 'q)Gs,;s, (2.12) 

((as, a~l a s l ; a ! ) )  = 6,,,,(1 - n,,)Gs,;s. (2.13) 

In Eqs. (2.12) and (2.13) ns = <a~as) and ~,q = (QtqQq) are the single-particle and 
phonon occupation numbers, respectively. The time variable is omitted for simplicity. 
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Making then the Fourier transformation to the energy plane E, we come to the following 
set of five equations for the Fourier transforms of the Green functions in Eqs. (2 .5)-  

(2.9): 

(E E~)Gs(E) S ~ s q , ' ) ( r ~ , ~ ( E )  + 1 (2.14) - - + rs', q ' ;s(E))  = 2----~ 
1 I q ; '  

qt st 1 

1 
( E -  O)q)Gq(E) -- Z F  (q)e , tE~ - SlStl~Z~SlSi;qt } - -  ~ - ~ ,  (2.15) 

S I Stl 

( E -  Es' - ° ) q ) F - ~ q . s ( E )  - ( l  - n s '  + Vq) Z s s1 Sl.S \rE~=O,j (2.16) 
SI 

(E - Es' + O)q)F+q;s(E) - (ns, + pq) Z r'(q)~ tE~ • s,s~-~s,;.~ , / = 0 ,  ( 2 . 1 7 )  

si 

( E  - E,, + Es)gss , ;q(E)  - (ns - ns,) Z F('q')Gq';q(E) = 0 .  (2.18) 
q' 

We notice that Eqs. (2.14) and (2.15) in this set are still exact. The last three equations 
are obtained within the decoupling scheme in Eqs. (2.12) and (2.13). This decoupling 
approximation is fairly coarse. For instance, it is insufficient to incorporate the higher- 
order incoherent correlations and anharmonicity, which may become significant at high 
excitation energies and level densities [40]. On the other hand it allows to reveal here 
the effect of thermal damping on the width of the GDR in a simple and transparent 
way. A part of these higher-order effects can be included if one takes higher-order 
Green functions in the hierarchy into account and then applies this decoupling scheme 
at the corresponding higher level. While it is obviously impossible to take into account 
the complete infinite hierarchy, the inclusion of many higher-order Green functions is 
already a formidable task for further studies. Functions F - ( E ) ,  F + ( E )  and G(E) in 

the last three equations can be eliminated, being expressed in terms of Gs,:s(E) and 
Gq,;q(E). Inserting the results in the first two equations, we end up with a set of two 
equations for Gs,; , (E)  and Gq,;q(E), which describe the particle (hole) and phonon 
propagations, respectively. The propagation of a single particle (or hole) state and the 
one of a single phonon state can be easily studied, limiting the consideration to the case 
with Gs;s( E)  - Gs(  E )  ( s = s ' )  and Gq;q( E) =- Gq ( q = qt) .  The equations in this case 
have a simple form: 

1 1 
G s ( E )  = 

2 7 r E -  Es - M s ( E )  ' 

1 1 
Gq( E)  - 27r E - O)q - Pq( E)  

The functions M s ( E )  and P q ( E )  

with the quantum field theory: 

M~.(E)=~___cF(qlIF(ql) ( t.,~ L l - n s l  
• ss~ ,~,s \ E  - -  E s l  OJql 

ql  Sl 

(2.19) 

(2.20) 

are the mass and polarization operators by analogy 

ns, + Uql "] (2.21) 
+ E - - - E ~  + wq~ } ' 
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F(q) F(q) ns___~ S ns, (2.22) 3-" Pq(E)  s,s, s',s, E - Es: + E~, 
S 1 Stl 

The mass and polarization operators M s ( E )  and Pq(E) can be continued analytically 
in the complex-energy plane: 

M s ( w  4. ie) = Ms(~O) T- iy,(o~), (2.23) 

Pq( w 4. ie) = Pq(~O) qz iyq( W) . (2.24) 

In Eqs. (2.23) and (2.24) M~(og) and P~(w) (w is real) are real functions, which 
correspond to the real parts of M s ( w  4. ie) and Pq(oJ 4- ie), respectively 

-- nsl + l'Jql "~ 
Ms(W)=T)~__F(q , )F(q l )  ( v ~  l_ ns~ + Z-Es---T-~---(.Oql/I, (2.25) ss~ s~s \ w - Es~ wut w 

qlSl 

rq Z_, " _-ns', 
(2.26) slsl sis1 oJ - Es~ + E~ 

S1 SII 

The symbol 7 ~ indicates the principal value of the corresponding integral. As has been 
mentioned previously, closing the hierarchy to the functions in Eqs. (2.5)-(2.9) restricts 
the couplings in Eqs. (2.25) and (2.26) to at most 2 p l h  configurations if the one- 
phonon operator generates the collective ph excitation. On the other hand the g.s. 
GDR acquires the spreading width F 1 mostly via coupling to 2p2h configurations. The 
latter can be included by extending the hierarchy to higher-order Green functions of 
" lp lh  O phonon" type ( ( a ~ ( t ) a p ( t ) Q q ( t ) ; Q ~ , ( t ' ) ) )  as in Ref. [20] or two-phonon 

Q~,(t ' ) ) ) ,  etc. as in Ref. [21]. The result would then include the type ((Qql ( t )Qq2(t ) ;  
graphs in Figs. 3 and 4 of Ref. [20] or in Fig. 1 of Ref. [21] for the phonon polarization 
operator Pq (E) .  The numerical calculations in Refs. [20,21,44] have shown, however, 
that the effects of these graphs on the spreading width of the GDR are almost independent 
of the temperature. Therefore, in order to maintain the simplicity, we will include in the 
next section the spreading due to these effects in the parameters of the model defined 
at T=0.  

