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Abstract. Over the last several decades, extensive experimental and theoretical work has been done on
the giant dipole resonance (GDR) in excited nuclei covering a wide range of temperature (T ), angular
momentum (J) and nuclear mass. A reasonable stability of the GDR centroid energy and an increase
of the GDR width with T (in the range ∼ 1–3 MeV) and J are the two well-established results. Some
experiments have indicated the saturation of the GDR width at high T . The gradual disappearance of the
GDR vibration at much higher T has been observed. Experiments on the Jacobi transition and the GDR
built on superdeformed shapes at high rotational frequencies have been reported in a few cases. Theoretical
calculations on the damping of the collective dipole vibration, characterised by the GDR width, have been
carried out within various models such as the thermal shape fluctuation model and the phonon damping
model. These models offer different interpretations of the variation of the GDR width with T and J
and have met with varying degrees of success in explaining the experimental data. In this review, the
present experimental and theoretical status in this field will be discussed along with the future outlook.
The interesting phenomenon of the pre-equilibrium GDR excitation in nuclear reactions will be briefly
addressed.

1 Introduction

The isovector giant dipole resonance (GDR) in nuclei is de-
scribed as the collective dipole vibration of protons against
neutrons. The GDR built on the nuclear ground state
(GS) has been studied, for more than seven decades, in
almost all stable nuclei via photoabsorption experiments.
The absorption cross-section as a function of γ-ray energy
(Eγ) is described, except for very light nuclei, by a single-
component (for spherical nuclei) or a multi-component
(for deformed nuclei) Lorentzian function
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where EDi, ΓDi and σmi are, respectively, the resonance
energy, width and peak cross-section of the i-th compo-
nent. In axially-symmetric deformed nuclei there are two
components with their energies related to the nuclear de-
formation. The widths of the GDR components arise due
to the damping of the collective motion. The Thomas-
Reiche-Kuhn (TRK) sum rule sets a limit to the total inte-
grated cross-section, in the absence of velocity-dependent
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and exchange forces [1], as
∫ ∞

0

σ(Eγ)dEγ = TRK = 60
NZ

A
MeV · mb, (2)

with N , Z and A denoting the neutron, proton and mass
numbers, respectively, of the nucleus. The experimental
integrated cross-sections exceed TRK by a factor (1+α).
For the range of integration up to ∼ 30MeV (spanning
the GDR region), the value of α is found to be ∼ 0.1–0.2
whereas for the integration up to the meson threshold at
∼ 140MeV, α is ∼ 0.5–0.7.

Brink and Axel [2, 3] hypothesised about six decades
ago that nuclei should manifest the GDR built on excited
states with a similar resonance profile as that for the GS.
The GDR built on low-lying excited states was first seen
experimentally in proton capture reactions [4] and, on con-
tinuum states, in the fission fragment γ-ray spectrum of
252Cf [5]. The first observation of the GDR in hot and ro-
tating nuclei, formed in heavy-ion fusion reactions [6], was
made about three and a half decades ago. This opened up
an extensive field of experimental and theoretical research.

In the microscopic picture of the GDR built on the GS,
the resonance is a coherent state of many one particle-one
hole (1p1h) excitations across the Fermi surface. Its width
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ΓQ (∼ 4–5MeV in medium-mass and heavy nuclei) comes
from the quantal effects and consists of three parts [7] as

ΓQ = ΓLD + Γ ↓ + Γ ↑. (3)

The Landau width ΓLD is essentially the variance σ =√
〈E2〉 − 〈E〉2 of the energy distribution of 1p1h states

forming the giant resonance. The spreading width Γ ↓ is
caused by the coupling of these states to 2p2h (doorway)
states and the subsequent progressive coupling to complex
np-nh states. The escape width Γ ↑ arises from the cou-
pling to the continuum causing direct particle decays feed-
ing the hole states in residual nuclei. In medium-mass and
heavy nuclei, the major contribution to ΓQ comes from
Γ ↓. In light nuclei, both Γ ↑ and ΓLD are also important.

Within the semiclassical methods such as the Landau-
Vlasov kinetic theory [8–10] or the phenomenological ap-
proach to nuclear friction [11], ΓLD corresponds to the
collisionless damping or one-body dissipation (long mean
free path), whereas Γ ↓ arises from the collisional damp-
ing or two-body dissipation (short mean free path). In the
hydrodynamic theory of collective motion, which is based
on short mean free paths, the dissipative effects are usu-
ally the bulk phenomena caused by the viscous shearing
stresses between the adjacent layers of a fluid. In collec-
tive theories, the damping of the giant resonance arises
from the friction (i.e., viscosity) between the oscillating
neutron and proton fluids [12].

The understanding of the GS-GDR width in various
nuclei, both spherical and deformed, has provided valu-
able information on the nuclear structure and the effec-
tive nucleon-nucleon interaction in the nuclear medium.
The observation of the GDR in heavy-ion fusion reactions,
therefore, was recognised as a tool for studying the prop-
erties of hot and rotating nuclei over a wide range of tem-
perature T (related approximately to the excitation en-
ergy as EX ∼ AT 2/8 —see later) and angular momentum
J . (In this review, J will be an integer or a half-integer
and the unit h̄ will be implicitly assumed.) In all these
measurements, the basic observation so far is that for a
given nucleus, the GDR energy is nearly constant at all T
and J . The integrated photoabsorption cross-section (on
excited states) exhausts ∼ 100% of TRK except at very
high T (∼ 4MeV). However, the GDR width generally
increases with J and T showing that the Brink-Axel hy-
pothesis holds only partially.

The experimental study of the GDR in excited nuclei
has developed over the years from a simple inclusive mea-
surement of high-energy γ-rays in a nuclear reaction to
elaborate exclusive ones. The need for the exclusive mea-
surements arises from the fact that in a heavy-ion fusion
reaction, the compound nucleus (CN) is populated over a
wide range of J and the GDR γ-rays are emitted at var-
ious decay steps as the nucleus cools down to T = 0. An
inclusive measurement, therefore, gives an average effect
over a range of J and T . Moreover, the spectrum may be
contaminated by non-fusion events. Various types of ex-
clusive measurements have been designed over the years.
In a measurement in coincidence with the low-energy γ-
ray multiplicity, it is possible to suppress the non-fusion

events (expected to populate low J) and extract the J-
dependence of the width. A measurement in coincidence
with evaporation residues rules out the non-fusion events
and that in coincidence with individual residues can se-
lect a particular decay chain giving more detailed infor-
mation. The coincidence with high-spin isomers addresses
the high-J region. Attempts have been made to extract
the spectrum from the initial steps of decay using the sub-
traction technique, i.e., from the difference of two spectra
measured at different values of EX and mass (differing by
1 or 2 neutrons) of the CN. Finally, particularly at high
energies, the velocity spectrum of the coincident residue
nuclei has been used to characterise the effective EX and
mass of the nuclei emitting high-energy γ-rays.

There are different theoretical approaches for under-
standing the J- and T -dependence of the damping of the
GDR. One of these, used widely in the interpretation of
the experimental data, is based on the thermal shape fluc-
tuation model (TSFM). Although an increase of the width
is generally expected at higher T because the GDR can
couple to a denser configuration of states, a detailed con-
sideration revealed [13] that the intrinsic width hardly in-
creases with T . In a simple language, this happens because
of the following reasons. First, the damping width of the
particle and hole states constituting the GDR shows a
weak T -dependence, both being well above and below the
Fermi surface, respectively. Second, this weak dependence
further cancels out due to the correlation between parti-
cle and hole contributions, which reabsorbs the vibration
they have excited. The essential arguments in the TSFM
for explaining the observed increase in width are the in-
crease of nuclear deformation with J and the increase of
shape fluctuation with T . A larger deformation implies a
wider splitting of the GDR energies. The Coriolis effect at
high rotational frequencies produces further splitting. The
observed GDR width, which is an ensemble average over
those for various shapes, thus, goes up with T and/or J .

In other theoretical approaches, the damping of the
GDR is attributed to the inter-particle collisions, as in
the macroscopic collisional damping model (CDM), or to
the coupling of the GDR to non-collective particle-hole
(ph), particle-particle (pp) and hole-hole (hh) configura-
tions at finite T , as in the microscopic phonon damping
model (PDM). According to another model, the observed
increase of the width at higher T arises from the higher
evaporation widths (related to short lifetimes) of the ini-
tial and final states connecting the GDR γ-ray transition.

The experimental study of the GDR over a wide range
of J and up to a moderate T (∼ 2.5MeV) had the pri-
mary motivation of addressing the nuclear shape evolution
and fluctuations and comparing with various theories. The
measurements at higher T (up to ∼ 5MeV) addressed
the saturation of the GDR width and the vanishing of
the collective vibration. The latter phenomenon can, pos-
sibly, be related to the liquid-to-gas phase transition in
hot nuclei. Besides the excitation of the statistical GDR
in an equilibrated system, the excitation of the GDR is
possible, at the pre-equilibrium stage, in reactions with
charge-asymmetric entrance channels. This phenomenon
of pre-equilibrium GDR (PEQGDR) has been studied in
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many cases addressing the beam energy dependence, the
projectile-target charge asymmetry and the reaction dy-
namics. Using the GDR as a tool, other important stud-
ies were made on the fission dynamics and the isospin
symmetry in hot nuclei. This field of research has been
reviewed [7, 14–19] earlier by different authors. A compi-
lation of the experimental data on the statistical GDR
(except at very high energies) till mid-2006 can be found
in ref. [20]. The present review will mainly address the ex-
perimental and theoretical aspects of the damping of the
GDR with T and J obtained from the studies on the sta-
tistical GDR. The other topic touched upon will be the
PEQGDR.

2 Experimental methods

In the experimental study of the GDR in excited nuclei,
high-energy γ-ray spectra, in the range Eγ ∼ 5–50MeV,
are measured using various detector configurations. A typ-
ical γ-ray spectrum has three characteristic parts as shown
in fig. 1. A high-energy (Eγ > 25MeV) bremsstrahlung
tail, falling exponentially with Eγ and arising from the
initial nucleon-nucleon (NN) collisions, is seen at high
beam energies (Eb) of ∼ 10MeV/nucleon or more. At
Eγ ∼ 10–25MeV, a bump, characterising the emission of
the GDR γ-rays, is superimposed on a falling spectrum.
For Eγ ∼ 5–10MeV, the spectrum shows another expo-
nential decrease with a steeper slope. This part arises from
the statistical γ-rays emitted below the particle-emission
threshold. The overall exponential fall in ∼ 5–25MeV
range arises due to the decrease of the nuclear level den-
sity (NLD) with the decrease in EX . Briefly stated, the
method of extracting information on the GDR from the
bremsstrahlung-subtracted γ-ray spectra is as follows. A
calculation is performed within the statistical model of
nuclear reactions in which the GDR strength function as
well as the NLD parameters are important inputs. From
a comparison of the calculated and experimental spectra,
the best set of GDR parameters is obtained. Suitably de-
signed exclusive measurements are performed to extract
the dependence of the GDR width on T and J .

2.1 Detector systems

Since the GDR in nuclei has a width of ∼ 3–10MeV, the
energy resolution demanded of the high-energy γ-ray de-
tector is not very stringent. On the other hand, the cross-
section decreases exponentially down to a few nb/MeV
at the high-energy end of the γ-ray spectrum. The de-
tector should, therefore, have a high detection efficiency
and a good line shape of the response function (implying a
good confinement of the electromagnetic shower produced
by the incident high-energy photon). The background due
to pulse pileup and cosmic-ray–induced events has to be
reduced to an insignificant level. In general, nuclear reac-
tions produce neutrons and light charged particles with
much higher cross-sections compared to the high-energy
γ-rays. While charged particles can be stopped in most

Eγ (MeV)
10 20 30 40 50

dM
/d

E γ 
 (M

eV
-1
)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

x102

x104

EX=270 MeV

EX=150 MeV

EX=190 MeV

Fig. 1. Measured γ-ray spectra (solid circles) from 116Sn + 12C
and 116Sn + 24Mg reactions at Eb = 17 and 23 MeV/nucleon
for different EX in the compound system. Solid lines represent
fits to the bremsstrahlung component for Eγ ≥ 35 MeV. Open
circles show bremsstrahlung-subtracted data. (Adapted from
ref. [21].)

cases, the most significant background arises from neu-
trons. These can be discriminated from the γ-rays using
the time-of-flight (TOF) technique, which demands a good
time resolution of the detector.

In the beginning, NaI(Tl) detectors were used mainly
because of their availability. In the very early experi-
ments, multiple detectors of typical dimensions 5′′(dia)×
6′′(length) were employed. Many experiments were per-
formed with a single big, typically 10′′(dia) × (10–15)′′
(length), detector by the Stony Brook, Seattle and KVI
groups. In recent years, NaI(Tl) detectors (single or close-
packed arrays) are used in some laboratories (IUAC Delhi,
PLF Mumbai, Warsaw). The most extensively used high-
energy γ-ray detectors are based on BaF2 scintillators.
These have a slightly worse energy resolution than NaI(Tl)
but a better timing enabling a good neutron discrimina-
tion at a smaller distance from the source. The problem of
summing and pileup is avoided by using multiple detectors
in a closed-packed array. Moreover, the pulse shapes can
discriminate between particles and γ-rays. The BaF2 ar-
rays, consisting of 7 to ∼ 200 elements, have been used by
a number of experimental groups. Some examples of these
arrays are HECTOR (Milano-Copenhagen) [22], MEDEA
(GANIL) [23], LAMBDA (VECC Kolkata) [24] and the
arrays of various sizes at Seattle, Stony Brook, RIKEN,
Saclay, PLF Mumbai, Michigan, Argonne National Lab
(ANL), Oak Ridge and Texas A&M. Bismuth Germanate
(BGO) detectors, having a little worse time resolution but



Page 4 of 42 Eur. Phys. J. A (2016) 52: 143

high density and high Z content, implying a better con-
finement of the electromagnetic shower, have also been
employed. Some examples are seen in the experiments per-
formed in Legnaro and Chalk River.

The response of the detector system for various γ-ray
energies should be measured in order to analyse the exper-
imental γ-ray spectrum. In the Eγ-range ∼ 0.5–6.1MeV,
radioactive sources such as 22Na, 137Cs, 60Co, 88Y, Am–
Be, Pu–13C are used. For higher Eγ , different nuclear re-
actions are employed. Some examples are 12C(p,p′γ) and
11B(d,nγ) producing Eγ = 15.1MeV and 11B(p, γ) pro-
ducing Eγ > 18MeV. The measured spectra at specific
values of Eγ are compared with simulations of the detec-
tor response calculated using Monte Carlo based computer
codes such as EGS4 [25] or GEANT4 [26]. A good agree-
ment gives the confidence to use the simulated response
function at other γ-ray energies. The theoretical spectrum
is generally folded with the response function before com-
paring with the experiment.

In the exclusive measurements, high-energy γ-rays are
measured in coincidence with the low-energy γ-ray mul-
tiplicity Mγ (to gate on J), heavy reaction products (to
gate on complete or incomplete fusion events) or γ-ray
transitions in residue nuclei (to select fusion events or
a particular decay chain). The Mγ-detector is an ar-
ray of small-sized detectors with high intrinsic efficiency
and is kept at a close distance from the target in or-
der to have a large solid angle (typically 50–80% of 4π).
These consist of BGO detectors (PLF Mumbai, RIKEN,
Legnaro, Chalk River, ANL, Daresbury), BaF2 detec-
tors (VECC, Milano-Copenhagen group) or NaI(Tl) de-
tectors (IUAC Delhi, PLF Mumbai, KVI Groningen, Hei-
delberg, Strasbourg). The heavy reaction products are
detected in mass spectrometers (ANL, Rochester), in
parallel-plate avalanche counters (PLF Mumbai, Milano-
Copenhagen group, Grenoble, RIKEN, Texas A&M,
Darmstadt, GANIL, Saclay) or in detector arrays such as
TRASMA (LNS Catania) [27]. The evaporation-residue γ-
rays are detected in detector setups with high-energy res-
olution such as NORDBALL (Copenhagen) [28], GASP
(Legnaro) [29], and EUROBALL (Europe) [30]. In some
experiments, high-energy γ-rays were measured in coinci-
dence with inelastically scattered projectiles detected in a
magnetic spectrometer (NSCL, Michigan).

2.2 Statistical model analysis

The experimentally measured γ-ray spectrum is compared
with the statistical model (SM) calculation to extract the
properties of the GDR. In low-energy heavy-ion reactions,
the assumption of the formation of an equilibrated CN
is justified. At higher beam energies, the incomplete fu-
sion (ICF) process and the pre-equilibrium (PEQ) par-
ticles emission become important, removing energy from
the composite system. However, eventually an equilibrated
nucleus is formed within a range of EX and J which should
be properly estimated. The high-energy γ-ray spectrum
from the equilibrated nucleus is calculated with the SM
incorporating the GDR built on excited states.

Fig. 2. Gamma-ray spectra and results of the SM calcula-
tions in the reactions 19F + 93Nb at Eb = 80 (a), 100 (b) and
160 MeV (d) and 16O + 94Mo at Eb = 140MeV (c). (Adapted
from ref. [31].)

The SM has been discussed by many authors [14, 15]
and the essential points are mentioned here. High-energy
γ-rays are emitted in competition with various particles
from an equilibrated excited nucleus. The cross-section for
each depends on the effective transmission coefficient and
the final state density. For the γ-ray emission, the effec-
tive transmission coefficient is derived from the inverse
photoabsorption cross-section on the final state (eq. (1)),
which contains the GDR parameters. The final state den-
sity is defined mainly by the NLD. An important input to
the calculation is, therefore, the EX - and J-dependence of
the NLD. The generally used prescription for this depen-
dence is the Ignatyuk-Reisdorf prescription [32, 33]. This
incorporates the EX -dependence of the nuclear shell effect
and the deformation-dependence of the NLD parameter
a. At high EX or T , different T -dependences have also
been used [34–36]. The most commonly used computer
code for the SM calculation is CASCADE [37] with var-
ious modifications done by different groups. The SM has
been remarkably successful in describing the experimental
cross-sections varying over many orders of magnitude as
can be seen in fig. 2.

The temperature T at a certain EX and J is defined as

U = aT 2,

where a (∼ A/7–A/13MeV−1) is the NLD parameter [32]
describing the increase of the NLD with U or as

1
T

=
1
ρ

(
dρ

dU

)
,
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where ρ is the NLD at U . The thermal energy U is ob-
tained from EX after subtracting the rotational energy
and the pairing energy. The relevant T corresponds to the
final state with excitation energy EXf after the GDR γ-
ray emission where EXf = EXi −ED. Here, i and f refer
to the initial and the final states, respectively, and ED is
the GDR energy.

The GDR parameters are extracted from a compar-
ison of the experimental and calculated spectra (convo-
luted with the detector response function). For a more
sensitive comparison, both spectra are often presented as
linearised plots obtained after dividing them by another
calculated spectrum using a constant electric dipole (E1)
strength [31]. Another way of presenting the data [38] is
to divide the experimental spectrum by the ratio of the
calculated cross-section and the input absorption cross-
section (eq. (1)).