The imaginary parts ys(W)  and "yq(O.)) in Eqs. (2.23) and (2.24) play the role of the 
damping of particle (hole) and phonon states, respectively: 

ys(W) = .rr Z F(qlssl )F(qlsls ) [(Vq~ + 1 -- n~, ) 6 ( w  -- E~ 1 - EOql ) 
I 

qlSl 

+(ns,  + lJql)6(w - Est + Wql)] , (2.27) 

yq( tO)  7 r Z  F(q)F(q) t "  t I \ l t ~  = s,s, s,s~ . , - n s , ) 6 ( w - E s , + E s , ) .  (2.28) 
sIStl 

In Ref. [35] it has been proved in an example of a damped harmonic oscillator that the 
function yq(W) in Eq. (2.28) is indeed the damping of the phonon state, while Pq(o~) 
gives its energy shift. A similar proof can be extended to the single-particle damping 
ys(og) in Eq. (2.27). 
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Using the analytical continuations of the single-particle and phonon Green functions 
Gs and Gq, one  can also derive the corresponding spectral intensities Js and Jq from the 
relations [41 ] 

Gs(o9 -4- ie) - Gs(w - ie) = - iJs(o9)(exp( f lo9)  + 1),  (2.29) 

Gq(o9 + ie) - Gq(o9 - ie) = - iJq(o9) (exp  (flog) - 1).  (2.30) 

The general form of the spectral intensities is proportional to the Lorenzian single- 
particle and phonon strength functions Ss(og) and Sq(tO), respectively 

Js(o9) =Ss(og)(exp(flog) + 1) -I  , Ss = 1 ]/s(O~) (2.31) 
"rr (o9 - Es - Ms(o)) )2  _{_ ]/2(0.) ) ' 

1 yq(og) . (2.32) Jq(og) = Sq(w)  (exp (/3o9) - I ) - 1 ,  Sq = ~ (w - Wq - Pq(og))2 + y~(og) 

The single-particle and phonon occupation numbers ns and Vq in Eqs. (2.16)-(2.18) 
are now defined as the Fermi-Dirac and Bose-Einstein distributions, which are smeared 
out with the half-widths ]/s and ]/q, respectively: 

oo 
1 f y s (og ) ( exp ( f lw)  + 1) -1 

n, = --'rr J ( o~ -_ -ETs -_ - -~ s -~  ~ ~ -+-~2-.~w ) do), (2.33) 
--0(3 

OO 
1 [ yq(og)(exp( /3w)  - 1) -1 do). 

(2.34) 
Pq------77" J ( ( ~ Z ~ q q ~  pq(o)- '~)2~-~2"((o)  

-oo  

Eqs. (2.25)-(2.28) ,  (2.33), and (2.34) form a complete set of non-linear equations 
for six unknowns Ms, Pq, ]/s, Yq, ns and ~,q. Strictly speaking, this set must be solved 
self-consistently. In many realistic situations it is a formidable and impractical task. 
A way to get around this difficulty can be found by noticing that, when the single- 
particle damping ]/~(o9) is small, the spectral intensity J~(og) in Eq. (2.32) has a steep 
maximum at around 

E.~. = Es + Ms(/~s) • (2.35) 

Expanding Ms(o9) near this value under the assumption that Ys is small, it is easy to 
show that 

1 
ns = (2.36) 

exp (/3/~s) + 1 

Eqs. (2.35) and (2.36) show how the single-particle state is renormalized by the cou- 
pling to the phonon field. Eq. (2.36) is the basic assumption in the statistical approach to 
hot finite and strongly interacting Fermi system, which suggests that the single-particle 
occupation number can be approximated by a pure Fermi-Dirac distribution with a 
renormalized energy (See also Ref. [40] ). The average value Fs.p. of 2ys over all the 
single-particle levels is calculated as 
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rs.p.(~o) = 2 ~ j  
a;rj( ) 

~ j  ac2j , /2j = 2j + 1. (2.37) 

From Eq. (2.27) it is seen that/'s.p, grows at high temperatures as ~ O(T)  according 
to Eq. (2.27) (See also Ref. [44]) .  

If  we assume that before the coupling the GDR is generated by a single phonon, 
associated with a strongly collective vibration at energy O~q, the full width at half 

maximum (FWHM) FGI)R of the GDR, caused by the coupling, is calculated from 
Eq. (2.28) as 

/'GDR = 2Tq(~O = EaDR(T)) • (2.38) 

The energy ECD~(T) of the hot GDR is defined as the pole of the Green function 

Gq( tO)  in Eq. (2.20), i.e. as the solution of the equation: 

~o - OJq - Pq( oJ) = 0. (2.39) 

It is also worth noticing that the structure of Eqs. (2.27) and (2.28) ensues that the 
effect of single-particle damping on the total width of the GDR is not additive in general. 