As mentioned earlier, the experimental spectrum arises
from all decay steps. In the calculation, the GDR pa-
rameters are generally kept the same at all steps and
the extracted quantities represent those for an average
T and J . While comparing with the theories, therefore,
the average T and J should be carefully defined. In an-
other approach [39–44], a calculated or prescribed (T, J)-
dependence of the width is incorporated in the SM calcu-
lation (instead of keeping it constant at all decay steps).
In most of the cases, the comparison of the experiment
and theory is done by comparing the measured and cal-
culated GDR widths. However, as has been emphasised in
ref. [40], a more demanding test of the theory comes from
the comparison of the spectral shapes.

For incorporating the theoretical results on the shape
evolution and fluctuations, the absorption cross-sections
for a given set of deformation parameters β and γ (we
use the same symbol used for gamma-rays) are defined
through the GDR parameters as follows. The GDR is gen-
erally split into three components [15] with the energy

EDi = ED0 exp

[
−

√
5
4π

β cos
(

γ − 2πi

3

)]
, (4)

for the i-th component. Here, ED0 is the GDR energy for
the spherical shape and γ = 0◦, 60◦ and 30◦ corresponds
to prolate, oblate and triaxial shapes, respectively. The
widths of the components are defined as

ΓDi = Γ0

(
EDi

ED0

)δ

, (5)

where Γ0 represents the width for the spherical shape. The
exponent δ is ∼ 1.5–2.0 as deduced [45, 46] from the GS
systematics. The energies and widths of the components
are used to calculate the cross-sections (eq. (1)) and the
ensemble-averaged cross-sections (over different shapes)
are utilised in the SM calculation at particular values of
T and J .

2.3 Angular distribution measurement

The measurement of the angular distribution of the GDR
γ-rays provides a tool to derive information on the nuclear

deformation. The angular anisotropy for E1 radiation is
described as W (θ) ∼ 1 + a2P2(cos θ) where P2 is the Leg-
endre polynomial of order 2. Although in heavy-ion re-
actions, the nucleus is formed in a highly aligned state
(projection M along the beam direction � J), the angu-
lar anisotropy becomes very small for a spherical nucleus
for the following reason. From an initial state with spin Ji,
the transitions take place to final continuum states with
spin Jf with ΔJ = Ji − Jf = 0 or ±1. Each component
has a non-zero a2. (For high J , a2 = 0.5 and −0.25 for
ΔJ = 0 and ±1, respectively). For a given Eγ , the NLD
of the final states for ΔJ = 0 is almost the same as the av-
erage NLD for ΔJ = ±1. The observed a2 thus adds up to
a very small value. For a deformed nucleus, the anisotropy
persists because the components separate in γ-ray energy.
This topic has been discussed by many authors [7,14–16].
We therefore present only the main results.

For an axially-symmetric prolate or oblate shape (the
case for triaxial shape can be generalised), the GDR splits
up into two components corresponding to the vibrations
along different axes. For a collective rotation, the rota-
tion axis is perpendicular to the symmetry axis implying
K = 0, where K is the projection of J along the sym-
metry axis. In this case, for a prolate nucleus, the γ-rays
associated with the low- and high-energy components have
(for J � 0) a2 = −0.25 and +0.125, respectively, where
θ is measured with respect to the beam direction. For
an oblate shape, these values are just reversed. In non-
collective (NC) rotations, the rotation axis is parallel to
the symmetry axis implying K ∼ J . In this case, the
above a2 coefficients for an oblate shape are −0.25 and
+0.5 with reversed values for a prolate shape. In some
experiments (for example, in γ-ray measurements in coin-
cidence with fission fragments), it is possible to measure
the angular distribution with respect to the rotation axis.
The angular anisotropy gets enhanced with the above a2

coefficients being multiplied by −2.0. In an actual case,
each GDR component has a width and the anisotropy has
to be convoluted with the strength function. This dilutes
the anisotropy and results in a change of sign of the a2

coefficient, as a function of Eγ , across the mean GDR
energy. This feature is thus an indicator of the nuclear de-
formation. A further dilution of anisotropy arises from a
distribution of the angle between the spin and symmetry
axis at finite T . This is termed as the orientation fluctua-
tion. In spite of these dilutions, in many cases, it has been
possible to derive information on the nuclear deformation
from the angular-distribution measurements supplement-
ing that obtained from the spectral shapes.

2.4 Multiplicity-gated measurements

The inclusive experimental spectrum comes from a range
of EX and J as discussed above. For disentangling the ef-
fect of J , exclusive measurements have been made in coin-
cidence with Mγ as mentioned earlier. The CN populated
at a higher angular momentum JCN results in a higher
residue spin JR after cooling and, hence, to a higher Mγ .
Conversely, Mγ is a measure of JCN . In practice, however,
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the method is not as straightforward. The low-energy γ-
rays are detected in a Mγ-detector array of a finite gran-
ularity and efficiency. For a given Mγ , the number of de-
tectors fired, called the fold F, is less than Mγ because of
the finite efficiency and multiple hits in an individual de-
tector. The response function of Mγ to F, therefore, needs
to be known. This depends on the geometry of the array
and the Eγ-dependent efficiency which can be simulated
or measured experimentally [47].

Different methods [48–50] have been used for analysing
the measured F-gated γ-ray spectra. In one method [48],
the Mγ-distribution for a certain F-window is calculated
using the above mentioned response function. The cor-
responding JCN -distribution, needed in the SM calcula-
tion, is obtained using an approximate relation JCN =
2Mγ + JS . Here, the parameter JS represents the angular
momentum carried away by the evaporated particles and
statistical γ-rays below the particle-emission threshold. In
another method [50], first the JR-distribution is calculated
with the SM for each JCN . A convolution of these distri-
butions with the JR-to-F response function is then used to
derive the JCN -distributions for various F-windows. The
JR-to-F response is obtained assuming a combination of
ΔJ = 1 and ΔJ = 2 γ-ray transitions along the yrast
line and multiplying the resultant Mγ distribution by the
Mγ-to-F response for each JR. From the CASCADE code,
the average 〈J〉 and 〈T 〉 are calculated for each F-window
and the J- and T -dependent GDR parameters are thus
derived from the measured spectra.

The mapping of JCN to JR actually depends on the en-
ergy of the intermediate γ-rays emitted and a Monte Carlo
approach is, therefore, necessary for a correct analysis.
This being time consuming, a faster method has been de-
vised [51] to calculate the exact JR-gated γ-ray spectrum
by making a number of SM calculations. In the first calcu-
lation, the J-dependent cross-sections are stored for vari-
ous EX , A, Z and Eγ encountered in the decay cascade.
Subsequent SM calculations, done with the stored cross
sections for each combination, create the JR-distribution
in various residues and the cross-section matrix σ(Eγ , JR)
is thus obtained. This is converted to the σ(Eγ ,F) matrix
after convoluting with the JR-to-F response mentioned
earlier. The modified CASCADE code for obtaining the
first matrix is termed as the simulated Monte Carlo Cas-
cade (SMCC) because it provides the results of a Monte
Carlo SM calculation. By projecting the second matrix on
the Eγ-axis for different F, the F-gated γ-ray spectra are
finally obtained.

2.5 Evaporation residue- and isomer-gated
measurements

Besides the exclusive measurements described in the ear-
lier subsection, two other types of measurements are those
in coincidence with evaporation residues (ER) and iso-
mers. The ER detection is done by catching the residues
in a charged particle detector such as a parallel-plate
avalanche counter (PPAC), phoswich detector arrays or
other elaborate detector systems including recoil mass sep-
arators. The TOF of the particles, the energy deposited in

the detector and the particle identification are used in dif-
ferent combinations to characterise the ER. In some exper-
iments, the ER-gating is done by using the characteristic
low-energy γ-rays from the residue nuclei detected in high-
efficiency detector arrays with a good energy resolution.
For gating with high J , some experiments report measure-
ments in coincidence with high-spin isomers in suitable
residue nuclei. The delayed γ-rays are measured in detec-
tors around a catcher foil (to stop the residues) placed at
a suitable distance downstream of the target. The time
spectrum of these γ-rays measured in coincidence with
prompt γ-rays from the target, is used to characterise the
particular isomer. The analysis of the data in coincidence
with ER or high-spin isomers requires the use of a Monte
Carlo version of the SM code.

3 Theoretical models

The theoretical models for describing the GDR damping
can be classified into two categories based on the micro-
scopic foundation and the semiclassical approaches using
macroscopic theories.

The model Hamiltonian adopted in microscopic theo-
ries of collective excitations has the form

H = Hmf + Hpair + Hres, (6)

where Hmf , Hpair, and Hres describe the motion of inde-
pendent nucleons in the mean field, the monopole pairing
interaction between them, and the residual two-body in-
teraction, respectively. Their explicit forms in terms of the
creation and annihilation operators a†

k and ak of particles
on orbitals k, with single-particle energies εk, are given as

Hmf =
∑

k

εka†
kak,

Hpair = −
∑

kk′

Gkk′a†
ka†
ek′aek′ak, (7)

Hres =
∑

kk′ll′

Vkk′ll′a
†
ka†

k′al′al −
∑

k

V (k).

In eq. (7), the sums over proton and neutron indices are
implied. The symbol k̃ denotes the conjugate state (for
example, |j̃m〉 ≡ (−)j+m|j − m〉 in the spherical basis).
The last sum in Hres represents the interaction already
included to generate the mean field, such as the Hartree-
Fock (HF) field or that described by the realistic Woods-
Saxon potentials.

In open-shell nuclei, the effect of monopole pairing is
usually included in the Hartree-Fock-Bogoliubov (HFB)
theory or the BCS theory (the special case of the HFB
theory with constant pairing Gkk′ = G). The HFB or
BCS equations can be derived by using the formalism of
quasiparticles according to the Bogoliubov transformation

α†
k = uka†

k − vka
ek, αk = (α†

k)†, u2
k + v2

k = 1,
(8)

where uk and vk are the Bogoliubov coefficients, defined
later. This allows the Hamiltonian (eq. (7)) to be ex-
pressed in terms of the quasiparticle operators α†

k and αk
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and to carry out all derivations within the quasiparticle
representation.

The extension of the microscopic approach such as the
RPA (QRPA) to finite T is carried out by replacing the
expectation value of an observable O in the ground state
with that in the grand canonical ensemble (GCE), viz.,

〈O〉 ≡ Tr[Oe−β(H−λN̂)]
/

Tr e−β(H−λN̂), β = 1/T.
(9)

Since the particle number fluctuates within the GCE, the
Lagrange multiplier λ (chemical potential) is introduced
to preserve the average particle number N = 〈N̂〉 at each
T .

To derive the equations to determine the GDR prop-
erties, viz., its energy and width or the full strength func-
tion, various equivalent methods, such as the variational
principle, linearisation of equation of motion, or double-
time Green functions [52], are applied with respect to the
Hamiltonian (eq. (7)) or its quasiparticle representation.

3.1 Finite-temperature random-phase approximation

The early microscopic approaches in the study of collec-
tive excitations at finite T were formulated by extending
the existing approaches at T = 0 to non-zero T . Among
them the most popular one is the theory of small ampli-
tude vibrations, called the random-phase approximation
(RPA), or quasiparticle RPA (QRPA) in the quasiparticle
representation including pairing.

The QRPA at finite T (FT-QRPA) describes the ex-
citations generated by the coherent superpositions of the
quasiparticle-pair operators in thermal equilibrium. These
operator superpositions define the QRPA phonon opera-
tor Q†

ν in the form

Q†
ν =

∑

k>l

(
Xν

klA
†
kl − Y ν

klAkl√
Dkl

+
xν

klB
†
kl − yν

klBkl√
dkl

)
, (10)

with

A†
kl = α†

kα†
l , B†

kl = α†
kαl,

Akl = (A†
kl)

†, Bkl = (B†
kl)

†. (11)

The average values of the commutators between the quasi-
particle pair creation A†

kl and annihilation Akl operators,
and those between quasiparticle scattering B†

kl and Bkl

operators in the GCE are

〈[Akl, A
†
k′l′ ]〉 = δkk′δll′Dkl, Dkl = (1 − nk − nl),

〈[Bkl, B
†
k′l′ ]〉 = δkk′δll′dkl, dkl = (nl − nk), (12)

where the quasiparticle occupation number nk ≡ 〈α†
kαk〉

is described by the Fermi-Dirac distribution of non-
interacting quasiparticles, viz.,

nk =
1

eβEk + 1
, Ek =

√
(εk − λ − Gv2

k) + Δ(T )2.

(13)

The pairing gap Δ(T ) in the quasiparticle energy Ek is
found as the solution, at finite T , of the gap equations
such as the finite-temperature BCS (FT-BCS), the modi-
fied BCS (MBCS) or the FTBCS1 equation. The last two
cases include the effect of the thermal fluctuation of the
quasiparticle numbers which is neglected in the conven-
tional FT-BCS theory (see sect. 3.2). The Bogoliubov co-
efficients uk and vk are expressed in terms of the single-
particle energy εk, the chemical potential λ, and the quasi-
particle energy Ek as

u2
k = [1 + (εk − λ − Gv2

k)/Ek]/2

and
v2

k = [1 − (εk − λ − Gv2
k)/Ek]/2.

The term Gv2
k is often omitted because of its small contri-

bution or its effect being already taken into account in the
phenomenological mean-field, such as the Woods-Saxon,
potential.

The FT-QRPA equations are obtained by linearising
the equations of motion 〈[A†

kl, [H−λN,Q†
ν ]〉=ω〈[A†

kl, Q
†
ν ]〉

and 〈[B†
kl, [H−λN,Q†

ν ]〉 = ω〈[B†
kl, Q

†
ν ]〉 under the assump-

tion that the phonon operators (eq. (10)) are ideal boson
operators, viz., they satisfy the equation 〈[Qν , Q†

ν′ ]〉 =
δνν′ . Together with eq. (12), this equation leads to the
normalisation condition

∑

k>l

(Xν
klX

ν′

kl − Y ν
klY

ν′

kl + xν
klx

ν′

kl − yν
kly

ν′

kl) = δνν′ . (14)

Equation (12) is often referred to as the quasi-boson ap-
proximation (QBA). The QBA leads to a set of linear
equations for the eigenvectors Xν

kk′ , Y ν
kk′ , xν

kk′ and yν
kk′ ,

as well as the eigenvalues ων , which are the energies of
phonon excitations.

The FT-RPA and FT-QRPA equations were derived
for the first time [53, 54] by using a separable residual
interaction Vkk′ll′ = κ(L)F

(L)
kl (F (L)

l′k′ )∗, where κ(L) is the
strength parameter (positive for isovector and negative for
isoscalar ph matrix elements) and L denotes the multipo-
larity. The use of the separable force allows the elimina-
tion of the amplitudes Xν

kk′ , Y ν
kk′ , xν

kk′ and yν
kk′ to obtain

a dispersion equation for the phonon energies ω in the
form [54]

1 − κ(L)
∑

k>l

[F (L)
kl ]2

[
[u(+)

kl ]2(Ek + El)Dkl

ω2 − (Ek + El)2

− [v(−)
kl ]2(Ek − El)dkl

ω2 − (Ek − El)2

]
= 0, (15)

with u
(+)
kk′ = ukvk′ + vkuk′ , v

(−)
kk′ = ukuk′ − vkvk′ . In the

absence of pairing, u
(+)
ph = 1 and v

(−)
pp′ = v

(−)
hh′ = 0, so

the second sum on the left-hand side of eq. (15) vanishes,
bringing it back to the RPA dispersion equation [53,55].

The set of FT-QRPA equations has been derived, us-
ing the general residual ph interaction, by various au-
thors [56–60]. The FT-RPA and FT-QRPA equations were
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used in the early microscopic calculations of the GDR en-
ergy and the distribution of E1 transition probabilities at
finite T [55–62].

At T = 0, the spectrum of phonon excitations,
obtained as solutions of the RPA (QRPA) equation,
represents the distribution of independent coherent ph
(two-quasiparticle) excitations. In other words, the RPA
(QRPA) can describe only the GDR energy and its Lan-
dau width ΓLD, which is a small fraction of the GDR
width in medium-mass and heavy nuclei. At T 	= 0, dkl

becomes finite because of the distortion of the Fermi sur-
face, leading to the pp and hh transitions in addition to
the ph ones, which exist already at T = 0. The contribu-
tion of pp and hh transitions is present as the last sum on
the left-hand side of eq. (15). This is related to the new
two-quasiparticle poles (Ek −El), generated by the quasi-
particle scattering operators B†

kl and Bkl, which lead to
the new solutions ω between them. However, the numeri-
cal calculations performed in refs. [55–59,61] did not show
any significant change of the Landau width ΓLD with T .
The new phonon states owing to the new quasiparticle
poles turn out to be non-collective, whose corresponding
E1 transition probabilities are small. The fact that the
FT-QRPA (RPA) represents the independent phonon ex-
citations also means that there is no coupling between the
collective ph phonons, which generate the GDR at T = 0,
with each other and with the new pp and hh non-collective
states that appear at T 	= 0. Therefore, no increase in the
spreading width is obtained within the FT-QRPA.

3.2 Thermal fluctuation of pairing field

Within the conventional FT-BCS theory, the tempera-
ture-dependent gap Δ(T ) and the chemical potential λ(T )
are defined by the equations

Δ = G
∑

k

(1 − 2nk)ukvk, (16)

N = 2
∑

k

[
(1 − 2nk)v2

k + nk

]
. (17)

They produce a pairing gap Δ(T ) which collapses at a crit-
ical temperature Tc 
 0.57Δ(0) signaling the phase tran-
sition from the superfluid to normal phase as in infinite
systems. However, atomic nuclei are finite systems exhibit-
ing large thermal fluctuations whose effects cannot be ne-
glected. Several approaches have been proposed for taking
into account the thermal fluctuation of the pairing field.
These are the macroscopic approach based on the Landau
theory of phase transition [63–65], the static-path approx-
imation (SPA) [66, 67], the shell model [68] and Monte
Carlo shell models [69], the ensemble-averaged pair-
ing [70], the modified Hartree-Fock-Bogoliubov (MHFB)
theory [71], which, in the limit of constant pairing, is
the modified BCS (MBCS) theory [72–74], and the FT-
BCS1 [75]. Among them, the MHFB (MBCS) and the
FTBCS1 take into account the quasiparticle-number fluc-
tuations (QNF) neglected in the FT-BCS theory.

Within the macroscopic approaches or the SPA, ther-
mal fluctuations lead to the average pairing gap in the

form

〈Δ(T )〉 =

∫ ∞

0

Δe−βF (Δ) dD[Δ]
∫ ∞

0

e−βF (Δ) dD[Δ]
, (18)

with the free energy F (Δ) and the metric D[Δ] = ΔdΔ
[66, 67] taken based on the two-dimensional character of
the pairing fields ζ = Δeiθ with the gauge angle θ [76].

In the approach based on the three principal statistical
ensembles [70], an exact gap Δα is defined from the pairing
energy E(α)

pair as,

Δα =
√
−GE(α)

pair, E(α)
pair = 〈E〉α − 〈E〉(0)α ,

〈E〉(0)α ≡ 2
∑

j

Ωj

[
εj −

G

2
f

(α)
j

]
f

(α)
j , (19)

where α denotes the GCE, the canonical ensemble (CE)
or the micro-canonical ensemble (MCE), and f

(α)
k gives

the ensemble average of the state-dependent occupation
numbers. The total energies 〈E〉 within the GCE and CE
are given as

〈E〉α = −∂ lnZ(β)α

∂β
, (20)

with the grand partition function Z(β, λ) [1] given by

Z(β, λ) =
∫∫ ∞

0

ρ(E , N)e−β(E−λN) dN dE

=
∑

n

eβλnZ(β, n). (21)

Here, Z(β, n) denotes the partition function at tempera-
ture T and particle number fixed at n as

Z(β, n) =
∑

s

ps(β, n), ps(β, n) = d(n)
s e−βE(n)

s .

(22)
In eq. (22) E(n)

s are the exact eigenvalues obtained by diag-
onalising the pairing Hamiltonian [77]. Within the GCE,
the chemical potential λ should be chosen as a function
of T so that the average particle number 〈N〉 of the sys-
tem remains equal to N . The summations over n and s in
eqs. (21) and (22) take into account the degeneracy d

(n)
s

of each sth state in the n-particle system. For the total
energy within the MCE, one puts E(α)

pair ≡ Epair(s) with

〈E〉MCE ≡ E(N)
s . The term 〈E〉(0)α denotes the contribution

from the energy 2
∑

k εkf
(α)
k of the single-particle motion

described by the first term on the right-hand side of the
Hamiltonian (eq. (7)) and the energy −G

∑
k[f (α)

k ]2 of the
uncorrelated single-particle configurations caused by the
pairing interaction in the Hamiltonian.

The MBCS and FTBCS1 take the thermal fluctuations
of the pairing field into account in terms of the QNF.
Within the MBCS this is realised by means of the sec-
ondary Bogoliubov transformation from quasiparticle op-
erators α†

k and αk to modified quasiparticle operators, ᾱ†
k
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and ᾱk, viz.,

ᾱ†
k =

√
1 − nkα†

k −√
nkα

ek,

ᾱ
ek =

√
1 − nkα

ek +
√

nkα†
k. (23)

The MBCS equations obtained by using this transforma-
tion have the form

Δ̄ = G
∑

k

[
(1 − 2nk)ukvk −

√
nk(1 − nk)(u2

k − v2
k)

]
,

(24)

N = 2
∑

k

[
(1 − 2nk)v2

k + nk − 2
√

nk(1 − nk)ukvk

]
,

(25)

where the last terms on the right-hand side of eqs. (24)
and (25) arise because of the finite QNF

√
δN 2

k ≡√
nk(1 − nk).
The FTBCS1 uses the exact relation

〈DkDl〉 = 〈Dk〉〈Dl〉 + δNkl,

δNkl = 〈NkNl〉 − 〈Nk〉〈Nl〉, (26)

and the mean-field contraction for the term

δNkl 
 2δN 2
k δkl,

with the quasiparticle occupation number

nk =
1
2
(1 − 〈Dk〉),

to derive the gap equation as a sum of a level-independent
part Δ and a level-dependent part δΔk in the form

Δk = Δ + δΔk, (27)

where

Δ = G
∑

k′

〈Dk′〉uk′vk′ , δΔk = 2G
δN 2

k

〈Dk〉
ukvk. (28)

Despite the quantitative difference, the pairing gaps
obtained in these approaches have a prominent common
feature that they do not collapse at the critical tempera-
ture Tc, but monotonically decrease with increasing T and
remain finite at T � Tc. In other words, thermal fluctua-
tions in finite systems such as nuclei smooth out the sharp
superfluid-to-normal phase transition of infinite systems,
as shown in fig. 3.

The effect of pairing on the GDR energy within the
FT-QRPA was obtained in ref. [61] for the spherical nu-
cleus 58Ni. When the QRPA phonon operators are con-
structed from the superpositions of two FTBCS quasipar-
ticle operators, the GDR energy weakly decreases with T
in the ranges 0 < T � Tc and T > Tc. Near T = Tc,
it shows a sudden bending down with a break at Tc. The
same feature was reported within the FT-QRPA for the
rotating deformed nucleus 164Er in ref. [60]. The decrease
of the GDR energy with T is a feature of FTRPA but the
sudden bending at T = Tc is caused by the collapse of the
pairing gap at T = Tc within the FTBCS. Thermal fluc-
tuations of the pairing field smooth out this singularity as
has been shown in ref. [62].
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Fig. 3. (Colour online) T -dependence of pairing gaps. (a) BCS
(dotted line) and MBCS (solid line) gap (eq. (24)) for neutrons
in 120Sn. (b) BCS (dotted line) and level-weighted FTBCS1
(solid line) gap (eq. (27)) for neutrons in 56Fe. (c) Exact canon-
ical gaps for neutrons (solid line) and protons (dashed line) in
201Tl. (Adapted from refs. [71,75,78].)

3.3 Quasiparticle-phonon model

In order to describe the GDR spreading width Γ ↓, the cou-
pling to 2p2h configurations need to be taken into account.
This is realised within the quasiparticle-phonon model
(QPM) [79] by constructing the excited states, which are
generated by an excitation operator, consisting of one and
two QRPA phonon operators, acting on the QRPA phonon
vacuum |0〉.

This approach has been extended to finite tempera-
tures in ref. [80] where the phonon structure, viz., its en-
ergy ωLi as well as the X and Y amplitudes, are found
within the FT-QRPA. The resulting approach is referred
to as FT-QPM. The equation for finding the energies η of
the excited states at finite T within the FT-QPM has the
form

det

∥∥∥∥∥[ωLi(T ) − η]δii′

−1
2

∑

L1i1,
L2i2

UL2i2
L1i1

(Li, T )UL2i2
L1i1

(Li′, T )(1+νL1i1 +νL2i2)
ωL1i1(T )+ωL2i2(T )−η

∥∥∥∥∥=0,

(29)

where the phonon occupation numbers νLi follow the
Bose-Einstein distribution

νLi = 1/[exp(βωLi) − 1]

for ideal bosons and UL2i2
L1i1

(Li, T ) are functions of X and
Y amplitudes, obtained within the FT-QRPA (see eq. (19)
in ref. [80]). Compared to the spectrum of one-phonon ex-
citations within the FT-QRPA, the spectrum of excited
states given by eq. (29) is richer because of the solutions
between the two-phonon poles ωL1i1(T ) + ωL2i2(T ). This
enrichment implies the spreading of the GDR distribution
obtained within the FT-QRPA. In this way the GDR ac-
quires a spreading width Γ ↓ within the QPM.

The strength function of the GDR (L = 1) is calcu-
lated within the QPM as

b(EL, η) =
1
π

Im
{ ∑

ii′

Aii′(η + iε)MLiMLi′/F(η + iε)
}

,

(30)
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where MLi are the matrix elements of the EL transitions
from thermal equilibrium to the one-phonon excitations,
F(η+iε) is the determinant of the left-hand side in eq. (29)
at complex energies η + iε, Aii′ are its minors, and ε is
a smoothing parameter, which may take into account the
escape width Γ ↑.

The GDR strength functions for 58Ni and 90Zr, cal-
culated [80] by using either the pairing gap smoothed by
thermal fluctuations within the macroscopic approach [61,
63–65] or a constant pairing gap, are rather insensitive to
the change of T . This is exemplified in fig. 4(a) for 90Zr.
The values of the full width at half maximum (FWHM)
of the GDR main peak, obtained within the FT-QPM,
are ∼ 1.9, 2.1 and 2.0MeV, respectively, at T = 0, 1 and
3MeV. These results are in disagreement with the experi-
mental observations. For example, the results of the mea-
surement in ref. [38] showed that the GDR width in 90Zr
is ∼ 9.7MeV at T ∼ 1.7MeV, which is ∼ 5.5MeV more
than the GS-GDR width of ∼ 4.2MeV.

3.4 Particle-vibration coupling model

When one phonon in the two-phonon component of the
excitation operator is non-collective, i.e., dominated by
a single two-quasiparticle component, the treatment of
the GDR damping within the QPM is equivalent to
that offered by the particle-vibration coupling model
(PVCM) [81–84]. In the latter, the spreading width Γ ↓

is caused by the coupling between ph configurations and
phonons, which represent the surface vibrations. A similar
model has been developed in ref. [84] by taking into ac-
count the coupling to ph⊗phonon configurations and using
the Landau-Migdal effective interaction. The PVCM has
been extended to finite temperatures in ref. [85] to study
the T -dependence of the GDR spreading width Γ ↓.

The strength function of the EL excitations with mul-
tipolarity L is calculated within this model as

Sa(E) =
S0

π

× Γ (E+iε)/2 + ε

[Ea−E−ΔEa(E+iε)]2+[Γ (E+iε)/2+ε]2
, (31)

where ε is a smoothing parameter. The energy shift ΔEa

and the width Γ are calculated as the real and imagi-
nary parts, respectively, of the self-energies for single par-
ticles and vibrations. These are functions of single-particle
and phonon occupation numbers, as well as the particle-
vibration coupling strength. The energies of the vibrations
(phonon energies) are found by solving the FT-RPA equa-
tion

1 + κFG0
L(ω, T ) = 0, (32)

with

G0
L(ω, T ) =

∑

kl

〈k||R0(∂U/∂r)YL||l〉2
F 2

× fl − fk

(2L + 1)

(
1

εk + εl − ω
+

1
εk − εl + ω

)
,

(33)

Fig. 4. Calculated GDR strength function for 90Zr as a func-
tion of dipole excitation energy, η in (a) and E in (b). Left
panel shows the results of QPM at T = 0–3MeV using the
smoothing parameter ε = 0.5 MeV. Right panel shows the re-
sults of PVCM at T = 0 and 3 MeV. (Adapted from refs. [80]
and [85].)

and
F =

∫
R0

∂U

∂r
R0

∂ρ

∂r
r2 dr, (34)

where U is the mean-field potential. The results of calcu-
lations, within the PVCM, for 90Zr (fig. 4(b)) and 208Pb
show that the GDR energy is not sensitive to the change of
T and the GDR width becomes even smaller at T = 3MeV
compared to that at T = 0.

Summarising the results obtained within the QPM and
PVCM, one concludes that the straightforward extension
of these microscopic models to finite temperatures does
not lead to a significant increase in the GDR spreading
width Γ ↓. Hence, other mechanisms are called for in order
to describe the experimentally observed increase in the
GDR width.

3.5 Phonon damping model

3.5.1 Non-rotating closed-shell nuclei

The phonon damping model (PDM) was first pro-
posed [86, 87] to describe the GDR damping in closed-
shell nuclei. Within this model, the GDR width arises due
to the coupling of the structureless GDR phonon to non-
collective ph, pp and hh configurations. The PDM Hamil-
tonian is written as

H =
∑

s

(εs − λ)a†
sas +

∑

q

ωqQ
†
qQq

+
∑

ss′q

F
(q)
ss′ a

†
sas′(Q†

q + Qq), (35)

where the three terms, respectively, describe the single-
particle field, the phonon field and the coupling between
them. Q†

q and Qq are the creation and destruction op-
erators of a phonon with energy ωq. The indices s and
s′ denote particle (s = p, εs − λ > 0) or hole (s = h,
εs − λ < 0). The index q = {L, i} represents the i-th
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phonon state of multipolarity L (the projection M of L in
the phonon index is omitted for simplicity).

The propagator of the GDR phonon, which is damped
due to coupling to the quasiparticle field, is

Gq(E) =
1
2π

1
E − ωq − Pq(E)

, (36)

where the polarization operator Pq(E) appears because
of the coupling between ph pairs and phonons in the last
term of the right-hand side of the Hamiltonian (eq. (6)).
It has the form

Pq(E) =
∑

ss′

[
F

(q)
ss′

]2 fs − fs′

E − εs′ + εs
, (37)

where fs is the single-particle occupation number given by

fs = 1
/{

exp[(εs − λ)/T ] − 1
}
. (38)

The energy ω̄ of the giant resonance (damped collective
phonon) is found as a solution of the equation ω̄ − ωq −
Pq(ω̄) = 0, where q = 1 corresponds to the GDR with
ED ≡ ω̄.

The phonon damping γq(ω) is calculated as the imag-
inary part of the analytic continuation of Pq(E) into the
complex energy plane, viz.,

γq(ω) = Im[Pq(ω ± iε)]

= π
∑

ss′

[
F

(q)
ss′

]2

(fs′ − fs)δ(ω − εs + εs′). (39)

The GDR width is given as ΓD = 2γED and is conve-
niently decomposed into the quantal (ΓQ) and thermal
(ΓT ) widths as ΓD = ΓQ + ΓT , where

ΓQ = 2π
∑

ph

[
F

(1)
ph

]2

(fh − fp)δ(ED − εp + εh) (40)

and

ΓT = 2

{
∑

p>p′

[
F

(1)
pp′

]2

(fp′ − fp)δ(ED − εp + εp′)

+
∑

h>h′

[
F

(1)
hh′

]2

(fh′ − fh)δ(ED − εh + εh′)

}
. (41)

The quantal width ΓQ does not vanish even at T = 0
since in this case fh = 1 and fp = 0. It is responsible
for the spreading width of the GDR built on the ground
state. The thermal width ΓT vanishes at T = 0. At T 	= 0,
a non-zero ΓT arises due to the coupling to pp and hh
configurations. These configurations appear because of the
distortion of the Fermi surface at finite T which leads to
finite differences fp′ − fp and fh′ − fh. As T increases, the
difference fh−fp decreases resulting in a slight decrease in
the quantal with ΓQ. The same feature was also obtained
within the PVCM in sect. 3.4. On the other hand, the
differences fp′ − fp and fh′ − fh increase sharply with

T up to a moderate T , reach a plateau at higher T and
decrease as T increases further. This leads to a total width
which increases up to T ∼ 3MeV and reaches a plateau
at T ∼ 3–4MeV in medium-mass and heavy nuclei. The
PDM thus describes the increase in the GDR width at low
and moderate T and its saturation at high T [86, 87].

A version of the PDM, which explicitly involves the
coupling to two-phonon configurations in the second or-
der of the interaction vertex, was proposed in refs. [88–90].
Here, higher-order Green functions were included in de-
riving the equation for the propagator (eq. (36)). It was
shown that the mechanism for generating the quantal
width ΓQ within the PDM is similar to that of the spread-
ing width in the PVCM discussed in sect. 3.4. However, it
can be seen from the polarization operator that the width
increase at finite T within the PDM is driven by the differ-
ences fp′−fp and fh′−fh of the single-particle occupation
numbers in the thermal width ΓT .

The line shape of the GDR is described by the strength
function SD(ω), which is derived from the spectral inten-
sity in the standard way using the analytic continuation
of the Green function (eq. (36)) and by expanding the po-
larization operator (eq. (37)) around ω = ED. The final
form of SD(ω) is [87]

SD(ω) =
1
π

γ1(ω)
(ω − ED)2 + γ2

1(ω)
. (42)

3.5.2 Inclusion of thermal pairing

In open-shell nuclei, the PDM Hamiltonian in the quasi-
particle representation consists of three terms, describing
the quasiparticle mean field, the phonon field and the in-
teraction between them. The GDR quantal and thermal
widths including pairing are given as

ΓQ =2π
∑

ph

[
F

(1)
ph

]2 [
u

(+)
ph

]2

(1−np−nh)δ(ED−Ep−Eh),

(43)

ΓT =2π
∑

s>s′

[
F

(1)
ss′

]2 [
v
(−)
ss′

]2

(ns′−ns)δ(ED − Es+Es′),

(44)
with

ss′ = pp′, hh′,

where the quasiparticle occupation numbers nk and the
quasiparticle energies Ek are defined in eq. (13) and u

(+)
kk′

and v
(−)
kk′ are given in eq. (15).

The increase in the total width at low T is compen-
sated by the T -dependence of the thermal pairing. Be-
cause of the thermal fluctuations in finite nuclei, the pair-
ing gap does not collapse at the critical temperature of
the superfluid-to-normal phase transition but decreases
monotonically with increasing T as has been discussed
in sect. 3.2. This turns the smooth Fermi surface due to
pairing at T = 0 to the Heaviside step-function distribu-
tion, thus, reducing the effect of coupling to pp and hh
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configurations. Depending on the pairing force, in differ-
ent open-shell nuclei, this compensation at low T causes
the GDR width to remain insensitive to T or may even
decrease at T ≤ 1MeV. At T > 1MeV, the effect of ther-
mal pairing becomes small and the GDR width starts to
increase because of the increase in ΓT [91]. The effect of
pairing on the GDR width at low T is model-independent
and holds also in other models such as the TSFM as dis-
cussed later.

3.5.3 Inclusion of angular momentum

The PDM has been extended to include the effect of an-
gular momentum at finite T in ref. [92]. To describe the
NC rotation of a spherical nucleus, the z-projection M
of the total angular momentum J is added to the PDM
Hamiltonian (eq. (35)) as −γM̂ , where γ is the Lagrange
multiplier, which is sometimes interpreted as the angu-
lar velocity or rotation frequency in analogy to classical
rotation. This rotation frequency γ and the chemical po-
tential λ are defined from the equations for total angu-
lar momentum M (equal to J for spherical nuclei) and
particle number, respectively. The phonon damping γq(ω)
becomes [92]

γq(ω) = ε
∑

k>k′

[F (q)
kk′ ]2

[
f+

k′ − f+
k

(ω − E−
k + E−

k′)2 + ε2

+
f−

k′ − f−
k

(ω − E+
k + E+

k′)2 + ε2

]
, (45)

where
f±

k =
1

eβ(εk−λ∓γmk) + 1
.

An extension of the PDM including both pairing and an-
gular momentum is impractical because the GDR width
is insensitive to a moderate change in angular momentum
(for example, up to ∼ 30h̄ in 120Sn). However, at large
values of angular momentum, the effect of thermal pair-
ing either vanishes or becomes negligible.

3.5.4 Selection of parameters and ingredients of numerical
calculations

Numerical calculations within the PDM adopt the single-
particle energies obtained from the Woods-Saxon poten-
tial at T = 0. Except for the neutron and proton Fermi
levels (chemical potentials λN,Z), which change with T
to conserve the average neutron and proton numbers, re-
spectively, the single-particle energies are kept unchanged
with T , based on the results of refs. [93, 94]. The matrix
elements for the coupling of the GDR to ph configura-
tions, which cause the quantal width ΓQ (eq. (40)), are all
set equal to F1. Those for the coupling of the GDR to pp
and hh configurations, which cause the thermal width ΓT

(eq. (41)), are all set equal to F2. This assumption of a
constant coupling strength is well justified in the so-called

weak coupling limit [1, 68] when the width of a collective
mode is much smaller than the energy range ΔE (of the
order of ED) over which this mode is coupled to the back-
ground states (see ref. [1], Vol. I, appendix 2D-3). Based
on the results in sects. 3.3 and 3.4, which show the insen-
sitivity of the quantal width ΓQ to the change of T , it is
assumed that the microscopic mechanism of the spread-
ing width ΓQ at T = 0 is known from the QPM and/or
the PVCM. Therefore, for the calculations of the GDR
width and strength function at zero angular momentum,
the unperturbed phonon energy ωq and the parameter F1

are chosen so that after the ph-GDR coupling is switched
on, the calculated GDR energy ED and the quantal width
ΓQ reproduce the corresponding experimental values for
the GDR in the ground state (T = 0). The parameter F2

is fixed at T = 0 so that ED does not change much with T
(see sect. II B of ref. [91] for a detailed discussion). For the
calculations in hot and rotating nuclei, the latter criterion
is hard to be fulfilled. Therefore, F2 is chosen to reproduce
one data point for the width at a given J and T , whereas
the GDR energy ED is fixed at the experimental value.

The analysis of the numerical results carried out within
the PDM for 88Mo in refs. [92, 95] shows that the GDR
width increases with J for T ≤ 3MeV and saturates at
T 
 3.5MeV for J ≥ 50. At higher J (≥ 70) the width
saturates at any value of T .