Let us now examine the evolution of FGDR in Eqs. (2.38) and (2.28). At T = 0 the 
single-particle occupation number ns is equal to 1 for a h state (Eh < 0) and 0 for a p 

one (El, > 0). Therefore FODR has a non-zero value only through the coupling to ph 

pairs, where nh -- np= 1. This constitutes the main part of the quantal width F* due to 

the "ph ® phonon" coupling. With increasing temperature this quantal width, which we 

denote hereafter as frO, is expected to decrease as the difference n h -- np decreases from 
1 at T = 0 to 0 at T = oo. At the same time there appear the pp and hh configurations 

because the difference ns - n ¢  differs from zero also for ( s , s ' )  = ( p , p ' )  or (h, h ')  

at T :~ 0. The coupling to the pp and hh configurations leads to the thermal damping 

Fr [ 35 ], which increases first with increasing T. However, because of the factor n s -  ns, 

the total width FaDR will decrease as O(T  - l  ) at large T. Therefore it must reach some 
plateau at a certain value of T. The temperature region, where the increase of the phonon 
damping is slowed down, approaching the plateau, corresponds to the region of the width 

saturation, observed in the experiments. Just the present formalism is able to provide a 
natural explanation for the width saturation of the GDR. 

We would like to make a point of establishing the connection between the coupling to 
pp and hh configurations and the the thermal shape fluctuations. Namely, in our opinion 
the coupling to pp and hh configurations may offer an alternative way to take into 
account thermal shape fluctuations microscopically. To this end, first of all, it is worth 

noticing that there are several ways to take into account thermal shape fluctuations. 
A common way is to use a model, in which the motion of nucleons is described in 
terms of a deformed oscillator, Woods-Saxon or cranked Nilsson potential. The residual 
interaction between nucleons in the intrinsic system can be described by the dipole- 
dipole force for the GDR case. This scheme has been proposed in Ref. [22], according 
to which the cross-section, averaged over all possible thermal fluctuations of shapes, is 
given by 



N. Dinh Dang, A. Arima/Nuclear Physics A 636 (1998) 427~151 4 3 7  

(o ' (E;E*))  = f P(E*)o ' (E;E*)  dO 
f P(E*)  dD ' (2.40) 

where the excitation energy E* in general is a function of temperature T, angular 
momentum I, and deformation parameters /3 and y of the system. The probability 
P (E*) is proportional to 

P(E*)  oc e x p [ - F ( E * ) / T ]  , (2.41) 

where F(E*)  is the free energy of the system. The metric dD (volume element) 
depends on the deformation parameters. In the approach based on the Landau theory 
of shape transitions [46], the free energy F(E*) can be expanded in terms of the 
"deformation" parameters eet,,,, which determine the deviations of the compound nucleus 
from the spherical shape. Hence the shape fluctuations must include in general the 
couplings to all possible multipolarities, not only the quadrupole-quadrupole one. The 
approach in Ref. [46] then concentrated only on the most important deformation - 
the quadrupole one, which corresponds to the second order in this expansion O'2m , and 
determined an effective free energy as a function of temperature and a2m only. Another 
way of taking into account thermal shape fluctuations is based on a model using a 
collective quadrupole plus GDR Hamiltonian to generate the quadrupole deformation 
at T -- 0 [47]. In this case the mean field of oscillator type is deformed already at 
T = 0 with three frequencies COl, (i = x, y, z) ,  related to the Hill-Wheeler deformation 
parameters 13 and y [37]. This scheme has been applied in the most recent calculations 

of thermal shape fluctuations with the adiabatic-coupling model in Ref. [25]. 
In the present formalism the interaction part Hc of the single-particle pairs and the 

phonon field in Eq. (2.4) includes in general all the multipole-multipole forces with 
A >>. 1. A pp or hh pair operator B~.s, = a~as, can be expanded in the lowest order as 
a sum of tensor products of ph pair operators: ~ h  [Bpth ® Bp,h] as if (s, s') = (p, pP) 

B t or ~-~/, [ ph' ® BP h] a~ if (s, S ~) = (h, h') [48]. Therefore the coupling in Hc (Eq. 2.4) 
can be rewritten, e.g. for the case with (s, s t) -- (p, pr), as 

He . __+ HB Q : ~ " pp'IT"(q) ~ [  n~ h ® np,h]h~(atq -4-aq) . (2.42) 
pp' q tt 

Expressing B~h (Bp,h) in terms of Qqt and Qq, (Qtq2 and Qq2) using the well-known 
inverse canonical transformation, one obtains 

HBQ = Z 17(q) ~ [[x(ql ) t ' ) t  _ v(ql ) t  ") ) 
"pp' ~ L ~ ph ~q, ~ph ~q, 

PP ' qql q2 tt 

~q2) _ v(q2)t3t ~]a (Qqt + Qq) (2.43) ®(X;,'h Qq2 "p,h ~q2.'j 

Eq. (2.43) suggests that if Qq* and Qq are the GDR phonon operators, {Qqt, Qq~ } and 
{Q~2, Qq2} can have the moment and parity as (1 - ,  2+), (2 +, 3 - ) ,  etc. so that the 

y(qj=hj,ij) total coupled momentum is again equal to A ~ = 1-. The RPA amplitudes "'ph 
yp( qj=Aj ,ij ) 

h (J = 1,2) in Eq. (2.43) can be calculated microscopically, using the residual 
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interactions, which include dipole-dipole (aj  = 1), quadrupole-quadrupole (Aj = 2), 
octupole-octupole (Aj = 3), etc., forces, respectively. This means that the coupling to pp 

and hh configurations in the term Hc in Eqs. (2.4) and (2.43) in fact already includes, 
via multiphonon configuration mixing at T ~ 0, the coupling to different multipole- 
multipole fields, not only the dipole-dipole type. In order to avoid confusion, one should 
notice that the microscopic inclusion of the effects of multipolarities higher than the 

dipole one is proceeded as follows. First, one solves separately different RPA equations 
to define the structure of phonons with different multipolarity. Once the structure of 
these phonons are defined, one couples them to the dipole phonon Qqt and Qq via Fqs , 

(with q = {,~ = 1;i}) and the phonon amplitudes according to the above mentioned 
expansion (See, e.g., Ref. [16]) .  Taking into account the high-lying ph, pp, and hh 

configurations, as has been discussed above, the coupling to high-lying multiphonon 
states is also incorporated in our formalism. It is well-known that the configuration 
mixing of l p l h  with 2p2h states [16,19] (or ph with phonon ones discussed above 
(Cf. also Ref. [ 17] )) is decisively important to account for the spreading width F 1. In 

addition to the quantal coupling to ph configurations, a quite similar mechanism takes 
place at T ~ 0 via the coupling to pp and hh configurations. As the latter takes place 
only at T ~ 0, it tantamounts to the thermal effects in the fluctuations of multipole 
deformations of nuclear shapes around the spherical one. We would also like to mention 
that the division into the "quantal" and "thermal" parts is based purely on the couplings 
to ph or to pp and hh configurations. The "quantal" part due to the coupling to ph 

configurations exists at T = 0 and its effects are expected to decrease with increasing 
temperature. The "thermal" part arises from the coupling to pp and hh configurations, 
which occurs only at T ~: 0, and its effects are expected to increase with increasing T. 

As has been also mentioned in Ref. [25], a meaningful comparison between theoret- 
ical results and the experimental systematics cannot be made without a proper relation 
between the excitation energy E* and temperature T. This relation in a finite nuclear 
system at T ~< 5 MeV may deviate noticeably from the description of the Fermi-gas 
model. In the latter the excitation energy E* is proportional to the nuclear temperature 
in square T 2 as 

A 
E~.g. = aT 2 , a = - - ,  (2.44) 

where the level density parameter a can take a value with a varying between around 8 
and 12 in heavy nuclei depending on the mass number A. In microscopic calculations 
using the realistic single-particle energies, the level density parameter a(T)  is defined as 
the half of the derivative of the entropy of the system over the temperature [ 12,49]. As 
has been shown in Ref. [50], this microscopic level density parameter a(T)  approaches 
the Fermi-gas value in Eq. (2.44) only in nuclei with a large mass-number A and at a 
considerably high temperature (T > 5 MeV) if the thermal fluctuations are taken into 
account. As the measurements are usually carried out at a given value of excitation 
energy E*, the difference in the definition of excitation energy as a function of temper- 
ature may create some uncertainties in the extraction of a corresponding temperature. In 
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the present paper, besides the excitation energy from the Fermi gas model E~.g. we also 

calculate the excitation energy Em.f. of the total system in a microscopic way at each 
value of temperature T as in Ref. [ 12,49,50], namely 

Em.f. = £(T)  - g (T  = 0 ) .  (2.45) 

In Eq. (2.45) £ (T) is the total energy of the system at temperature T, which is calculated 
in the thermal mean-field as 

£(T)  = ½ S g2je.i 1 - ~ - ~ t a n h  (½ IE;I) • ( 2 . 4 6 )  

J 

It must be stated that the quantity Em.f., defined in Eqs. (2.45) and (2.46), gives just 
another limit for the excitation energy as compared to the quantity E~.g. in Eq. (2.44). 
In reality there are the effects of residual interactions such as dipole, quadrupole, etc., 
which are not included in Eq. (2.46). The coefficient Kvib for the increase of the level 
density due to the vibrational modes has been evaluated in Ref. [ 12] as 

{ [ 1 -- exp(--]3w°i) ] } 2A+I 
H Kvib (2.47) 
- -  [ 1 exp(-/3o~ai) ] 
Ai 

where w°i is the ph pole, which corresponds to the RPA solution wai. In Ref. [50] it has 
been shown that this coefficient Kvi b may increase from 1 at T = 0 to 1.6 at T = 2 MeV 
under the influence of the quadrupole vibrational modes in 58Ni. This pushes Em.f. closer 
to E~.g.. Shown in Fig. 1 is the excitation energy E*.f. in 9°Zr, 12°Sn and 2°8pb as a 

function of temperature, using the single-particle energies defined in the Woods-Saxon 
potential for these nuclei (See Section 3). As seen there is a substantial discrepancy 
between the value of Em.f. and EF.g. at T ~< 5 MeV. The difference is larger in the lighter 
system (9°Zr) ,  where E* > E~.g., and much reduced in 2°8pb, where E* < E~.g. at the 
same temperature T. As we cannot estimate explicitly the contribution from vibrational 
modes here, we just show in this figure the arithmetic average/~* = (E~.g. + Em.f.)/2 as 
a function of temperature for a comparison, based on the discussion above. 

3. Numerical  results 

In this section we present the results of a systematic comparison between the cal- 
culations within our formalism and the recent experimental data for three nuclei 9°Zr, 
12°Sn and 2°spb as a function of temperature in a wide range 0~< T ~< 6 MeV. We 
also extend the consideration to higher excitation energies E*. Since we are interested 
in the evolution of the hot GDR via its coupling to the single-particle field, a micro- 
scopic description of the structure of the g.s. GDR (T = 0) and its spreading width F l 
would not be important in the present consideration. Such description can be found in 
a number of works such as Refs. [ 16-19]. Moreover the microscopic calculations at 
T v~ 0 [ 14,20,21] have shown that the GDR can be considered as a strongly collective 
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Fig, 1. Excitation energy as a function of temperature. Solid curves with diamonds represent E* (see 
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text). Solid curves denotes E* of the Fermi-gas model with o~ = 12 .  Solid curves witfi stars stands for F.g. 
/~* = (Em.f. + EF.g . ) /2 .  