3.6 Collisional damping model

We now discuss various macroscopic approaches to the
GDR damping encompassing various models, the first one
being the collisional damping model (CDM) [96–99]. The
CDM follows the ideology of the microscopic approaches in
the study of the isovector volume vibrations in spin-isospin
symmetric (or asymmetric) nuclear matter at finite tem-
peratures. In this model, the inter-particle collision is re-
sponsible for the damping of the isovector vibration, which
includes the parts corresponding to Landau, spreading and
escape widths in microscopic theories. The isovector re-
sponse of a uniform nuclear matter is described by the
linearised two-component Landau-Vlasov equation [8–10]
that includes an inter-particle collision term as

∂δf

∂t
+

p
m

·∇rδf −∇rU0 ·∇pδf −∇rδU ·∇pf0 = J(δf),

(46)
where δf ≡ δfπ − δfν with π and ν denoting protons
and neutrons, respectively. The variation δU is the Wigner
transform of that of the self-consistent potential with re-
spect to the equilibrium value U0. The parameters of the
potential are adjusted to reproduce the nuclear matter in-
compressibility modulus K. The unperturbed distribution
f0 is the Fermi-Dirac distribution similar to that given in
eq. (38). The right-hand side of eq. (46) is the collision
term J(δfi), which represents the change of the distribu-
tion function because of the relaxation. No dependence on
angular momentum is considered in this approach.

Assuming independent dissipation rates, the collision
term is decomposed into Jwall(δfi) owing to the one-body
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wall dissipation [100], the collision integral Jcoll(δfi) for
the two-body collisions, and J↑(δfi) arising from the emis-
sion of particles to the continuum. In the relaxation time
approximation, it has the following form

J(δfi) = Jwall(δfi) + Jcoll(δfi) + J↑(δfi)

= − (δfi)L≥2

τwall
− (δfi)L=1

τcoll
− (δfi)L≥2

τ↑
. (47)

The constraints on multipolarities L comes from the fact
that the one-body term Jwall(δfi) does not contain the
components with L = 0 and 1 for the distorted distri-
bution function δfi in the momentum space because of
the conservation of particle number and total momen-
tum. The same holds for J↑(δi) assuming that the change
of the average particle and current densities in the nu-
clear interior owing to particle emission is negligible up
to T = 4–5MeV. As for the two-body collision integral
Jcoll(δfi), the component L = 1 corresponds to the os-
cillation of protons against neutrons in the phase space
of the GDR, conserving the particle-number and momen-
tum distributions. The relaxation time τcoll is a func-
tion of the frequency ω0 of the collective vibration and
temperature. The dependence of τcoll on ω0 arises from
the memory (retardation) effects in correspondence to
the Landau description [101]. These three components
Jwall(δfi), Jcoll(δfi), and J↑(δfi) are related to the Lan-
dau width ΓLD, the spreading width Γ ↓, and the escape
width Γ ↑, respectively. In the long-relaxation time regime
(ω0τ � 1) [10], the GDR width is given by eq. (3) with

ΓLD =
2

τwall
, Γ ↓ =

2
τcoll

, Γ ↑ =
2
τ↑

. (48)

The propagation of sound wave in an infinite Fermi liquid
in the same condition is different from that in finite nu-
clei by the absence of the one-body wall dissipation and
particle emission [101,102].

The relaxation times τwall, τcoll, and τ↑ are estimated
as

τwall =
8Rξ(L)

3vF [1 + (π2/6)(T/εF )2]
,

τcoll =
α

T 2 + (ω0/2π)2
, (49)

τ↑ =
π

mR2T 2
eBn/T ,

where vF = pF /m∗ is the Fermi velocity, R is the nuclear
radius, and Bn is the neutron binding energy.

In the numerical calculations, the CDM adopts the
parameter ξ(L) = 10/L, which is obtained by using, for
ΓLD

CDM , the Landau width predicted by a simplified ver-
sion of the RPA at zero temperature [103–105]. Hence,
one has ξ(1) = 10 for the GDR. The parameter α is calcu-
lated from the in-medium cross-sections for NN scattering
with relative energies close to the Fermi energy. Adopting
the free space (vacuum) NN cross-sections σpp = σnn =
2.5 fm2, σpn = σnp = 5.0 fm2, and nuclear matter density

ρ0 = 0.18 fm−3, the authors of ref. [99] found the values
α = 2.3MeV and 5.4MeV by using the free-space (vac-
uum) and the in-medium NN cross-sections, respectively.
The relaxation time τ↑ is neglected in the numerical cal-
culations within the CDM because of its small value up
to T ∼ 4MeV.

3.7 Fermi liquid-drop model

The FLDM is based on the same linearised Landau-Vlasov
eq. (46), but instead of the assumption in eq. (47), the col-
lision term on the right-hand side includes only a memory-
dependent two-body integral Jcoll(δfi) to describe the dis-
sipative behaviour that leads to the spreading width Γ ↓

of the giant multipole resonance [106,107]. In this respect,
the FLDM is the macroscopic correspondence to the QPM
and the PVCM discussed in sects. 3.3 and 3.4. As with the
CDM, only giant multipole resonances in non-rotating nu-
clei (zero angular momentum) are considered within the
FLDM.

The collision term is taken in the general form as

Jcoll(δfi) =
∫ t

−∞
A(t − t′)δf(t′)dt′, (50)

which accounts for the retardation effects included in A(t−
t′) in the lowest order of the deviation of the correlation
function from its equilibrium value. Assuming a periodic
oscillation δf ∼ exp(−iωt), the FLDM considers the high-
frequency oscillations in Fermi liquids as phonons, which
are created and absorbed when quasiparticles collide.

The width Γ ↓ of the collective vibration is obtained
within the FLDM as [106]

Γ ↓ = 2q
ω2

0τcoll

1 + q(ω0τcoll)2
, q 
 1

2
(1 + F0)

(
1 +

1
3
F1

)
,

(51)
with the Landau parameters F0 and F1 [10]. The relax-
ation time τcoll is given as

τcoll =
τ̃

1 + ζ(ω0/2πT )2
, τ̃ =

12π2

m3w̄T 2
, (52)

where w̄ denotes the average of the scattering amplitudes,
over angles, of the relative momentum of the colliding par-
ticles near the Fermi surface (the collision probability).
Assuming ζ = 1 (the Landau value) [10,101], and param-
eterising the thermal relaxation time τ̃ as

τ̃ =
α

T 2
, (53)

one recovers from eq. (52) the relaxation time τcoll in
eq. (49) adopted in the CDM. It is then clear that the
spreading width Γ ↓ obtained within the CDM (48) is a
special case of that predicted by the FLDM in eq. (51).
The former is valid for the width in the long-relaxation
time regime of the latter, i.e., when ω0τcoll � q−1/2 in
eq. (51). The condition ω0τ � 1 of the long-relaxation
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time is equivalent to the long mean free path of quasi-
particles as compared to the wave length (the zero-sound
or rare-collision regime). The other short-relaxation time
limit ω0τ � 1 is equivalent to the condition of short mean
free path of quasiparticles meaning that the mean free
path of nucleons is smaller than the nuclear radius (the
first-sound or frequent-collision regime [10]).

The width Γ ↓ given by eq. (51) describes both the
regimes of short-relaxation time (ω0τ � 1 or T � ω0)
and long-relaxation time (ω0τ � 1 or T � ω0) as well as
the smooth transition between them. This width goes to
zero with ω0τ , whereas the width Γ ↓ in eq. (48) increases
as ω0τ decreases.

As has been mentioned previously, the FLDM pre-
dicts only the spreading width or the collisional width,
but not the FWHM of the GDR because the width Γ ↓

in eq. (51) does not include the Landau width ΓLD ow-
ing to the effect of one-body dissipation (long mean free
path), which is important in the zero-sound regime. It
does not include the escape width Γ ↑ either as its contri-
bution to the total width is negligible and, hence, is not
included in most models. In some models, it is included
by means of smoothing parameters converting the discrete
GDR strength function to a continuous line shape.

3.8 Thermal shape fluctuation model

3.8.1 Adiabatic coupling model

The adiabatic coupling model (ACM) [108, 109] assumes
that the time scale for thermal fluctuations is larger than
the time for the dipole vibration to adjust to the changed
shape. Therefore, the GDR strength function can be aver-
aged over all possible quadrupole shapes with deformation
α2μ and orientations [109]. The angular momentum pro-
jected GDR cross-section σ(ω) at a given T is calculated
within the ACM as a thermal average over the shape-
dependent cross-sections σ(ω, α2μ, ωJ ) as

σ(ω) =
1

ZJ

∫ D[α]
I(β, γ, θ, ψ)3/2

×σ(ω, α2μ, ωJ ) exp[−F (T, α2μ, J)/T ], (54)

where ω is the photon energy and σ(ω, α2μ, ωJ ) is calcu-
lated at the saddle-point frequency

ωJ = (J + 1/2)/I(β, γ, θ, ψ).

The volume element D[α] is

D[α] = β4 sin(3γ)dβ dγ dΩ. (55)

The partition function ZJ is calculated as

ZJ =
∫

D[α]I−3/2 exp[−F (T, α2μ, J)/T ]. (56)

For the free energy, the ACM employs an expansion based
on the Landau theory of phase transition around the sad-
dle point at a constant J [110,111] as

F (T, α2μ, J) ≡ F (T, β, γ, J) = F (T, β, γ, 0)

+(J + 1/2)2
/
[2I(β, γ, θ, ψ)], (57)

where

I(β, γ, θ, ψ) ≡ ω̂ · I · ω̂ = I1 cos2 ψ sin2 θ

+I2 sin2 ψ sin2 θ + I3 cos2 θ (58)

is the moment of inertia about the rotation axis, expressed
in terms of the principal moments of inertia Ik, and the
Euler angles Ω = (ψ, θ, φ). F (T, β, γ, 0) denotes the crank-
ing free energy at ωJ = 0.

The free energy F (T, β, γ, 0) and the principal mo-
ments of inertia are calculated using either the liquid-
drop model (LDM), the Nilsson-Strutinsky approach in-
cluding shell corrections or the Landau parameterisa-
tion [110, 111]. The last one attempts to combine both
the LDM free energy and the shell corrections into one
expansion, but this parameterisation is not adequate be-
cause it deviates from the results of Nilsson-Strutinsky
calculations at larger deformations.

In the Nilsson-Strutinsky method, the free energy F is
presented as the sum of the LDM free energy FLDM and
the shell correction FSHL, viz.,

F = FLDM + FSHL. (59)

The ACM approximates FSHL by the parameterisation

FSHL(β, γ, T ) =
even∑

l=0

Aljl(Blβ)ClT/ sinh(ClT )

+
odd∑

l=3

Aljl(Blβ) cos(3γ)ClT/ sinh(ClT ), (60)

jl being the spherical Bessel functions. The parameters Al,
Bl and Cl are found by fitting the results of the Nilsson-
Strutinsky calculations for oblate, prolate, and triaxial
shapes for β ≤ 1.0 and T = 0.25–3MeV.

The shell correction to the moment of inertia is also
parameterised as

ISHL
3 (β, γ, T ) =

even∑

l=0

AI
l jl(BI

l β)CI
l T/ sinh(CI

l T )

+
odd∑

l=3

AI
l jl(BI

l β) cos(3γ)CI
l T/ sinh(CI

l T )

+
∑

l≥1

αljl(klβ) cos(γ + 2π/3)ηlT/ sinh(ClT ), (61)

ISHL
1 (T, β, γ) = ISHL

3 (T, β, γ + 2π/3),

ISHL
2 (γ) = ISHL

3 (T, β, γ − 2π/3),

with the parameters AI
l , BI

l , CI
l , αl, kl, and ηl determined

in a similar way as for the free energy (eq. (60)).
Pairing is neglected in the original version of the

ACM [109] on the ground that it vanishes at T = Tc

within the FT-BCS theory according to eqs. (16) and (17).
The GDR frequency is calculated as that of a rotat-
ing deformed harmonic oscillator having three fundamen-
tal modes with energies given by eq. (4) with ED0 =
80A−1/3 MeV.
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The GDR Hamiltonian in the intrinsic frame is written
as

HGDR =
∑

k

(p2
k + E2

kd2
k) + ωrot(d × p), (62)

where dk and pk are the coordinates and conjugate mo-
menta of the GDR vibration, and ωrot is the rotation fre-
quency. The GDR cross-section in the intrinsic frame is
calculated by using the Breit-Wigner distribution as

σ(ω, α2μ, ωJ ) =
8π2e2h̄

3mc

NZ

A

∑

μν

|〈ν|dμ|0〉|2ω

×
[
fBW(ω,Eν , Γν) − fBW(ω,−Eν , Γν)

]

= σ0

∑

μν

|〈ν|dμ|0〉|2EνfL(ω,E′
ν , Γν), (63)

where μ denotes the spherical components of the dipole
mode and |ν〉 are the eigenstates of the model Hamil-
tonian. The parameterised intrinsic widths of the three
components, centered at Eν , are given by eq. (5) where
ED0 and ΓD0 are defined earlier. The value of δ, as men-
tioned earlier, is typically 1.8. The Breit-Wigner distribu-
tion fBW(ω,ED, Γ ) has the form

fBW(ω,ED, Γ ) =
1
π

Γ/2
[(ω − ED)2 + (Γ/2)2]

, (64)

whereas fL(ω,E′
ν , Γν) is the Lorentzian distribution

fL(ω,E′
ν , Γν) =

ω

Eν

[
fBW(ω,Eν , Γν) − fBW(ω,−Eν , Γν)

]

=
2
π

ω2Γν

[ω2 − (E′
ν)2]2 + ω2Γ 2

ν

, (65)

with (E′
ν)2 = E2

ν+(Γν/2)2. The normalisation factor σ0 on
eq. (63) ensures the integrated cross-section of the GDR
to be equal to TRK.

In some recent TSFM calculations, the liquid-drop
part of the potential energy surface (PES) is calculated
within the Lublin-Strasbourg-Drop (LSD) model [112–
114]. The model can explain the experimental nuclear
masses over a wide range and the fission barriers in heavy
nuclei. The entropy and the free energy are calculated
within a five-dimensional deformation space. The chem-
ical potentials and the grand partition function are calcu-
lated using the single-particle energies obtained from the
deformed Woods-Saxon potentials with an optimised pa-
rameterisation of the spin-orbit part [115,116]. The GDR
is generated by the Hamiltonian of the cranking harmonic
oscillator [114] and the GDR cross-sections are given by
the Lorentzian functions in eq. (1) with the width Γν eval-
uated by eq. (5) using δ = 1.9. The rotation leads to a
Coriolis splitting of the two GDR frequencies for the os-
cillation perpendicular to the rotation axis and the GDR
strength function consists, in general, of five components.

3.8.2 Fitting formula for the liquid-drop GDR width

In ref. [117] a phenomenological fit for the GDR width,
calculated within the TSFM for many nuclei in the liquid-
drop limit, was obtained. This fit, sometimes referred to

as the phenomenological TSFM (pTSFM), expresses the
GDR width as a function of T , A and J as

ΓD(T, J,A) = ΓD(T, J = 0, A)
[
L

(
J

A5/6

)]4/[T/T0+3]

,

ΓD(T, J = 0, A) = Γ0(A) + c(A) ln
(

1 +
T

T0

)
. (66)

The reference temperature T0 = 1MeV is used in
the pTSFM calculations. The experimental ground-state
GDR width is adopted for Γ0(A). The scaling functions
L(x) and the prefactor c(A) are fitted as

L(x) 
 1 +
1.8

1 + e(1.3−x)/0.2
, c(A) = 6.45 − A/100.

(67)
The scaling law (eq. (66)) was examined in ref. [118]

using the experimental GDR widths from the extensive
compilation in ref. [20]. A large scatter of experimental
widths (up to 40%) implied that the parameterisation is
not universal and not independent of mass.

3.8.3 Inclusion of pairing-field fluctuation in TSFM

In some recent work, the TSFM was extended to include
the fluctuations in the pairing field [119, 120]. The nu-
clear shapes were related to the GDR observables using
a model Hamiltonian, which describes the motion of nu-
cleons within an anisotropic harmonic oscillator potential
with the residual separable dipole-dipole and monopole
pairing interactions, as

H = Hosc + η D†D − GP †P, (68)

where Hosc stands for the anisotropic harmonic oscillator
Hamiltonian. The parameter η characterises the isovector
component of the neutron and proton average field and
G denotes the strength of the pairing interaction. The
oscillator frequencies ωosc

ν (ν = x, y, z) change to ων =
ωosc

ν −χωP , with ωP = [(ZΔZ + NΔN )/(Z + N)]2 under
the pairing interaction, which also renormalises the dipole-
dipole interaction strength to η = η0 − χ0

√
TωP with Z

and N denoting proton and neutron systems, respectively.
The GDR cross-section is given as a sum of Lorentzians

(eq. (1)). The widths of the components were obtained
using eq. (5) with Γ0 = (0.026 ± 0.005)Eδ

0 [45]. The peak
cross-sections of the components were fixed by the sum
rule (eq. (2)) with α = 0.3 for all nuclei. The other param-
eters η0 (or η) and χ0 (or χ) were adjusted to reproduce
the experimental width of the GS-GDR.

The averaged GDR cross-section was calculated using
eqs. (1), (4), (5) and (54), with the metric D[β, θ, γ,Δ].
The latter is defined by combining the metrics in eqs. (18)
and (54) as [119–121]

D[β, θ, γ,Δ] = β4 dβ sin θ dθ| sin 3γ|dγΔdΔ, (69)

where dΩ ≡ dφdψ is omitted because the orientation fluc-
tuations are negligible [121].
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The total free energy (FTOT ) at a fixed deformation
was calculated by using the finite temperature Nilsson-
Strutinsky method as

FTOT = ELDM +
∑

τ=π,ν

δFτ , (70)

where the liquid-drop energy ELDM was obtained by sum-
ming up the Coulomb and surface energies corresponding
to a triaxially-deformed shape with deformation param-
eters β and γ. The shell correction δFτ ≡ Fτ − F̃τ was
calculated by using the proton (π) and neutron (ν) single-
particle energies obtained in the triaxial Nilsson poten-
tials. With the pairing fluctuations, the corresponding free
energy was determined in the GCE as

F = 〈H0〉 − λN − TS

=
∑

i

(εi − λ − Ei)−2T
∑

i

ln[1 + exp(−Ei/T )] +
Δ2

G
,

(71)

where H0 is the nuclear Hamiltonian, λ is the chemical
potential, N is the particle number, S is the entropy, and
εi are the single-particle energies obtained by diagonal-
ising H0 within a harmonic oscillator basis comprising
the first 12 major shells. The quasiparticle energies Ei

and the pairing gap Δ were obtained from the FT-BCS
eqs. (16) and (17) by assuming a constant pairing strength
Gπ,ν = [19.2±7.4(N −Z)]/A2. The smoothed free energy
was found by Strutinsky’s method. The total entropy is
given as S =

∑
i si = −2

∑
i[ni ln ni + (1− ni) ln(1−ni)],

with the quasiparticle occupation numbers ni following
the Fermi-Dirac distribution (eq. (13)). The calculations
without pairing (Δ = 0) considered the CE, where
the expression for free energy reduces to that given in
refs. [122,123].