excitation, which is stable against changing the temperature. Therefore in order to have 
a simple and clear picture, we assume that at the g.s. GDR is generated by a single 
collective and structureless phonon width energy tOq closed to the energy E6OR of the 
g.s. GDR. This GDR phonon is damped via coupling to ph, pp and hh configurations. 
We employ realistic single-particle energies, calculated in the Woods-Saxon potential at 
T = 0 for 9°Zr, 12°Sn and 2°8pb. The parameters of the Woods-Saxon potentials, used 
in the calculations, have been defined in Ref. [51].  In 2°spb, in particular, the levels 
near the Fermi surface are replaced with the empirical ones. The single-particle ener- 
gies levels span a large region from - 3 0  MeV up to the bound states and quasibound 
states at around ~<20 MeV for both neutron and proton components. This means that 
after coupling to the GDR phonon the ph-phonon, pp-phonon, and hh-phonon poles 
in Eq. (2.28) can be located at rather high energies up to more than 50 MeV. The 
ph, pp and hh poles in the expression for the single-particle damping (Eq. (2 .27))  
can also be located at up to around 40 MeV. Hence the collective GDR phonon in our 
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Table 1 
Parameters of the model used in calculations 

441 

Wq (MeV) F1 (MeV) F2 (MeV) 

9°Zr 16.8 0.416 1.20 
12°Sn 17.0 0.313 1.02 
208pb 13.8 0.103 0.548 

formalism is practically coupled not only to low lying ph, pp, and hh configurations, 

but also to high-lying ones. These energies are extended to non-zero temperatures. The 
self-consistent calculations in the thermal mean-field in Ref. [52] have justified this up 

to T _~ 5~6  MeV, where the single-particle energies show a little change as a function of 

temperature. The matrix elements of the coupling to ph and pp or hh are parametrized 
p(q) K,(q) 

as "ph = FI for (s ,s ' )  = (p ,h )  and F (q) = = Fz for (s , s  ~) = (p ,p ' )  or (h ,h ' )  pp ~ hh 

As the ph interaction in the GDR is dominated only across the two major shells, which 

are closest to the Fermi surface from both sides, the uniform distribution of the ph 
strength over all the levels can be justified if F 2 << F~. The phonon energy Wq, F1 

and F2 are three parameters in our model. Their values are chosen for each nucleus so 
that the empirical width FQ and energy E6oR of the g.s. GDR in these nuclei [53] 

are reproduced after the coupling is switched on, and that the EGoR(T), defined from 
Eq. (2.39), does not change appreciably with varying temperature. The best sets of 

parameters for these nuclei are presented in Table 1. The selected parameters are kept 

unchanged throughout the calculations at T 4: 0. This ensures that all thermal effects 

are caused by the microscopic coupling between the GDR and the single-particle field, 

but not by changing parameters. In calculating the damping we use for the ~ functions 
in the RHS of Eqs. (2.27) and (2.28) the representation 

1 ( l 1 ) (3.1) 
6(x)  = ~ x - i e  x + ie " 

The results of calculations do not vary appreciably in the interval 0.2 MeV ~< e ~< 

1.0 MeV. Therefore only those, obtained with e = 0.5 MeV, are discussed below. 
The average single-particle damping widths F~.p. in J2°Sn due to the coupling with 

the dipole-phonon field are shown in Fig. 2 as a function of temperature. The results 
are obtained at several values of energy w below and above EaI~R. Comparing Fig. l a 
and lb, one can see clearly that the thermal effects caused by the coupling to pp and 

hh configurations significantly increase the single-particle damping at T ¢ 0, especially 

in the energy region below an near the GDR. The width Fs.p. in this region increases 
non-linearly as increasing temperature from a value around 0.1 MeV at T = 0 to 

around 1.5-1.6 MeV at T = 5 MeV. In the region above the GDR, Fs.p. is rather stable 
as varying temperature (dash-dotted curves). Its absolute value in this region does not 
exceed 0.5 MeV. The widths Fs.p. in 9°Zr and Z°8pb show a similar feature. Their absolute 
values in 2°8pb are about two-times smaller than in 12°Sn, while they are nearly the same 
in 9°Zr. These results may serve as a good justification for the statistical approximation 
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curves represent the widths obtained within the adiabatic model [ 11 ] without and including the evaporation 
width, respectively. 

based on Eq. (2.36). Taking into account the coupling to other multipolarities increases 
the total single-particle damping width to around 1 MeV at T = 0 and 2-3 MeV at 
T = 3 MeV, as has been shown by Donati et al. in Ref. [ 54]. 

The FWHM of the GDR and its components, calculated from Eq. (2.38) in ]2°Sn 
and 2°8Pb are displayed as a function of temperature in Fig. 3 in comparison with 
the recent inelastic a scattering data [ 11]. The quantal width F a (dashed curve) is 
obtained through the coupling to only ph states. The thermal width F r  (dotted curve) 
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(b) the solid curve is the width FGDR, calculated without the effect of single-particle damping and plotted 
against Em.f.. In (a) the width, obtained in Ref. [24], is represented by the solid curve, while the result of 
Ref. [28] is shown by the dotted curve. 

comes from the coupling to pp and hh configurations at T 4: 0. The total width /"GDR 

(solid-with-diamond curve) is calculated through the coupling to all ph, pp and hh 
configurations, including the effect of  single-particle damping. In general, / 'GO R is not 
the sum of  FQ and Fr because the poles of  the Green function Gq(¢.o) are different due 
to the coupling to different configurations. It is clear from this figure that the quantal 
effects become weaker in hot GDR as FQ is getting smaller slowly with T going up. A 
slightly smaller width of GDR at T = 3 MeV in 9°Zr and 2°8pb has also been reported in 
the numerical calculations within the NFT in Ref. [20].  The thermal damping width Fr, 
on the contrary, becomes rapidly larger as increasing T. As the result, ffGDR increases 
sharply as T raises up to 3 MeV and slowly at higher temperatures. It reaches a saturated 
value of  around 14 MeV in 12°Sn and 11 MeV in 2°8pb at T = 4 - 6  MeV. The behavior 
of the width as a function of  T is different in two nuclei. The reason comes from the 
difference in the single-particle energies between nuclei. These evaluations show that 
the GDR width at high temperatures is driven mostly by the thermal width Ft. The 
results of  our calculations agree well with the experimental data. This agreement is also 
better than the one given recently within the adiabatic model in Ref. [ 25 ]. Our results 
also cover a much wider temperature region. The effect of  the single-particle damping 
is rather small up to very high temperature (Compare the solid-with diamonds and solid 
curves ) .  

Shown in Fig. 4 is the same width FGDR in our model for 12°Sn and 9°Zr, but plotted 
as a function of excitation energy E* in comparison with the FWHM of the GDR 
from the heavy-ion fusion data in tin isotopes [3-6,9]  and in 9°Zr [7] .  An overall 
agreement between our results and the experimental data is seen in the whole region of 
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excitation energy E*, including the data at 250 ~< E* ~< 450 MeV [4].  The predictions 

of  Refs. [24] (solid curve) and [29] (dotted curve) are also shown. They are similar 

to ours at E* ~< 150 MeV. In this region there is a large discrepancy between the 

dependence of  F6DR on Em.f. from Eq. (2.45) (solid with diamonds) [50] and the 

one on EF.g . *  (dashed).  The same width plotted as a function of/~* = (Em.f.* + E*F.g.)/2 

is also shown in Fig. 4 for comparison. This discrepancy is the reason why theory 

underestimates the data in 9°Zr if plotted versus Em.f., while it is found in a more 

reasonable agreement with the data if plotted versus EF.g. (Fig. 4b). 

The dependence of  the same width FGD R as a function of  E~.g. in a much larger region 

up to E~.g. = 900 MeV is represented in Fig. 5. The width saturation is clearly seen in 

all three nuclei starting from E* ,-~ 150 MeV. According to the Landau theory of  Fermi 

liquids [28] the behavior of  vibrations of  a Fermi liquid at T ~ 0 is different depending 

on the relaxation time r ~ F -1. The region where the frequency w >> F corresponds 

to the region of  zero-sound propagation (the collisionless or rare-collision regime), 

while the ordinary sounds takes place if ~o << F (the frequent-collision regime). The 

absorption coefficient (damping) 3' is ~x T 2 in the zero-sound region and cx o ~ 2 / T  2 in 

the ordinary-sound region. The transitional region w ~ F corresponds to a very strong 

absorption, where the isolation of  the different types of  waves as undamped processes 

is not possible. As the g.s. GDR can be considered as an analogue of  the zero sound 

(with a certain damping) in finite systems, the following widths can be deduced for the 

damping of  the GDR at T 4= 0 in the zero-sound region: 

1F'< = F T=O GDR -I- C l T  2 if FGDR <~ EGDR, (3.2) 

and ordinary-sound region: 
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F> = F r=°GDR + c2 _ _ R  if IGOR >> EGDR . (3.3) 

This behavior would correspond to the transition from the quantal region (zero-sound) 
to the region of  a full thermodynamic equilibrium (ordinary sound). The widths F> and 
F< with cl = 1 MeV -1 and c2 = 1 MeV are also plotted in Fig. 6 with a phase transition 
point at T _~ 4.1, 3.9 and 3.7 MeV for the system with A = 90, 120, and 208, respectively. 
It is seen from this figure that the behavior of the GDR width in 9°Zr, ]2°Sn and 2°8pb 
exhibits a similar feature to the transition from zero to ordinary sounds in a Fermi liquid, 
although the phase transition is strongly smeared out in hot nuclei. Hence the region of  
width saturation in finite nuclei may correspond to the transitional region in the hot Fermi 
liquid, where the two sounds cannot be separated as they are both strongly overdamped. 
According to what discussed above, the dominating contribution in the GDR width in 
finite nuclei at T = 0 and very low T comes from the coupling of  the collective phonon to 
ph configurations, while at high T the GDR width is constituted mainly by the coupling 
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Table 2 
The value AEj = ~j - Ej for several levels near the Fermi surface in 2°spb at T = 10 MeV 

Z N 

nlj AEj (MeV) nlj aEj (MeV) 

lgT/2 --0.483 1 hg/2 0.0063 
2d5/2 0.424 2f7/2 -0 .397 
lh11/2 0.174 li13/2 0.383 
2d3/2 -0 .006 3p3/2 0.402 
3s j~ 2 -0 .330 2f5/2 0.142 
1 hg/2 -0 .105 3pl/2 -0 .335 
2f7/2 0.299 2g9/2 -0 .003 
1i13/2 0.231 li11/2 0.554 
2f5/2 -0 .006 1j15/2 0.415 
3p3/2 -0 .007 3d5/2 0.328 
3pl/2 0.330 4st~ 2 0.007 

to pp and hh. If we recall that in the fully microscopic description the particle-phonon 