3.8.4 On the consistency of TSFM

In a theoretical work [124], an inconsistency in various
TSFM calculations was pointed out. In these calculations,
the GDR strength function is computed by using a de-
formed harmonic oscillator model whereas the free energy
F is calculated within the Nilsson-Strutinsky approach
(eq. (70)). Hence, the same Hamiltonian is not employed
consistently. In order to address this issue, calculations
were performed using a model Hamiltonian with an effec-
tive quadrupole-quadrupole interaction, viz.,

H = H0 −
1
2
χQ

∑

μ

(−1)μQ̂μQ̂μ, (72)

where H0 stands for the spherical part and Q̂μ =
(r2/b2)Y2μ is the quadrupole operator with the harmonic-
oscillator length b =

√
h̄/(mω0), and ω0 = 41A−1/3 MeV.

The parameter χQ = 120A−5/3fc MeV includes the core
polarization factor fc ≥ 1 owing to an inert core. This
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Fig. 5. (a) GDR photoabsorbtion cross-section in 120Sn at
J = 0. Solid, dashed, cross-solid, dash-dotted, and dotted
curves correspond to T = 0.5, 1, 2, 3, and 4 MeV, respectively.
(b) Same as in (a) but at T = 0 and J = 0, 26, 55, 69, and 83,
respectively. (Adapted from ref. [124].)

Hamiltonian corresponds to a (β, γ)-dependent one-body
mean-field Hamiltonian of the Nilsson type. Therefore, the
spherical single-particle energies were calculated using the
spherical Nilsson potential with A-dependent Nilsson pa-
rameters. The GDR cross-section was calculated within
the SPA as

σ(Eγ , ω, T ) =
∫

e(ω0β)2/(2χQT )z(β, γ, ω)σ(Eγ , β, γ, ω, T )dD[β, γ]
∫

e(ω0β)2/(2χQT )z(β, γ, ω)dD[β, γ]
,

(73)

with [125]

z(β, γ, ω) = Tr exp [−(Ĥ ′ − ωĴx − λπZ − λνN)/T ] , (74)

Ĥ ′ =
∑

i

ĥi,

ĥ(β, γ) = h0−ω0β
r2

b2

[
cos γY20 +

1√
2

sin γ(Y22 + Y2−2)
]

,

(75)

and dD[β, γ] defined in eq. (55).
The results of the calculations for the GDR cross-sec-

tion in 120Sn (fig. 5) show a weak increase in the GDR
width with T and J . Angular momentum has a somewhat
stronger effect yielding an increases of ∼ 22% at J = 69
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compared to the value at J = 0 (at T = 2MeV). The
conclusion drawn from this work was that the TSFM cal-
culations, done consistently, do not lead to a sufficient
increase in the (T, J)-dependent GDR width as observed
experimentally.

4 Experimental observations and comparison
with theory

Following the first observation of the GDR built on excited
states in heavy-ion fusion reactions [6], this phenomenon
was observed in deep inelastic reaction products [126] in
the 136Xe + 181Ta reaction. An analysis of the high-energy
γ-ray spectra for various EX revealed, for the first time,
that the GDR width increases with EX . The authors also
suggested a decrease in the GDR energy with the increase
in EX . Many experiments over the years have refuted
the second observation and the GDR centroid energy is
now considered to be a stable quantity in a particular nu-
cleus being independent of EX and J . The inferred GDR
strength corresponds to ∼ 100% of TRK except at very
high EX . The increase of GDR width with EX and/or
J , however, has been a universal observation in all later
studies.

In very early years, a few experiments were performed
in coincidence with Mγ and tagging with high-spin iso-
mers [127,128] to characterise the evolution of the width.
A few other experiments established that the GDR γ-rays
are emitted from an equilibrated CN by 1) the measure-
ments of GDR γ-rays from the first-step decay using the
subtraction technique [129] and comparing with the SM,
2) studying the correlation between particles and high-
energy γ-rays [130,131] and 3) measuring the γ-ray spectra
in different entrance channels forming the same CN [132].
Another important observation in the early experiments
was on the two-component GDR in excited nuclei imply-
ing deformation. This was first seen [133] in 166Er which
is prolate in its ground state. The deduced oblate shape
demonstrated a transition from the prolate to oblate shape
at T ∼ 1.6MeV. In another experiment [134] on the same
nucleus and on 160Er, the deduced shape was prolate at
a slightly lower EX (by ∼ 12MeV). It was realised that
the GDR studies provide a powerful tool to explore the
evolution of nuclear shape as a function of J and T .

As mentioned earlier, a nucleus manifests both J-
driven deformation and T -induced shape fluctuation. The
observed GDR width corresponds to an ensemble aver-
age over different shapes each exhibiting a single- or a
multi-component strength function. At higher rotational
frequencies, the Coriolis effect yields a further splitting.
Moreover, in the ensemble average, higher values of β
are emphasised because of the β4-factor in the volume
element of the integral (eq. (55)). The extraction of the
equilibrium-shape evolution as a function of J , thus, be-
comes difficult, particularly, at high T . However, this pro-
vides the scope of addressing the wider subject of the
evolution of the PES around the equilibrium deformation
with J and T .

4.1 Statistical GDR up to a moderate T: earlier
experiments

In many experimental studies at moderate T (up to ∼
2.5MeV), the aim was to extract the (T, J)-dependence
of the GDR width, addressing the shape evolution and
shape fluctuations and comparing with various theoretical
models, particularly, the TSFM. In this section, we briefly
discuss a few important experiments (reported prior to
the year 2000) which have also featured in earlier re-
views [7,14,15]. The discussion is categorised into various
mass regions. A general mass-dependent feature is that
for a given J , the angular frequency of rotation is lower
in heavier nuclei because of the larger moment of iner-
tia. The J-driven effect on the shape evolution, therefore,
shows up at a higher J compared to that in lighter nu-
clei. In spherical nuclei in the mass region of A ∼ 110,
the shape evolution is generally towards the oblate shape
at high J . In the mid-shell region around A ∼ 160, many
nuclei are prolate deformed and eventually change to an
oblate shape at high J and/or T . In some heavy nuclei
of mass A ∼ 200, a change from the spherical to prolate
shape is predicted. In all cases, the rapidly rotating nu-
clei in the liquid-drop regime (above a certain T ) have the
rotation axis mostly along the symmetry axis.

4.1.1 Experiments in light nuclei (A ≤ 100)

Besides the higher rotational frequency for a given J , the
temperature T for a given EX is also higher in light nuclei
as compared to heavy nuclei. The latter arises because of
the smaller NLD parameter a. The effect of shape evolu-
tion and shape fluctuations is, therefore, generally more
pronounced in light nuclei. A spectacular manifestation
of the shape transition at high rotational frequency is
the Jacobi transition where an oblate nucleus makes a
transition to a highly deformed triaxial, almost prolate,
nucleus.

The first evidence of the Jacobi transition was seen
in 45Sc [135] populated in the 18O + 27Al reaction at
EX = 50–89MeV. In these inclusive measurements, the
maximum angular momentum Jmax populated in the CN
changed from 20 to 36 at various EX . From the analy-
sis of the high-energy γ-ray spectra, the GDR width was
seen to increase drastically at higher EX . The fits needed
a high-energy GDR component at Eγ ∼ 25MeV with its
strength going up with EX and, hence, J . The high-energy
component implied the GDR vibration along a short axis
consistent with a very large deformation. The calculation
of the PES showed NC oblate shapes, with the equilib-
rium deformation parameter βeq changing from 0.09 to
0.26 for J changing from ∼ 13 to 24. The phase transi-
tion to the Jacobi shape was predicted at J = 29 with
βeq increasing to ∼ 0.68 at J ∼ 32. The TSFM calcu-
lations incorporating these PESs agreed with the experi-
ment for Eγ = 11–20MeV. On the other hand, the calcu-
lations, done by switching off the Jacobi transition, failed
to explain the data. This finding strengthened the evi-
dence for the shape transition. The angular distribution
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measurements, however, were not well reproduced by the
calculations.

In the mass region A ∼ 60, the study was on the
general effect of the width increase and the search for
very large deformations. In the experiment on 63Cu [136],
the CN was formed in four incident channels at EX =
22–77MeV and 〈J〉 ∼ 2–23, corresponding to 〈T 〉 =
0.7–1.9MeV. The extracted GDR widths increased from
7.5 to 10.6MeV. It was concluded that in this range the
effect of T is more pronounced than that of J . In an-
other experiment [137], 63Cu was studied over a higher
range of T (〈T 〉 = 1.8–2.5MeV) and for 〈J〉 = 15–23, us-
ing the reaction 18O + 45Sc. In the same work, 59Cu was
populated at higher J- and T -ranges (〈J〉 = 13–32 and
〈T 〉 = 1.7–2.1MeV) using the 32S + 27Al reaction. The
extracted GDR widths ranged from 9.1 to 14.4MeV sig-
nifying a large deformation at high spins. In the case of
59Cu, particularly, the J-range populated at higher EX

was beyond the critical value for the Jacobi transition.
The experimental data were compared with the TSFM
calculation with the PES, showing the Jacobi transition.
The agreement was good for the spectral shape. In this
case also, the calculations done by suppressing this shape
transition failed to reproduce the data. The angular dis-
tribution again was not well reproduced. The evidence of
a large J-driven deformation was seen in 59Cu in another
experiment [138].

In the experiments on Mo and Zr nuclei [38, 139],
the effect of shape fluctuations was clearly manifested. In
these inclusive measurements, 90Zr and 92Mo were formed
in 18O + 72Ge, 28Si + 64Ni and 16O + 76Se reactions with
EX = 43–94MeV and 〈J〉 = 9–33 with corresponding
〈T 〉 = 1.35–2.0MeV. In this range, the equilibrium shape
is expected to change from spherical to NC oblate with
βeq = 0.02–0.16. The SM analysis of the high-energy γ-
ray spectra showed a large change in the GDR width from
7.6 to 12.1MeV although βeq does not change very much.
The thermal shape fluctuation is thus the dominant effect.
The angular anisotropy data implied an increase of defor-
mation with J . The spectral shape and the angular dis-
tributions (for Eγ = 11–20MeV) agreed with the TSFM
calculation including the orientation fluctuation and sug-
gested a spherical to NC oblate shape transition.

An interesting observation was on the comparison be-
tween 92Mo and 100Mo, the latter being populated in the
18O + 82Se reaction at EX = 49–73MeV, 〈J〉 = 9–24
and 〈T 〉 = 1.35–1.45MeV. The extracted GDR widths
showed a small change from 9.8 to 10.1MeV in contrast
to that seen in 92Mo. The nucleus 92Mo is semimagic with
the N = 50 shell closure and has a stiff spherical shape,
whereas 100Mo is a softer nucleus due to more neutrons
occupying the mid-shell region. This shows up in the GS-
GDR widths of ∼ 5.4MeV for the former and ∼ 7.9MeV
for the latter. Large fluctuations giving rise to a large
width is therefore expected in 100Mo even at low T . The
difference in the GDR widths of the two nuclei was similar
to that in the GS-GDR widths up to T ∼ 1.5MeV. This
was interpreted as the persistence of the shell effect up to
this T . An extrapolation of the GDR widths to higher T
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Fig. 6. EX -dependence of (a) GDR energy and (b) GDR
width in Sn-isotopes from different experiments. The GS-GDR
width from photoabsorption experiment is also shown. Solid
line shows the empirical fit (see text). (Adapted from ref. [31].)

suggested that these would be the same for the two nu-
clei at T ∼ 2MeV. Although this observation could be
interpreted as due to the vanishing of shell effects at the
higher T , larger shape fluctuations could also reproduce
the same effect.

4.1.2 Experiments in Sn isotopes (A ∼ 106–120)

Extensive studies have been made on Sn isotopes, which
are spherical in the GS, covering a wide range of EX and
J . In the initial experiments [31, 133, 140], covering the
range EX ∼ 50–130MeV, an increase of the width with
EX was firmly established (fig. 6). This dependence was
parameterised as ΓD = 4.8+0.0026 E1.6

X [31]. This relation
has often been referred to in the literature. However, in
the experiment an increase of EX was associated with an
increase in J . This is not reflected in the above relation.
In the same work, the SM calculations were done with
a proposed (EX , J)-dependence of the width at various
decay steps. It was not possible to explain the spectra
at all excitation energies with only an EX -dependence of
the width but a combined EX - and J-dependence, viz.,
ΓD = 4.5 + 0.0004 E2

X + 0.006J2 was needed.
The exclusive J-dependence of the GDR width was ex-

perimentally seen [141] by making F-gated measurements
in the 48Ti + 61Ni and 48Ti + 62Ni reactions populating
109Sn at EX = 80MeV and 110Sn at EX = 92MeV, re-
spectively. The GDR width was observed to increase from
∼ 11 to 13MeV for 〈J〉 changing from 40 to 55. The mea-
sured angular distribution of γ-rays, with respect to the
beam axis, showed that the a2 coefficient changed from
negative to positive values for Eγ increasing across ED,
as expected for a deformed nucleus. The magnitude of the
minimum a2 increased with J . This observation was sup-
ported by the TSFM as against the CDM. According to
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the latter model, the minimum a2 should not change with
J . Thus the observed change in the width was deduced as
a J-driven effect consistent with a NC oblate shape with
the deformation increasing with J .

The study was extended to a lower J region in an
experiment [48] on the 58Ni + 48Ti reaction populating
106Sn at EX = 80MeV. The F-gated γ-ray spectra were
measured in coincidence with the evaporation residues for
suppressing the non-fusion events contaminating the low
F-gated data. The GDR width was seen to change from
8.5 to 9.6MeV for 〈J〉 changing from 24 to 36. The av-
erage temperature was deduced as 〈T 〉 ∼ 1.8MeV. Com-
bining the results for higher and much lower values of J
(discussed below), it can be concluded that the width in-
creases mildly with J up to J ∼ 30 and rapidly above this
value. This pattern of J-dependence, shown in fig. 7, is
consistent with the TSFM because, at a lower J , the ef-
fect of the J-driven deformation is masked by the thermal
shape fluctuation. However, the value of J at which the
rapid increase takes over goes up with A. This happens be-
cause the deformation is actually driven by the rotational
frequency and for heavier nuclei, as mentioned above, the
rotational frequency is less at a given J .

The GDR width at low angular momenta (J < 20) was
measured using inelastic α-particle scattering exciting the
target nucleus over a wide range of EX and transferring
low values of J [143]. Since the effect of J should be small
at low values of J , these experiments addressed the exclu-
sive effect of T on the GDR width. High-energy γ-ray spec-
tra, in coincidence with the scattered particles of various
energies, were analysed to extract the width. The analysis
assumed that the excited target equilibrates to an equiva-
lent CN state (with EX = ΔE, ΔE being the energy loss
of the scattered projectile) before emitting the γ-rays. The
experiment was done with 120Sn (and 208Pb) targets using
160 and 200 MeV α-particle beams. The EX -range stud-
ied in 120Sn was 30–130MeV (and in 208Pb, 40–110MeV).
The extracted GDR widths showed an increase with EX
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Fig. 8. T -dependence of GDR width in 120Sn and 208Pb. Open
diamonds in (a) and (b) are from ref. [143]. In (c) and (d), solid
diamonds are reanalysed values while the crosses are other data
points in these mass regions (see ref. [117]). Solid and dotted
lines are results of the TSFM calculations, with and without
shell effects, respectively, of ref. [117]. Dashed and dot-dashed
lines are the corresponding results from ref. [109]. (Adapted
from ref. [117].)

and, hence, with T . In the original work, T was calculated
after subtracting the rotational energy and the GDR en-
ergy from EX in the first step. This does not represent
the average temperature over various stages of the multi-
step emission of the GDR γ-rays. Using the proper esti-
mates [117] of 〈T 〉, which are less than those quoted in the
original papers, the extracted width was seen to increase
from ∼ 5.5 to 12MeV for T = 1.3 to 2.4MeV in 120Sn as
shown in fig. 8. (For 208Pb, the width increases from ∼ 5
to 8MeV for T = 1.1 to 1.7MeV). The above assump-
tion of EX = ΔE was questioned in another work [144].
From the measurement of neutron spectra in coincidence
with the scattered α-particles in the reaction α + 209Bi
at Eb = 240MeV, it was concluded that for a given ΔE,
there is a range of EX populated in the target due to the
PEQ particle emission. The SM calculation for the effec-
tive EX , under the condition of the subsequent emission
of high-energy γ-rays, showed that the average EX is a
fraction of ΔE. The fraction decreases with the increase
in ΔE with a typical value of ∼ 0.8 for ΔE ∼ 100MeV.
This would further reduce the values of 〈T 〉.

The GDR widths obtained within the ACM for 120Sn
(and 208Pb) as a function of T are shown in fig. 8. The
upper panels, with uncorrected temperatures, show a rea-
sonable agreement with the data. In the case of 120Sn, the
agreement improves at higher T after including the effect
of the compound nuclear lifetime [145,146]. (The inclusion
of shell effects was important in the case of 208Pb.) These
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TSFM calculations were repeated by another group [117].
The calculated widths in ref. [117] for 120Sn are, however,
larger than those of ref. [109] at large T , despite the fact
that a lower value of Γ0 = 3.8MeV was used in the for-
mer case as compared to 5MeV in the latter. (For 208Pb
a similar discrepancy was seen.) The lower panels show
the comparison of the calculation of ref. [117] with the
T -corrected data. As can be seen, the agreement is rea-
sonable for 208Pb but not quite so for 120Sn, particularly,
at lower T (below ∼ 1.5MeV). The failure of the TSFM
at low T was later seen for other nuclei (discussed later).

The GDR widths obtained within the PDM for Sn iso-
topes are shown in fig. 9(a). The comparison with the data
up to a moderate T (obtained from the experiments dis-
cussed so far) is good and reveals the important role of
thermal pairing at low T . The temperatures for the data
points beyond T = 4MeV, however, were corrected later
and the apparent experimental saturation of the GDR
width is thus debatable (see later). (The results of the
PDM calculations for the GDR width in 208Pb agree well
with the data as shown in fig. 9(b). However, the com-
parison using the corrected values of T would worsen the
good agreement with the data.)

The GDR widths calculated using the CDM for 120Sn
(and 208Pb) are shown in fig. 10 in comparison with
the experimental data. The calculations agree reasonably
well with the experiment when the vacuum NN scatter-
ing cross-sections are used and strongly underestimate
the data if the in-medium NN scattering cross-sections
are used instead. The experimental data in this figure
are, however, shown with uncorrected T . The calculated
widths increase with T without any sign of saturation.

The question of the saturation of the GDR width at
higher T , which will be discussed in a later section, was
addressed in an experiment [151] on the 18O + 100Mo re-
action populating 118Sn at various Eb between 125 and
217MeV. An important point established in this work
was that the effect of PEQ particle emission should be
included [152] for getting the proper estimate of EX , A
and Z of the equilibrated source emitting GDR γ-rays.
Moreover, its temperature should be calculated from the
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weighted average 〈EX〉 over the decay steps starting with
the PEQ-corrected initial EX . The analysis revealed a con-
tinuous increase of the extracted GDR widths from ∼ 8.3
to 10.6MeV for T changing from 2.14 to 2.42MeV. The
TSFM calculations showed an overall agreement with the
data.

4.1.3 Experiments in Er-Dy-Gd isotopes (A ∼ 154–166)

The evolution of the nuclear shape, from prolate to oblate,
and the effect of the shape fluctuation have been mainly
addressed in these nuclei which have ground-state de-
formation. A general comment is worth making at this
point. In the case of large thermal shape fluctuations,
as is expected in many experiments, the extraction of
the deformation parameter β, just from the energies of
the two-component GDR fitting the measured γ-ray spec-
trum, is not meaningful. This gives neither the equilibrium
deformation βeq nor the ensemble-averaged deformation
〈β〉 [38]. The angular anisotropy data cannot definitely
establish the shape because of the dilution caused by the
shape and orientation fluctuations. These points should be
borne in mind while appreciating the conclusions drawn
about the shape change in many experimental works.

As mentioned earlier, the first evidence for deforma-
tion was seen in excited Er nuclei. The results of the
two inclusive experiments [133, 134] on 166Er were con-
sistent with a prolate to oblate shape transition at T ∼
1.6MeV. On the other hand, in a subsequent experiment
on 160Er [153], populated in the reaction 19F + 141Pr at
EX = 59–90MeV, it was concluded that none of the pro-
late, oblate or triaxial shapes of the excited nuclei could
be discarded and no obvious abrupt shape transition was
evidenced with the increase in EX .

In a J-gated measurement [149] on 166Er and 158Er
at EX = 60 and 47MeV, respectively, γ-ray spectra were
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measured for 〈J〉 = 12, 20 and 26. The SM analysis, using
a two-component GDR strength function, concluded that
166Er shows a prolate to oblate shape transition with the
increase in J . For 158Er, the shape was deduced to be
oblate even at low J with the value of β increasing with
J . This was attributed to the relative softness of 158Er.

In an experiment on the shape evolution in 156Dy [154],
populated at EX = 75MeV, γ-ray spectra and angular
distributions were measured for 〈J〉 = 18, 28, and 40.
A shape transition from prolate at J = 18 to oblate at
J = 40 was deduced, with a reduction in β from 0.36
to 0.19. A comparison of the calculated and experimental
anisotropies for J = 18 and 40, however, could not distin-
guish between collective prolate or NC oblate shapes.

In another experiment [155] on the same nucleus at a
higher EX = 90MeV, a similar conclusion was reached.
The data pointed towards a change of shape from prolate
at 〈J〉 = 32, with β = 0.16, to oblate at higher 〈J〉 up to
62, with β increasing from 0.13 to 0.28. However, when the
experiment was repeated [156] with a thinner target, no
definite evidence for a prolate to oblate shape transition
was seen. The experimental data could be understood by
the TSFM calculations which utilised the PES with a NC
oblate minimum at all J with the magnitude of βeq going
up with J . However, the ensemble-averaged 〈β〉 changes
very little with J thus masking the shape change effect.

The same experimental group reported the measure-
ments of F-gated γ-ray spectra from the CN 154Dy and
those in coincidence with high-spin isomers from the CNs
156Dy and 154Dy. The latter condition selected a higher
J-range and a narrower EX -range. For 156Dy [157], the
isomer-gated spectra, for J = 30–65 and T = 1.6–1.9
MeV, showed an oblate shape whereas both oblate and
prolate shapes were acceptable for the ungated spectra.
The magnitude of β in both cases was derived as ∼ 0.3. For
154Dy [158, 159], the isomer-gated spectra, for J = 30–50
and T = 1.35–1.55MeV, showed a large deformation of
β ∼ 0.4–0.5 with both prolate and oblate shapes. The
analysis of the J-dependent and prompt γ-ray-gated spec-
tra showed a large increase of width with J , changing by
40–50% for 〈J〉 changing from 32 to 50.

A similar observation was made on Gd isotopes. In
a study [160] on 154Gd at EX = 80MeV, high-energy γ-
rays were measured in the 8π-spectrometer in Chalk River.
Angular distributions were measured with respect to the
spin axis defined by the plane of the low-energy electric
quadrupole E2 γ-rays. For 〈J〉 = 27–55, an increase in de-
formation with J was deduced with β = 0.08–0.35. Inter-
estingly, however, the shape was deduced as prolate even
at higher J values. The conclusion was supported by the
angular distribution data. This is in contrast to the gen-
eral behaviour of the prolate or spherical nuclei attaining
a NC oblate shape at high J and T . The authors, however,
did not present any PES calculation for this case.

4.1.4 Experiments in heavy nuclei (A > 170)

In heavy nuclei with small GS deformation, the exper-
iments addressed the spherical to prolate shape evolu-

tion, the effects of shape fluctuations and the emission
of GDR γ-rays in competition with the fission process.
In A ∼ 200 region, an evolution from the spherical to
prolate shape was predicted theoretically. For example, a
calculation [161] showed that 196Pb has a superdeformed
minimum with β = 0.5 at T = 0MeV and J ∼ 30. At
T ∼ 0.8MeV, the depth of the potential minimum re-
duces making the PES flatter with an average β ∼ 0.35. At
still higher T , the deformation minimum vanishes. A gen-
eral problem in the experiments in heavy nuclei is worth
mentioning here. In many cases, the fission cross-section
is significant and the contribution to the γ-ray spectrum
from the excited fission fragments must be calculated and
subtracted before making the SM analysis.

The first evidence of the J-induced deformation in
spherical Pb nuclei of A ∼ 200 was reported [162] from
a study of 16O + W and 19F + 181Ta reactions, populat-
ing the isotopes 198–202Pb at EX = 66–102MeV and with
Jmax ∼ 38–66. The measured γ-ray spectrum at the low-
est EX was described with a two-component GDR cor-
responding to a prolate shape. In a subsequent experi-
ment [163], populating 200Pb at a lower EX = 57.6MeV
and Jmax ∼ 22, an evolution of the shape from spheri-
cal, below J ∼ 16, to prolate, at higher J , was deduced.
The earlier data at EX = 66MeV was also found to be
consistent with such a conclusion. The extracted values of
β were almost the same (∼ 0.37 and 0.41) at both EX

corresponding to T ∼ 0.9 and 1.1MeV. In an exclusive
measurement [164], on the same reaction at Eb = 105 and
141MeV, fission-fragment-gated γ-ray spectra and the an-
gular anisotropy with respect to the spin axis (constructed
from the fragment directions) were measured. At the lower
Eb, a slightly larger β ∼ 0.43 was derived from the data
analysis. Noting that the fission-fragment-gating selects a
higher J-range, all these findings showed a J-driven de-
formation and are generally consistent with the theoreti-
cal predictions mentioned above. The observation of the
spherical to prolate shape transition was corroborated in
a later Mγ-gated measurement [165] on the 19F + 181Ta
reaction at Eb = 101MeV.

The general feature of the J-induced deformation in
this mass region was seen in another work [166] on the
16O + 181Ta reaction populating 197Tl at EX ∼ 60MeV.
The measured γ-ray spectra and angular distributions
could be described by a two-component GDR implying the
J-induced deformation. A Gaussian-parameterised shape-
and orientation-fluctuation calculation established a de-
formation slightly increasing (β ∼ 0.26–0.29) with J and
a drive towards triaxiality at high J .

In an exclusive measurement [167], the reaction 48Ca+
142Nd populated 190Hg at EX ∼ 52MeV. High-energy
γ-ray spectra were measured in coincidence with specific
ERs. The spectrum gated with 188Hg was analysed with
a Monte Carlo version of the CASCADE code. Over the
J-range populated up to ∼ 28, a prolate shape of β ∼ 0.28
was deduced. In another measurement, addressing the J-
dependence of the GDR width [168] in Hg isotopes at
higher EX , the reaction 30Si + 164Dy populated 194Hg at
EX = 60MeV. High-energy γ-ray spectra were created
with Mγ-gating as well as in coincidence with the γ-rays
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from the ERs. The GDR widths extracted from the anal-
ysis were the same (∼ 6.2MeV), within error bars, for
〈J〉 = 24–36 and 〈T 〉 ∼ 1.3MeV. Results of the TSFM
calculation agreed with the experiment. The ensemble-
averaged deformation was calculated as 〈β〉 ∼ 0.3, much
higher than βeq(< 0.05), at all J . The small values of βeq

were related to the small rotational frequencies in these
heavy nuclei. These observations are different from those
in Pb isotopes showing a large J-driven deformation. A
search for the superdeformation in Hg isotopes from this
experiment yielded no positive result.

A similar conclusion was derived [169] from an exper-
iment on 176W formed in the reaction 28Si + 148Nd at
EX = 75MeV. The extracted GDR widths for 〈J〉 =
36–45 and 〈T 〉 ∼ 1.4–1.5MeV showed a very small change
from 8.4 to 8.9MeV. The TSFM calculation, including
the orientation fluctuation, showed a reasonable agree-
ment with the spectral shape and the measured angular
distributions. The calculated βeq of the NC oblate shapes
changed from 0.06 to 0.14 for J = 35 to 55 and the en-
semble averaging produced an almost J-independent 〈β〉.

In an experiment [170] on the 16O + 159Tb reaction
populating 175Ta at a higher EX = 123MeV, both ER-
and fission-fragment-gated γ-ray spectra were measured.
The ER-gated spectrum was consistent with β ∼ 0.24
whereas the fission-fragment-gated spectrum was consis-
tent with a large β ∼ 0.55. In the latter case, the pre-
fission γ-rays were emitted from a higher J-range 60–80
and T ∼ 1.8MeV. Various interesting speculations were
made to understand the results. These included the Ja-
cobi transition near the fission limit in this heavy nucleus
and the emission of γ-rays during the journey towards the
saddle point sampling very large deformations.

As a last example, we discuss an experiment [171]
in a very heavy nucleus 272Hs populated in the reac-
tion 40Ar + 232Th at Eb = 6.8, 10.5 and 15MeV/nucleon.
The extraction of the GDR γ-rays from this highly fis-
sile CN is feasible if the large contribution from the fis-
sion fragments can be experimentally suppressed. This
was possible because of the delay in the fission process
arising due to the effect of viscosity of the nuclear fluid
in the journey to the scission point [16]. During this pro-
cess, the CN cools to a low excitation energy, say, Ef

before it fissions. If the experiment is done at two exci-
tation energies, both above Ef , the subtracted spectrum
from these two measurements should eliminate the fission-
fragment contribution. In this experiment, the difference
spectrum (after subtracting the bremsstrahlung compo-
nent), for Eb = 15 and 10.5MeV/nucleon, showed no post-
fission γ-rays whereas that measured for Eb = 10.5 and
6.8MeV/nucleon showed such a component. This implied
that the fission process is indeed delayed and starts be-
tween EX = 92 and 218MeV. The first difference spec-
trum showed a nice bump at Eγ ∼ 12.2MeV correspond-
ing to the GDR in the superheavy nucleus 272Hs. The
spectral shape was consistent with either a prolate or an
oblate shape of β ∼ 0.19. The angular distribution, mea-
sured with respect to the spin axis, agreed with this con-
clusion.

4.2 Statistical GDR up to a moderate T: recent
experiments

The experimental work reported in the years 2000 on-
wards can be classified into three categories. In category
A, the experiments further addressed the general feature
of the (T, J)-dependence of the GDR damping. In cate-
gory B, the experimental results showed a deviation from
the widely applied TSFM. In category C, the experiments
addressed the GDR in highly deformed nuclei manifesting
the Jacobi transition and superdeformed shapes.

4.2.1 Category A

In an experiment [172], performed at the Niels Bohr Insti-
tute (NBI), 147Eu was populated in the 37Cl + 110Pd reac-
tion at EX = 74–81MeV and Jmax ∼ 58–65. The F-gated
high-energy γ-ray spectra were measured in the HECTOR
array. Spectra were also measured in coincidence with the
characteristic γ-ray transitions in various ERs detected in
the NORDBALL array. The SM analysis of the spectra,
for 〈J〉 = 37–50 and 〈T 〉 = 1.22–1.36MeV, showed that
the GDR width varies over a small range 8.4–8.9MeV.
The TSFM calculations of the GDR widths agreed with
the experiment. The overall conclusion, after considering
the earlier results for Sn and heavier mass region, was that
the J-dependence of the GDR width is pronounced in Sn
isotopes of A ∼ 110, weak in A ∼ 176–190 region and
of an intermediate nature in the 147Eu region. These ob-
servations are consistent, as mentioned earlier, with the
importance of the rotational frequency (decreasing with
A for a given J) in deciding the J-driven effects on the
GDR width.

In the heavier mass region, an experiment, performed
in Legnaro, was reported [173] on 216Rn populated at
EX = 56MeV in the 18O + 198Pt reaction. The motiva-
tion was to study the GDR strength function up to the
J-range near the fission limit and to look for large defor-
mations seen in lighter nuclei. The experiment was done
using the HECTOR array for detecting high-energy γ-
rays in coincidence with a BGO-array for measuring Mγ .
In addition, measurements were made in coincidence with
delayed γ-rays, detected by BGO detectors placed around
a catcher foil, from two isomers in 212Rn (J = 30, 154 ns)
and 211Rn (J = 63/2, 201 ns). This selected high-J ∼ 40
near the fission limit. For 〈J〉 = 23–35, the extracted GDR
widths were almost constant at ∼ 7.0–7.3MeV showing
no pronounced J-induced effect. The temperature in each
case was ∼ 1MeV. The TSFM calculations were done with
the PES calculated using the LSD model [112,113] for the
liquid-drop part. The shell effect was assumed to vanish
at T ∼ 1MeV. The calculated βeq was almost zero at
T = 1MeV for J up to 40 (with a very mild increase
above J = 30). This, thus, showed no effect like the Ja-
cobi transition seen in light nuclei (mentioned earlier). The
ensemble-averaged 〈β〉 was ∼ 0.1 at all J resulting in an
almost constant GDR width independent of J . The LSD
model, predicting a nearly spherical shape in 216Rn and
the Jacobi transition in 46Ti (discussed later) at J near
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Fig. 11. Experimental and calculated GDR widths in A ∼
130 nuclei. Solid and dashed lines are results of the TSFM
calculations with and without ΓCN contribution, respectively.
The dotted line shows the calculated average β. (Adapted from
ref. [177].)

the fission limit was thus successful in describing the nu-
clear shape evolution in two widely different mass regions
(see fig. 25 later).

The agreement between the experimental data and
the TSFM calculations was seen in 113Sb [174] at 〈T 〉 =
1.7–2MeV and 〈J〉 = 41–54 and in 144Sm [175, 176] at
〈T 〉 = 1.1–2.1MeV and 〈J〉 ∼ 25–65. The experiments,
performed in coincidence with Mγ-detector arrays, were
reported from the VECC and the IUAC groups, respec-
tively. In the latter experiment, the disentangling of the
effects of T and J on the GDR width revealed a mild de-
pendence on T and a strong dependence on J . This was
attributed, from the TSFM calculations, to an increasing
softness towards triaxial deformation at higher J .

The necessity of incorporating the contribution from
the decay widths of the CN (ΓCN ) to the GDR width
was seen in an experiment [177], performed in Legnaro,
populating 132Ce at EX = 100–200MeV in the reaction
64Ni + 68Zn. High-energy γ-ray spectra were measured
with the HECTOR array in coincidence with ERs detected
in PPACs. The formation of an equilibrated CN was es-
tablished by measuring the α-particle spectra, which could
be reproduced by the SM calculations. The angular mo-
menta populated in the CN at all EX were in the same
range, being limited by the fission process, with 〈J〉 = 45.
The GDR widths, extracted from the SM analysis done
with an EX -dependent NLD parameter, showed (fig. 11)
an increase from 8 to 14MeV for 〈T 〉 increasing from 2 to
3.7MeV. The results of the TSFM calculations were com-
pared with the experimental widths including those from
earlier measurements at lower T (and J) in this mass re-
gion. The agreement was reasonably good for T ≤ 2MeV.
At higher T , the experimental widths could be reproduced
after the inclusion of ΓCN . The authors concluded that,
the data did not leave room for any other effect, such
as the collisional damping, to explain the GDR width.
It should, however, be mentioned that in this work, 〈T 〉
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Fig. 12. (Colour online) Experimental GDR strength func-
tions in 88Mo at two EX corresponding to the indicated beam
energies in 48Ti + 40Ca reaction. Results of the TSFM (includ-
ing ΓCN contribution) ((a), (b)) and PDM ((c), (d)) calcula-
tions are shown by continuous lines. Dotted lines in (a), (b)
are TSFM results without ΓCN contribution. (Adapted from
ref. [179].)

was extracted from the SM calculation after introducing
a lower cut-off in EX corresponding to ∼ 50% of the total
yield of the GDR γ-rays. This, in principle, is not neces-
sary because below a certain EX , the contribution to the
γ-ray spectrum in the GDR region becomes low. Hence,
the corresponding weight factors in calculating 〈T 〉 are
also reduced. Without incorporating the lower cut-off, the
values of 〈T 〉 would be lower. This would imply a faster
increase of GDR width with T and could suggest the need
for other effects beyond the TSFM and that from ΓCN .

In a very recent experiment [179] done in Legnaro,
88Mo was populated at EX = 124 and 261MeV in the
reaction 48Ti + 40Ca. High-energy γ-rays were measured
with the HECTOR array in coincidence with ERs detected
in phoswich detectors. As in the work mentioned ear-
lier, the proton and α-particle spectra, measured with the
GARFIELD [180, 181] detector array, could be explained
by the SM calculation establising the absence of any non-
compound events. The maximum J populated at both en-
ergies was limited to 64 due to the fission process at higher
J . The analysis of the bremsstrahlung-subtracted γ-ray
(and particle) spectra was done with the Monte Carlo code
GEMINI++ [182]. The same value of the GDR width was
assumed at each decay step following the usual practice.
The GDR widths were deduced from the extracted effec-
tive GDR strength functions shown in fig. 12. The widths
(representing an average over various decay steps) at the
two EX were almost the same, viz., ∼ 9.9 and 10.3MeV,
within error bars (fig. 13). The corresponding values of
〈T 〉 were obtained from an elaborate calculation with the
Monte Carlo code as 2.0 and 3.1MeV, respectively. These
were extracted without introducing a lower cut-off in EX ,
as was done in the earlier work. The spread in T around
the mean values were ∼ 1.1 and 1.5MeV, respectively, at
the two energies.
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Fig. 13. (Colour online) Experimental and calculated (with
the models mentioned in fig. 12) GDR widths in 88Mo at two
T . (Adapted from ref. [179].)

The experimentally extracted effective strength func-
tions and the GDR widths were compared with calcula-
tions done within the TSFM and the PDM. In the first
case, the liquid-drop part of the PES was calculated within
the LSD model. The calculations were done at various val-
ues of J , T and A encountered by the decaying nucleus in
the cooling process. The average strength function for each
case was calculated using an ensemble average over various
deformations due to thermal fluctuations. Finally, these
were further averaged over the distribution of T , J and A,
populated at various stages, as given by the Monte Carlo
calculations. It was necessary to include the contribution
from the evaporation width ΓCN . This T -dependent con-
tribution was calculated using the SM. The calculation
within the PDM was also carried out for various T and J
and averaged over the above-mentioned distributions.

The comparisons of the calculated effective strength
functions and the GDR widths with the experiment are
shown in figs. 12 and 13. The agreement is good at the
higher EX . At the lower EX , the calculated width using
the TSFM (including ΓCN ) is ∼ 1.5MeV less than the ex-
perimental value. Thus, the increase of GDR width with
T is faster in the TSFM model as compared to the ex-
perimental data. The PDM results at both energies are
closer to the data. The shape of the strength functions for
Eγ < 12MeV was not very well described at the higher
EX . However, this could be due to the neglect of the Cori-
olis splitting in the PDM calculations.