coupling term Hc in Eq. (2.4) in fact includes the configuration mixing between phonon 
excitations with different multipolarities (Eq. (2.43)),  the multiparticle collisions are 
indeed already included in Hc. In the numerical calculations in the present work these 
collisions are effectively taken into account by choosing the parameters F1 and F2. The 
increase of thermal effects due to the coupling to pp and hh as increasing temperature, 
therefore, corresponds directly to the increase of collisions. This leads to a transition 
from a rare collision regime at low temperature, where the quantal effects are dominated 
(coupling to ph configurations), to a frequent collision regime at high temperature, 
which is driven mostly by thermal effects (coupling to pp and hh configurations). 
Therefore we conclude that the quantal effects of coupling to ph configurations in finite 
nuclei create an analogue of the damping of zero sound, while the thermal effects due 
to the coupling to pp and hh correspond to the appearance of ordinary sound in hot 
nuclear matter. We also found that the effect of single-particle damping is rather small 
up to very high temperature. An example is given in Table 2, where the values of the 
difference AEj = F.j - Ej with/~j being the solution of Eq. (2.35) for the levels around 
the Fermi surface in/°spb at T = 10 MeV are shown. We should not forget that other 
effects, such as the temperature-dependence of the single-particle energies, the influence 
of higher multipolarities on the single-particle damping, the explicit coupling to the 
continuum, the inclusion of the evaporation width, etc., which are left out in this study, 
may also improve the results in this region of very high excitation energy. By the same 
reason, the correspondence between the zero-to-ordinary sound transition in the Fermi 
liquid and the behavior of the hot GDR width, calculated within our formalism, must 
be understood in this context. 

The propagation of zero sound in excited nuclear matter has been also discussed within 
the Landau-Vlasov formalism in Ref. [30], where the transition from zero to ordinary 
sounds has been referred to as a possible mechanism of the "disappearance" of GDR at 
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high temperatures. This mechanism can be interpreted based on the results obtained in 
this work as follows. Shown in Fig. 6 is the strength function S6DR(tO), calculated from 
Eq. (2.32), in 12°Sn at several temperatures for a GDR centered at E6oR(T) with the 
width FCDR, obtained above. The quantal coupling to ph configurations (Fig. 6b) makes 
the GDR peak narrower (Cf. [20] ), while the thermal effects due to the coupling to pp 
and hh configurations (Fig. 6c) enlarges the GDR as increasing temperature. Higher than 
T ~ 3 - 4  MeV the peak, caused by thermal effects alone, ceases to change as its width 
reaches a saturation. The combined effects (Fig. 6a) give a GDR peak, which changes 
drastically when increasing T up to 3-4 MeV, but becomes temperature-independent at 
higher T, conserving the total GDR strength. Already in Ref. [35], it has been shown in 
a simplified model that there is an energy dissipation from the peak in Fig. 6b to the one 
in Fig. 6c. We can see here that the realistic situation is driven by the same mechanism. 
The difference is that the space of pp and hh configurations in realistic hot nuclei 
is significantly larger and spreads up to high energies including the GDR region and 
beyond it. This makes the GDR persists even up to very high temperature (T = 10 MeV 
in the figure) with all its strength preserved. Hence the hot GDR does not seem to 
disappear within the present model. This result must be understood in the context that 

the damping mechanism of the GDR at high temperatures mostly comes from thermal 
effects via the coupling to pp and hh configurations. The quantal effects through the 
coupling to ph states, which are responsible for the damping of the g.s. GDR as zero 
sound, vanishes at high temperatures. As has been noticed in Ref. [8], there is no 
evident discrepancy between the y spectra measured in the various experiments, rather 

the methods of analysis seem to lead to contradictory conclusions. One of the reasons, 
as has been mentioned above, may be the uncertainties in the experimentally extracted 
temperature. In order to show this more clearly, we notice that the measured y absorption 
cross-section is proportional to the spectral intensity Jq(w) in Eq. (2.32). In order to 
recover the GDR strength function Sq(tO) the spectral intensity must be multiplied by 
(exp(~o/T) - 1). In practice, after subtracting the back ground, the Y ray spectra are 
usually extracted in the experiments by multiplying the total-window y-ray spectra with 
exp(~o/Teff), where Teff is an effective temperature, characterizing the average excitation 
energy E* of the system. If the value of Teff does not coincide with the value T, it can 
affect the extracted result. An example is shown in Fig. 7 for the spectral intensity Jq(~O) 
of the GDR in 12°Sn at T = 3 MeV after multiplying it by exp(w/T) (solid curve). If 

Teff was taken from the Fermi-gas model (Eq. (2.44)), it would equal to Teff ~- 4 MeV 
at the same value of excitation energy because Emf. (T = 3 MeV) -~ EFg (Teff = 4 MeV) 
(Fig. lb).  This would lead to a less collective GDR peak as shown by the dashed line 
in Fig. 7. This artifact shows up only at intermediate temperatures 1~< T ~< 3 - 4  MeV 
(100 ~< E~.g. ~< 160 MeV), where the discrepancies are largest. At higher temperatures 
or in very heavy nuclei these uncertainties are much reduced since E~f  _~ E~.g.. 