The dependence of the measured GDR width on T
is weaker compared to the observation in 132Ce [177].
This can be related to the higher rotational frequency
and the associated deformation effect which are similar
at both EX . Another possibility is the width saturation
at T ∼ 3MeV. This was corroborated by comparing the
derived widths in this work with the ones from earlier
measurements (fig. 14) for various Mo isotopes. The fig-
ure shows a fast increase of the experimental GDR width
with T for T < 2MeV and a flattening out at higher T .
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Fig. 14. (Colour online) Experimental GDR widths in var-
ious Mo isotopes as a function of T . Data are obtained
from ref. [179] and other experiments cited in this reference.
Lines show the predictions of pTSFM [117]. (Adapted from
ref. [179].)

4.2.2 Category B

The overall success of the TSFM, seen in the previous
examples, has been confronted in many cases showing a
discrepancy between its prediction and the experimental
data. This, particularly, has been the case at low T below
∼ 1.5MeV. In the work on the scaling properties of the
TSFM calculations [117] done in the liquid-drop regime,
it was seen that for 59,63Cu and Sn isotopes, the TSFM
calculations overestimate the GDR widths at low T . In
208Pb, the shell effect was the reason of the discrepancy
at low T . However, data for T ≤ 1MeV were very sparse
for making a definite conclusion about the discrepancy.

In an exclusive measurement [183] on the reaction
90Zr + 89Y populating 179Au at EX ∼ 20MeV, high-
energy γ-rays were measured in four arrays of 37-element
BaF2 detectors in coincidence with ERs detected in the
Fragment Mass Analyser (FMA) at ANL. This measure-
ment addressed the GDR at T ∼ 0.7MeV and for Jmax ∼
16. The γ-ray spectrum in coincidence with 179Au de-
tected in the FMA extended to Eγ ∼ 14MeV. In the data
analysis, a split GDR strength function was used with the
component energies corresponding to ED0 = 14.2MeV
and δ = 1.6 in eqs. (4) and (5). The parameters β, γ
and Γ0 were varied to fit the data. The best fit to the
γ-ray spectrum was obtained with β = 0.1 ± 0.1 and
Γ0 = 5.0 ± 0.35MeV. Since no TSFM calculation was
available for 179Au, the authors made a comparison with
the calculated widths for 208Pb after incorporating an ap-
proximate extrapolation. The value without the shell cor-
rection (as should be the case for 179Au) was ∼ 6.4MeV
which was more than the experimental value. However,
the comparison should be made not with the extracted
Γ0 but with the actual FWHM of the strength func-
tion. Taking β = 0.1, the calculated FWHM would be
∼ 0.5MeV more than Γ0, thus, making the discrepancy
smaller. The authors, however, concluded that detailed
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calculations are needed before drawing any conclusion
about the disagreement.

In an experiment [147] on 120Sn, high-energy γ-rays
were detected in two large arrays of 68-element BaF2 de-
tectors in coincidence with the inelastically scattered 17O
projectile. The experiment was performed at the NSCL
Michigan, using a 80MeV/nucleon beam and the scat-
tered particles were detected in a magnetic spectrometer.
The spectra were created for various energies of 17O cor-
responding to the energy loss (ΔE) of 20–90MeV. For the
lowest ΔE bin of 20–30MeV, EX in 120Sn was taken to be
the same as ΔE. The SM analysis, done with a fixed width
at each decay step, extracted the average GDR width as
∼ 4.0MeV at 〈T 〉 ∼ 1.0MeV. For the higher ΔE bins,
a distribution of EX was used, guided by earlier experi-
ments [144], in the SM analysis. The analysis was done
with a different approach. A smooth curve was drawn
through the widths obtained from the earlier experiments
at higher T and the derived value of 1MeV for the lowest
ΔE bin (fig. 15). This T -dependence is at variance with
the TSFM calculation. The γ-ray spectra calculated with
this T -dependence of the width incorporated at different
decay steps, agreed with experiment for all ΔE bins. This
observation established that the TSFM overestimates the
width up to T ∼ 1.7MeV.

In another experiment [184] on 117Sn and 118Sn at
EX = 70.4 and 84.6MeV populated in the reactions
17O + 100Mo and 18O + 100Mo, respectively, high-energy
γ-rays were measured in four arrays of 37-element BaF2

detectors in coincidence with ERs detected by the FMA at
ANL. In the SM calculations done with the GDR width
changing with T and J at each decay step, the above-
mentioned T -dependence was used. The J-dependence
was taken as that prescribed by the TSFM, guided by the
results from ref. [48]. The measured spectra could be re-
produced with these prescriptions implying again a failure
of the TSFM at low T in these systems.

A series of experiments was reported recently, by the
VECC group, using α-particle as the projectile. High-

energy γ-ray spectra were measured by the LAMBDA
array in coincidence with a Mγ-detector array. Neutron
spectra were measured in some cases to constrain the
NLD parameter in the SM analysis. The bremsstrahlung
contribution was estimated from the forward-backward
asymmetry of the γ-ray yield and subtracted from the
measured spectra. For the CN 119Sb populated at EX =
31.4–43.0MeV [185], the extracted GDR widths were in
the range ∼ 3.9 to 5.8MeV for 〈T 〉 changing from 0.9
to 1.4MeV. In another experiment [186], measurements
were made on the compound nuclei 201Tl and 63Cu. An
analysis of the F-gated γ-ray spectra showed that the ex-
tracted widths in 201Tl changed from 3.4 to 4.5MeV for
〈T 〉 in the range 0.8–1.12MeV. In 63Cu, the widths were
7.5 and 8MeV at 〈T 〉 = 1.15 and 1.3MeV, respectively.
The predicted widths by the TSFM, in all cases, were
larger than the experimental values. Combining with the
earlier data [136, 143] in 63Cu, 120Sn and 208Pb regions,
a systematic trend of a constant width up to a certain
temperature Tc and an increase at higher T , was deduced
(fig. 16). The extracted Tc was seen to decrease with A fol-
lowing an empirical relation Tc = 0.7+37.5/A. In the third
experiment [187] on 97Tc (EX = 29.3–50.4MeV), the ex-
tracted widths showed an increase from 5.5 to 7.5MeV
for 〈T 〉 changing from 0.8 to 1.51MeV. The widths, which
were lower than the TSFM values, also followed the above
trend of remaining constant up to T ∼ 1MeV and in-
creasing at higher T . The data have been compared with
the results of the PDM calculations. In all these cases, the
PDM predictions agreed with the data (see figs. 9 and 17)
after the inclusion of the pairing correlation and its fluc-
tuation. As mentioned earlier, the fluctuations make the
pairing correlation decrease monotonically with T without
an abrupt vanishing at a critical temperature.

A critical temperature fluctuation model (CTFM) was
introduced by the VECC group [186] to explain the sup-
pression of the width with respect to the TSFM. This
was based on the assertion [188] that the GDR itself in-
duces a quadrupole moment as the oscillating incompress-
ible neutron and proton fluids distort the surface (in the
Goldhaber-Teller picture). It was conjectured that if the
extent of the deformation Δβ due to the thermal shape
fluctuation is insignificant with respect to the induced de-
formation βGDR due to GDR vibration, the GDR width
should remain at the GS value up to a T = Tc at which Δβ
and βGDR become comparable. This argument was based
on the observation within the TSFM where βeq < Δβ at
low J and the effect of the J-induced deformation on the
GDR width is masked by the larger contribution from the
shape fluctuation. In the CTFM, Δβ < βGDR at low T
so that the effect of the thermal fluctuation on the width
is assumed to be small. This would, however, imply that
the GDR width should be at least equal to the contri-
bution from the shape fluctuation. It is not clear how the
GDR-induced deformation can suppress this contribution.
Moreover, the widths at T > Tc were obtained by a fitting
formula to mimic the increase of the width with T and J .
This model is, therefore, purely empirical although it rea-
sonably describes the experimental data in many cases as
shown in fig. 16.
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Fig. 16. (Colour online) T -dependence of experimental GDR
width from various experiments. Filled circles are for 63Cu (a),
119Sb (b) and 201Tl (c) from ref. [186]. Open symbols are for
63Cu (a), 118–120Sb (b) and 208Pb (c) from experiments men-
tioned in ref. [186]. Dashed curves are the TSFM predictions
without shell effect. Full lines are the CTFM results. Data
for Sn and Pb are shown with uncorrected T . (Adapted from
ref. [186].)

Fig. 17. (Colour online) Experimental GDR widths in (a)
201Tl (filled circles) and 208Pb (open squares) and (b) 97Tc.
In (a) data for 208Pb are shown with uncorrected T . Solid and
dashed lines are predictions of the PDM, for 201Tl (a) and 97Tc
(b), with and without pairing, respectively.

It should be mentioned at this point that the system-
atic observation of the GDR width at T ≤ 1MeV being
equal to the GS value is not consistent with one earlier
observation on 114Sn [189]. The measured width at a low

Fig. 18. (Colour online) (a) Average pairing gap, (b) average
quadrupole deformation parameter and (c) GDR width as a
function of T . In (c), solid squares are experimental widths for
120Sn from refs. [117,147], open circles are those for 119Sb from
ref. [185] and calculations are for 120Sn. Calculations without
pairing are done within CE. Those with BCS pairing (BCS)
and pairing fluctuations (PF) are done within GCE. The leg-
end 1–4 in (a) denotes 〈ΔZ〉ΔZ ,ΔN ,β,γ (PF), 〈ΔN 〉ΔZ ,ΔN ,β,γ

(PF), 〈ΔZ〉β,γ (BCS), and 〈ΔN 〉β,γ (BCS), respectively. The

legend 1–4 in (b) stands for LDM, without pairing (CE), BCS
(GCE) and PF (GCE), respectively, and is applicable to (c)
also. (Adapted from ref. [120].)

EX ∼ 26MeV was ∼ 7MeV which is about 2MeV more
than the GS width. In this case, T for the final state
after the GDR γ-ray emission can be estimated to be
∼ 0.9MeV.

The calculations of the GDR width down to low T
have been recently reported in ref. [119,120]. These calcu-
lations include the pairing field fluctuations in the TSFM,
as discussed earlier. The average pairing gaps 〈Δ〉, the
average quadrupole deformation parameters β and the
GDR widths ΓD obtained within this formalism for 120Sn,
97Tc, and 208Pb are shown in figs. 18–20 [120]. The results
clearly show that for open-shell nuclei the inclusion of the
pairing fluctuations in the TSFM significantly improves
the comparison with experiment at low T . In closed-shell
nuclei, such as 208Pb, the effect of pairing fluctuations on
the GDR width is negligible and the shell effects play an
important role at low T .

Besides the experiments at low T , the results of some
experiments at higher T and J [39, 190] suggested a dis-
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Fig. 19. (Colour online) Similar to fig. 18 but for 97Tc. Solid
squares are experimental widths from ref. [187]. PF(GCE)*
stands for the results using δ = 1.9 in eq. (5). All other calcu-
lations used δ = 1.8. (Adapted from ref. [120].)

crepancy with the TSFM. In an experiment, performed
at PLF Mumbai, 152Gd was populated at EX = 87 and
116MeV in the 28Si + 124Sn reaction at Eb = 149 and
185MeV, respectively. High-energy γ-ray spectra were
measured in coincidence with a 38-element Mγ-array and
ERs (at higher EX). The ERs were detected in an an-
nular PPAC placed in the forward direction. At lower
EX , F-gated spectra above a certain F, for which the
non-CN contributions were small, were analysed. Keeping
the GDR width the same at each step of decay, the ef-
fective widths were extracted for various average 〈J〉 and
〈T 〉 from the SM analysis using the SMCC code men-
tioned earlier. Over the range 〈T 〉 ∼ 1.34–1.91MeV and
〈J〉 ∼ 13–57, the extracted widths (using the NLD param-
eter a = A/9.5MeV−1) varied from ∼ 8.7 to 10.6MeV (see
footnote1), as seen in fig. 21. Next, a proposed (T, J)-
dependence of the width was incorporated at each step of
decay in the SMCC calculation and the F-gated spectra
were created. Using the earlier method (keeping the same
width at each decay step), the GDR widths for these cal-
culated spectra were derived for each F-window and com-

1 An error in the calculation of the FWHM of the GDR ab-
sorption cross-section from the two-parameter fits to the data
has been corrected. The fit parameters of ref. [39] remain un-
changed. Figures 21, 22 and the modified Kusnezov parame-
terisation are therefore different from those in ref. [39].
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Fig. 20. (Colour online) Similar to fig. 18 but for 208Pb. Solid
squares are experimental widths from ref. [117]. (Adapted from
ref. [120].)

pared with the experimental effective widths. The Kusne-
zov parameterisation [117], which is a representation of the
TSFM, could not describe the data at both EX with the
same value of Γ0 (eq. (66)). The parameter Γ0 represents
the width of the GS-GDR and should be independent of
EX . The introduction of an extra T 2-dependence and a
change in the J-dependence in eqs. (66), (67) reproduced
the data with the same value of Γ0. This is shown in fig. 21
which was obtained with the following modifications. In
eq. (66) a term 0.68 T 2 was added in the expression for
ΓD(J, T = 0, A) and the exponent was set to 1. Equa-
tion (67) was modified as

L(x) = 1 +
1.8

1 + e(1.24−x)/0.2
, c(A) = 5.0 − A/100.

Figure 22 shows the modified parameterisation fitting the
data as compared to the Kusnezov parameterisation for
two subsets of (T, J). These observations point towards
the effect of both shape fluctuation and collisional damp-
ing on the GDR width contrary to the conclusions in some
earlier work.

Recently, the TSFM calculation of the GDR width in
152Gd has been reported [191]. The authors, however, mis-
interpreted the linearised representation of the data as the
average absorption cross-section while comparing the cal-
culated and the experimental spectral shapes [192]. The
calculated widths were ∼ 0.3MeV higher at the higher EX
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Fig. 21. Experimental GDR width as a function of J (cor-
responding to different F-windows) at Eb = 149 MeV (a)
and 185 MeV (b) in the reaction 28Si + 124Sn. Full lines are
drawn through the fitted GDR widths using modified Kusne-
zov parameterisation for the (T, J)-dependence (see text) and
Γ0 = 3.7 MeV. The figure is different from that in ref. [39] (see
footnote 1).

contrary to the experimental observation of an increase of
> 1MeV. While this finding also supports an additional
T -dependence of the GDR width beyond the TSFM, it
may be necessary to do a more elaborate calculation which
includes the GDR strength function at various T and J
for the nuclei involved in the decay path of the CN, as has
been done recently [179].

A discrepancy with the TSFM was seen [50, 193] in
another experiment, performed at PLF Mumbai, on 86Mo
populated at 〈J〉 ∼ 11–31 and 〈T 〉 ∼ 1.1–1.6MeV in the
28Si + 58Ni reaction. A simplified shape-fluctuation calcu-
lation was done by assuming Gaussian distributions in β
and γ and calculating the average GDR strength function
with the standard procedure using eqs. (4) and (5). The
mean and FWHM of the β, γ distributions, ED0 and Γ0

were varied keeping δ = 1.8. The analysis revealed that
the value of Γ0 ∼ 6MeV, independent of J , could explain
the J-gated spectra at T = 1.25–1.31MeV. However, an
increase in Γ0 from 4 to 8MeV was needed to explain the
T -gated spectra (for T = 1.1 to 1.6MeV) at J = 21–24.
This suggested that the shape fluctuation alone could not
reproduce the data. The Kusnezov parameterisation de-
scribed the J-dependence but not the T -dependence. A
detailed TSFM calculation, however, was not reported.
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Fig. 22. (a) T -dependence for J = 0 and (b) J-dependence
for T = 1.5 MeV of the GDR width (dashed curves) fitting
the data as shown in fig. 21. Continuous curves are pTSFM
predictions [117]. The figure is different from that in ref. [39]
(see footnote 1).

4.2.3 Category C

In the liquid-drop regime, a rotating nucleus attains a NC
oblate shape. However, at very high rotational frequencies,
it is expected to undergo a drastic shape transition, known
as the Jacobi transition, from the NC oblate to a very
elongated triaxial (almost prolate) shape, rotating around
the shortest axis. This was suggested [194] from the study
of rotating charged liquid drops (based on a finding in
rotating gravitational systems by Jacobi in 1834) and for-
mulated in the semiclassical models [195,196]. The critical
angular momentum Jcr for the transition, which goes up
with A as A5/6, is higher than the fission limit in heavy
nuclei. The study of the Jacobi transition is thus possible
in light and medium-mass nuclei.

Whereas the Jacobi transition is manifested in the
liquid-drop regime, the superdeformed (SD) shapes are
seen in the near-yrast region and are decided by the shell
effects. The population of the SD shapes in a nuclear re-
action is an open problem. The enhanced γ-ray transition
with Eγ ∼ 8–10MeV, from the GDR built on SD states,
could be one important mechanism. A study of the GDR
related to the SD shapes can address this issue.
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Fig. 23. Left panel: high-energy γ-ray spectra in coincidence
with low-energy γ-rays from ND and TD bands in 143Eu. The
inset shows the ratio of the two spectra. Solid and dashed lines
show the SM calculations with different and same NLD pa-
rameters, respectively, for the normal and superdeformed con-
figurations (see text). Right panel: comparison of the spectra
measured in coincidence with SD-band and TD-band γ-rays.
(Adapted from ref. [197].)

In one exclusive measurement [197], performed in Leg-
naro, on the GDR built on the SD shapes, 147Eu was pop-
ulated in the reaction 37Cl + 110Pd at EX = 79MeV with
Jmax > 62. High-energy γ-ray spectra were measured in
the HECTOR array in coincidence with the γ-rays emit-
ted by ERs and detected in the EUROBALL. The residue
143Eu was populated with the highest cross-section at
this EX . This nucleus shows both spherical (ND) and
triaxially-deformed (TD) bands at low spin and becomes
superdeformed at high spin. The SD yrast band and the
excited SD states in the continuum finally populate the
ND states only. A comparison of the high-energy γ-ray
spectra in coincidence with γ-rays from the ND and TD
bands should, therefore, show the evidence for the GDR
built on the SD states. Besides, a coincidence with the γ-
rays from the SD band itself can address the issue directly
(although with much lesser statistics).

The left panel of fig. 23 shows the high-energy γ-ray
spectra (normalised at 5MeV) measured in coincidence
with γ-rays from the ND and TD bands. The shapes of the
spectra are different in the region Eγ = 8–12MeV. This is
further exemplified by their ratio shown in the inset. The
excess yield, in coincidence with the ND-band γ-rays, is
consistent with the emission from the lower energy com-
ponent of the GDR in a deformed shape with β ∼ 0.6.
In the right panel of the figure, high-energy γ-ray spectra
in coincidence with the SD-band and the TD-band γ-rays
are compared. The comparison suggests an excess yield in
the similar Eγ-region. These results are consistent with
the decay of the GDR built on the SD states. The calcu-
lated ratio of the γ-ray spectra agreed with the data as
shown in the inset. In this calculation, 40% of the pop-
ulation at J = 40–55 and U < 15MeV, where U is the
excitation energy above the yrast line, was assumed to

have a SD shape. The energies of the GDR components
for the SD shape were taken as 10.5 and 17MeV. The
calculation, done with different NLD parameters for the
normal (a = A/8MeV−1) and the SD (a = A/12MeV−1)
shapes, agreed with the data. This observation showed
that the superdeformed shape is populated in a nucleus
only within ∼ 10–15MeV above the yrast line. This is in
contrast to the Jacobi transition at high EX discussed in
the following.