Finally we would like to notice that the mechanism of the "disappearance" of the 
hot GDR at very high temperature is, nonetheless, still being debated. Following the 
interpretation of Ref. [45], the particle evaporation width Fev should also lead to a 
maximum excitation energy (or limiting temperature) above which the GDR is not 
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Fig. 7. Spectral intensity Jq(W) of the GDR in 12°Sn at T = 3 MeV, multiplied by exp(oJ/T) (solid curve) 
and by exp(to/Teff) (dashed curve). 

observable. The similar argument has been proposed in Ref. [26], according to which 

the GDR width should reach a value around 30 MeV at the excitation energy E* 

400 MeV. However, the same Ref. [26] has also pointed out that, in order to fit the 

existing experimental data, one needs to introduce an explicit suppression of the GDR 

strength when the nucleus reaches an excitation energy around 300 MeV [55]. In such 

a case, the question of the GDR width may become irrelevant above the excitation 

energy where its strength vanishes or becomes too small. There are two reasons why 
we leave these question for further studies. First, even though the contribution of the 

continuum is effectively included in our calculations via the high-lying discrete states, the 
explicit inclusion of the continuum is beyond the framework of the present formalism. 

As has been mentioned in Section 1 [ 14], it is clear that the escape width is almost 
independent of temperature. Nevertheless, an extension of an approach such as the one 

in Ref. [56] to take into account the continuum at T =/= 0 is called for. Apart from 
this, the energy weighted sum rule for the GDR is well conserved within our approach. 

Second, as has been proposed by the author of Ref. [26], the predicted rapid increase 

of the GDR width due to the particle evaporation at very high temperatures should be 
experimentally tested. Existing experimental data from heavy-ion fusion reactions so 
far indicate on a saturation, rather than an increase, of the GDR width in tin isotopes 
at E* ~> 250 MeV in agreement with theoretical estimation within our formalism. The 
authors of Ref. [9], on the other hand, have also demonstrated that, the spectra, obtained 
by them, can be reproduced with or without a saturation of the width providing that it 
reaches large values, of the order of 15 to 20 MeV, above 100 MeV of excitation energy. 
Our calculations have shown that I'GOR in 12°Sn actually reaches a value ~14 MeV at 
E* >~ 300 MeV, which matches this criterion in favor of the width saturation. This 
discussion simply shows that the question of the behavior of the hot GDR at very high 
temperatures needs further investigations both experimental and theoretical. 
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4. Conclusions 

In this paper we have presented an approach to a systematic theoretical study of the 
width of the GDR as a function of temperature in the nuclei 9°Zr, 12°Sn, and 2°8pb. 

The results have been compared with the recent experimental data of the GDR width 

in heavy-ion fusion reactions as well as inelastic a scattering. An overall agreement 

between theory and experiment is found in a large region of excitation energies up to 

E* ~ 450 MeV, where the heavy-ion fusion data are currently available. For the first 
time the theory describes both regions of the width's increase as well as the width's 
saturation in a uniform way. 

The analysis in the present paper can be summarized as follows: 

(i) The double-time Green function method is a powerful tool to derive a consistent 
microscopic approach to the damping of the GDR in a large region of excita- 

tion energy since the advanced and retarded double-time Green functions can be 

continued analytically in the complex-energy plane. 

(ii) Thermal effects due to the coupling of the GDR collective vibration to the pp and 

hh configurations play indeed a decisive role in the increase of the GDR's width 

at low excitation energies (up to 130-150 MeV) and in the width's saturation at 
high excitation energies. It seems that the effects of coupling to pp and hh config- 

urations, including high-lying levels in the continuum region, are fairly enough to 
account for the thermal fluctuations in the hot GDR in finite nuclei. The quantal 

width FQ, which is caused by the coupling of the GDR to only ph configurations, 
decreases slowly with increasing temperature T. The region where the GDR width 

saturates can serve as an analogue of a gradual transition from zero sound (g.s. 

GDR) to ordinary sound (hot GDR) in finite nuclei at non-zero temperature. 

(iii) The present formalism is based on the assumption of the small single-particle 

damping. The validity of this assumption is confirmed by the present numerical 

calculations in hot realistic nuclei, which show that the effects of single-particle 

damping on the GDR width are small up to very high temperatures even with 
the scattering term included. This can serve as a good justification for using the 

Fermi-Dirac distribution to describe the single-particle occupation number as has 
been usually assumed in statistical approaches to hot nuclei. If  the single-particle 
damping is large, the approximation in Eq. (2.36) is no more valid. In this case one 
has to solve the set of Eqs. (2.25)-(2.28) ,  (2.33), and (2.34) self-consistently. 

This may be the case, e.g. when one attempts to take into account the contribution 
of the coupling to the continuum rigorously in the damping of the GDR at very 

high temperatures. This question, however, requires further theoretical as well 
as experimental studies. In particular, the issue on the "disappearance" of the hot 
GDR is still offering plenty of room for debates [30,45]. At least, the point should 
be to prove more clearly on what is the mechanism of this "disappearance": the 
rapid increase of the evaporation width [45] or the width saturation, which may 
correspond to the zero-to-ordinary sound transition, as has been shown in the 
present work and also discussed in Ref. [30], or both of them. It is our hope that, 
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in the future study of this issue, the results obtained in the present work can serve 

as one of useful guidelines. 

(iv) A more detail study on the relation between the excitation energy and temperature 

in finite nuclei at temperatures below T = 5 MeV is called for in order to avoid the 

uncertainties in confronting theoretical predictions and the data. The contribution 

from collective vibrational modes, which may enhance the level density [50],  and 

from other sources may have to be included to improve the results. 

The application of the present formalism to the case, when the GDR consists of more 

than one collective phonon, is straightforward. The structure of phonons can be then 

defined from a microscopic Hamiltonian within the RPA as in Refs. [ 16,17]. Hence one 

can calculate the parameters of the model rather than choosing them empirically at T = 0. 

While this will certainly make the numerical calculations much more complicate, it will 

not alter the conclusions above since the physics of thermal damping is independent of 

this procedure. 
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