As mentioned earlier, the first evidence of the Jacobi
transition was seen in 45Sc [135]. The search for the high-
energy GDR component at ∼ 25MeV, which is a signa-
ture of the Jacobi shape, was made in 46Ti [198]. The
nucleus was populated at EX = 81MeV in the reac-
tion 18O + 28Si in an experiment at NBI Copenhagen.
High-energy γ-rays were measured with the HECTOR ar-
ray in coincidence with a 38-element Mγ-detector array.
The SM analysis of the F-gated spectra was made with
a two-component GDR. The high-energy component at
∼ 24MeV was found to be stronger at higher F-windows
corresponding to higher values of J . This conclusion is
similar to that from the singles measurements on 45Sc
done at various beam energies. The angular distribution
for the highest F-window (F = 9–11) showed the expected
behaviour of a change in a2 coefficient from negative to
positive values with the increase in Eγ . This F-window
corresponded to J ∼ 25–33 extending beyond Jcr. The
average temperature was 〈T 〉 ∼ 1.3MeV.

For a highly deformed nucleus, one expects a very
low-energy GDR component corresponding to the vibra-
tion along the longest axis. Moreover, the Coriolis split-
ting [161], expected in triaxial and prolate nuclei, should
further split the strength, spreading it down to a still lower
energy. In the experimental studies discussed so far, the
low-energy component was not reported. The observation
of such a component at Eγ ∼ 10MeV was first reported
in 46Ti in an exclusive experiment [199–201] done at the
Strasbourg VIVITRON accelerator. The nucleus was pop-
ulated at EX = 86MeV in the reaction 18O + 28Si with
Jmax = 34. High-energy γ-ray spectra were measured in
the HECTOR array in coincidence with a 83-element Mγ-
detector array and the characteristic γ-rays from the ERs
detected in the EUROBALL array. The spectrum, gated
with F = 11–20 and with a simultaneous selection of char-
acteristic γ-rays from 42Ca, corresponded to a very high
J-range extending beyond Jcr. The SM analysis was done
using the Monte Carlo CASCADE program incorporating
a 3-component GDR. The best fit to the spectrum (fig. 24)
showed a narrow low-energy component at Eγ ∼ 10MeV.
The TSFM calculation was done using the LSD model for
the PES, which predicted the Jacobi transition at J ∼ 28.
The calculations done for J = 28–34 and T = 2MeV, in-
cluding the Coriolis splitting, showed a good agreement
with the experimental spectrum (for Eγ > 10MeV) as
shown in fig. 25. (The same figure shows the data, dis-
cussed earlier, and the calculation for 216Rn. In this case,
the LSD model does not predict the Jacobi transition in
accordance with the experiment.)

Another interesting observation from these experi-
ments [201] pertained to the population of a highly de-
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Fig. 24. Left panel: experimental γ-ray spectrum from 46Ti
in coincidence with high F-window and discrete transition in
42Ca. The solid line shows the SM fit. Right panel: linearised
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Fig. 25. Experimental GDR strength functions in 46Ti (b)
(the same as in right panel of fig. 24) and 216Rn (d). Solid and
dotted lines show TSFM calculations (using the LSD model
for the PES) with and without Coriolis splitting, respectively.
Panels (a) and (c) are calculations at a given J . Panels (b)
and (d) are for a range of J corresponding to the experiment.
(Adapted from ref. [114].)

formed (HD) band (akin to SD shape) in 42Ca in coin-
cidence with the high-energy γ-rays. The HD band was
seen to be preferentially populated in coincidence with
the low-energy component of the GDR at ∼ 10MeV. This
suggested that in these light nuclei, the population of the
HD band might be assisted by the Jacobi transition.

The evidence for the Jacobi transition was seen in 47V
in an experiment by the VECC group [202] populating the
nucleus at EX = 108MeV in the reaction 20Ne + 27Al. In
47V, Jcr ∼ 29 and the populated Jmax was ∼ 38. High-
energy γ-rays were measured in coincidence with a Mγ-
detector array. Spectra measured for two F-gates, corre-
sponding to 〈J〉 ∼ 28 and 31, showed a narrow structure
at Eγ ∼ 10MeV in the linearised plots. The TSFM calcu-
lation was done based on the rotating liquid-drop model,
which shows the evolution towards the Jacobi transition
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Fig. 26. Linearised plots of various F-gated γ-ray spectra and
SM fits at Eb = 125MeV ((a), (b)) and 75MeV ((c), (d)) in the
19F + 27Al reaction populating 46Ti. (Adapted from ref. [203].)

at high J , and including the Coriolis effect. The experi-
mental spectra were reproduced above Eγ ∼ 8MeV.

Further investigations on the Jacobi transition in 46Ti
were carried out in an experiment at PLF Mumbai [203]
using the reaction 19F + 27Al at Eb = 75 and 125MeV.
The nucleus was populated, respectively, at EX = 68 and
98MeV and Jmax ∼ 27 and 36. Considering the expected
Jcr ∼ 28, the experiment thus addressed both the pres-
ence (at high EX) and the absence (at low EX) of the
transition. High-energy γ-ray spectra were measured in
coincidence with ERs detected in an annular PPAC and
a 38-element Mγ-detector array. Linearised plots of the
measured spectra at EX = 98MeV (for F = 2 and 7–
38) and at EX = 68MeV (for F = 1–2 and 4–38) are
shown in fig. 26. The figure shows a narrow low-energy
component in the spectrum at Eγ ∼ 10MeV at the higher
F-window and higher EX . This is weak at the lower F-
window and is absent in the spectra at lower EX . (A dis-
cernible weak peak at the lower F-window was attributed
to a different unexplained origin). For the SM calcula-
tions, the JCN -distributions corresponding to different F-
windows were obtained from the Monte Carlo calculations.
From the SM analysis of the spectra, done with the cal-
culated JCN -distributions, the effective photoabsorption
cross-sections σabs(Eγ) were extracted. As expected, the
low-energy component in the extracted σabs was promi-
nent at the higher EX and the higher F-window. The val-
ues of JCN corresponding to different F-windows strad-
dled a wide range (as expected for light systems). The
calculation showed that at higher EX , the fractional pop-
ulation of JCN above the expected Jcr was ∼ 22% and
40%, respectively, for the lower and the upper F-windows.
These values were ∼ 4% and 8% at the lower EX . These
observations thus provided further evidence for the Jacobi
transition for J > Jcr.
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4.3 Statistical GDR at high T

The study of the GDR at T ∼ 2.5 to 5MeV addresses two
important issues, viz., the saturation of the GDR width
and the quenching of the collective vibration. The experi-
ments in this regime are in general more involved because
the ICF process and the PEQ particle emission become
very important. The characterisation of the equilibrated
source emitting the GDR photons is not straightforward.
On the other hand, by selecting different regions of the in-
complete momentum transfer, the study of the GDR over
a wide range of EX , albeit with changing A, can be made
at one beam energy.

4.3.1 Saturation of GDR width

The first evidence of the saturation of the GDR width
was seen in an experiment [148], performed in Greno-
ble, on 110Sn populated in the 40Ar + 70Ge reaction at
Eb = 10MeV/nucleon. High-energy γ-ray spectra were
measured in coincidence with the heavy residues. The ve-
locity spectrum of the residues was compatible with the
complete fusion process and EX = 230MeV. The ex-
tracted GDR width of ∼ 13MeV was not very different
from ∼ 11MeV at EX = 130MeV [31] implying a trend
towards width saturation. According to the TSFM, in the
low EX region, GDR width increases due to the J-driven
deformation and the T -driven fluctuations. At high bom-
barding energies, there is a limit in the populated J due
to the fission process. The J-driven effect should, there-
fore, saturate beyond this limiting J and the width should
further increase only due to the T -driven effect.

In an experiment [204] on the deep inelastic reaction
136Xe + 48Ti at Eb = 18.5MeV/nucleon, performed in
Darmstadt, high-energy γ-rays were detected in coinci-
dence with the target- and projectile-like products having
different kinetic energies. The contribution to the spec-
trum in the GDR region was dominated by that from the
excited Xe-like fragments. The extracted GDR widths var-
ied between ∼ 9.0 and 10.0MeV for EX/A ∼ 1.1–2.3MeV,
thus, implying the width saturation.

In another experiment [205] on the reaction 16O +
118Sn at Eb = 200 and 280MeV, performed at KVI Gro-
ningen, 134Ce was populated at an effective EX = 165
and 235MeV, respectively. High-energy γ-ray spectra were
created in coincidence with a segmented sum-spectrometer
selecting the central collision events. The extracted GDR
widths were ∼ 10.5 and 11.0MeV at these two values of
EX showing the width saturation.

The saturation of the GDR width was discussed in
an experiment [41], done in Saclay, on the 19F + 93Nb
reaction at Eb = 157 and 184MeV, corresponding to
EX = 130 and 152MeV, respectively, in 112Sn. High-
energy γ-rays were measured in coincidence with heavy
residues. In the SM calculations, a T -dependent [34] NLD
parameter was used which made a significant difference
as compared to those using a T -independent NLD pa-
rameter. The analysis was done with various prescrip-
tions [42, 206, 207] for the T -dependent GDR width in-
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Fig. 27. Lower panel: reanalysed GDR widths as a function of
revised T [151] using data from various experiments in Sn and
nearby nuclei with A ∼ 110–130. The full line shows the TSFM
calculation. Upper panel: average Jf of the final states for GDR

decay in 18O + 100Mo reaction. (Adapted from ref. [151].)

cluded at various decay steps in the SM calculation. The
probability of γ-ray emission at various steps was mul-
tiplied by a reduction factor due to the competition be-
tween the GDR equilibration time and the CN lifetime
(see later). The result of the analysis was not very conclu-
sive and showed that the data could be reproduced with
or without the saturation in the width provided it reaches
a large value of 15–20MeV above EX = 100MeV. This is
higher than the saturation value of ∼ 13MeV suggested
in an earlier experiment mentioned above.

The saturation of the width was questioned in a pa-
per [151] reporting an experiment on the 18O + 100Mo re-
action at various Eb. The analysis of the experimental
data, mentioned in an earlier section, was made taking
into account the effect of PEQ particle emission. This
effect, as discussed above, reduces the EX of the equi-
librated source [152] emitting the GDR γ-rays. The ef-
fect of the PEQ particle emission was considered in the
analysis of the other experimental data, mentioned in this
subsection. The correction to the EX due to the PEQ
effect was obtained using a linear fit through two data
points and applied to all other cases. The reanalysis of
the data revealed a continuous increase of the width up to
T ∼ 3.2MeV (fig. 27) without any saturation. The TSFM
calculation also showed an increase with T (although the
reproduction of the experimental data was not good at
lower T ) even after the saturation in J due to the fission
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process. This showed that the T -dependent fluctuation ef-
fect is comparable to the J-dependent effect. (It should
be mentioned that the data points of ref. [205] were not
included in fig. 27.)

We leave the topic of width saturation at this stage
after mentioning again the latest experimental result [179]
on 88Mo at T = 2.0 and 3.1MeV. The work suggested
a saturation (figs. 13 and 14) of the GDR width, thus,
reopening the debate on this issue.

4.3.2 Quenching of GDR

The experiments at very high EX or T (> 3MeV) address
the evolution and persistence of the collective motion in
very hot nuclei. The topic of GDR quenching has been
reviewed in detail in a recent paper [17].

The first demonstration of the quenching of the GDR
at high T came from an experiment [208] on the reac-
tion 40Ar + 70Ge at Eb = 15 and 24MeV/nucleon done
in Grenoble. High-energy γ-ray spectra were measured
in coincidence with the reaction products. Although the
maximum values of EX transferred to the compound sys-
tem were 360 and 610MeV, the SM analysis of the spec-
tra, after including the bremsstrahlung component, re-
produced the data in the GDR region assuming a lesser
EX = 320MeV at both beam energies. In the calcula-
tions, the GDR width was fixed at 15MeV at all decay
steps and the strength was 100% of TRK. This observa-
tion suggested that the GDR γ-ray emission is inhibited
above EX = 320MeV. In another work from the same
group [209], the same reaction was studied at four beam
energies between 10 and 24MeV/nucleon. The measured
γ-ray spectra could be reproduced with EX = 300MeV
and a GDR width of 13MeV at all Eb. This was attributed
to the vanishing of the collective motion at T ∼ 5MeV.

A very different interpretation of the vanishing of the
GDR was proposed by the RIKEN group [42–44]. The
authors analysed the experimental data from the 40Ar-
induced reactions, on Ni, 92Mo and 122Sn, done at Eb = 21
to 26MeV/nucleon. High-energy γ-ray spectra were mea-
sured gated by different residue velocities. The integrated
yield for Eγ = 12–20MeV in the GDR region (after the
bremsstrahlung subtraction) showed a flat behaviour as a
function of EX . This is contrary to the normal expecta-
tion of an increase of the yield with EX , coming from the
higher number of steps available for the emission of the
GDR γ-rays. In the SM analysis, an EX -dependent GDR
width was used at different decay steps, as opposed to the
earlier analyses. The dependence for 92Mo target was as-
certained to be ΓD(EX) = 4.8 + 0.0015 EX + 0.0002 E2

X .
The flat behaviour mentioned above was reasonably re-
produced. The authors defined a limiting EX for the GDR
survival at which the width becomes 30MeV (somewhat
arbitrarily). The corresponding limiting temperature was
derived as T ∼ 4.5MeV for all the targets.

The proposition of the RIKEN group was refuted in an
elaborate experiment done in GANIL [210,211] on the re-
action 36Ar + 90Zr at Eb = 27MeV/nucleon. High-energy
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Fig. 28. Experimental and calculated γ-ray multiplicities as
a function of EX , for (a) Eγ = 12–20 MeV and (b) Eγ =
20–35 MeV, in 36Ar + 90Zr reaction at Eb = 27MeV/nucleon.
Solid lines are the results of the standard SM calculation and
long-dashed lines are the ones with an assumption of the width
increasing with EX . Short dashed lines are obtained with a cut-
off EX for GDR γ-ray emission. (c) Inverse slope of the mea-
sured bremsstrahlung-subtracted spectra for Eγ = 20–35 MeV
and the result of the SM calculation with increasing GDR
width. (Adapted from ref. [211].)

γ-ray spectra were measured in the MEDEA array in co-
incidence with three velocity bins of the heavy residues.
Coincident proton spectra were also measured in order to
characterise the temperature of the emitting source. A de-
tailed analysis deduced the equilibrated EX for the three
velocity bins as 350, 500 and 550MeV. The integrated
multiplicities for two windows, viz., Eγ = 12–20 (GDR
region) and 20–35MeV (above GDR), were created from
the bremsstrahlung-subtracted γ-ray spectra. These are
shown in fig. 28 where a small change of the γ-ray yield
(in the GDR region) is seen with increasing EX . This is
contrary to the standard SM calculations (solid lines) and
corroborates the earlier observations on the saturation of
the GDR γ-ray yield. However, the small change even for
the higher Eγ-window is contrary to the proposition of a
continuous increase of the GDR width with EX , as shown
by the long-dashed lines. The behaviour of the inverse
slope parameter of the measured spectra (fig. 28(c)) is
also not consistent with this proposition.
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Various theoretical ideas on the change of the GDR
width with EX and the hindrance of the γ-ray emission
due to the competition between the GDR equilibration
time and the CN lifetime were tried in the SM calculations.
Bortignon et al. [212] proposed the reduction in the prob-
ability of γ-ray emission, arising from the consideration of
the GDR equilibration time, as

P (Eγ) = Γ0/(Γ0 + ΓCN )

with the intrinsic width Γ0 = 4.8MeV. An excitation-
energy dependent GDR width was used up to EX ∼
130MeV. At higher EX , the width was assumed to sat-
urate at 12MeV. Calculations for EX = 500MeV com-
pared well with the data at higher Eγ but grossly un-
derestimated the yield below Eγ ∼ 15MeV. Smerzi et
al. [98, 213] proposed, from the CDM, a continuous in-
crease of ΓD with EX without any saturation. In the above
probability factor, Γ0 was replaced by ΓD at each EX . The
calculated spectrum reasonably reproduced the data near
the GDR energy but overestimated the data at higher Eγ .
Chomaz et al. [145,146] proposed an additional contribu-
tion of 2ΓCN to the width, where ΓCN is the evaporation
width of the states connecting the GDR γ-ray transition.
This leads to an increase in the GDR width with EX due
to the increase in ΓCN . Using this prescription, the predic-
tion was even worse at higher Eγ . All these comparisons
showed that the proposition of a continuous increase in
GDR width with EX , which reduces the contribution in
the GDR region and enhances the yield at higher Eγ , is
contrary to the experimental results.

The simplest way to explain the data was to assume
a sharp decrease of the γ-ray yield from the GDR above
a certain EX . Using the same EX = 250MeV for the
three energy bins and a constant ΓD = 12MeV at each
decay step, the spectra were well reproduced above Eγ =
12MeV (fig. 28(a) and (b)). However, the calculated yield
was less than the data for Eγ = 8–12MeV. This suggested
some extra strength in this region which could be due
to the PEQGDR γ-ray emission (discussed in the next
section). This emission takes place from the system with
a large deformation and contributes to the spectrum at
lower Eγ .

It may be mentioned at this stage that the quenching
of the GDR is predicted by the PDM. In a calculation [90]
on 120Sn and 208Pb, extended to high T (> 4MeV), the
model predicted the saturation of the GDR width. Using
the calculated widths, the trend of the quenching of the
GDR γ-rays was reproduced in the A ∼ 120 region (see
fig. 9 in ref. [90]).

The measurements on the GDR quenching were made
by the same group [21, 214, 215] at a higher beam energy
of Eb = 37MeV/nucleon in the reaction 36Ar + 98Mo.
Considering the results from earlier experiments in the
similar mass region, it was deduced that in the GDR re-
gion (Eγ = 12–20MeV) the γ-ray multiplicity decreases
from 5.2 × 10−3 at Eb = 21MeV/nucleon to 2.4 × 10−3

at Eb = 37MeV/nucleon. A calculation of the reaction
dynamics, using the Boltzmann-Nordheim-Vlasov (BNV)
equation [216], revealed that the time required to form the

final equilibrated nucleus is more at higher Eb. Due to the
PEQ particle emissions during this period, the EX at the
final stage gets reduced. The statistical GDR γ-rays, emit-
ted at this stage, thus, has a lower multiplicity at higher
Eb supporting the observations. However, as mentioned in
ref. [17], the differences in the experimental multiplicities
could be attributed, in some measure, to the differences
in the experimental setups and methods of data analysis.
In the final analysis of the data at 37MeV/nucleon [21],
three velocity bins of the heavy residues were used. After a
detailed characterisation through the measurement of par-
ticle spectra, the excitation energies for the three bins were
deduced as EX = 300, 350 and 430MeV with A = 105,
108 and 111, respectively. Using a sharp cut-off in EX for
the presence of the GDR vibration, as mentioned above,
the cut-off values were deduced as 220, 230 and 220MeV,
respectively, establishing again the vanishing of the GDR
at high T .

The quenching of the GDR in a different mass re-
gion was studied [217] at LNS Catania using the reactions
40Ca + 48Ca and 40Ca + 46Ti at Eb = 25MeV/nucleon.
High-energy γ-rays and charged particles were detected in
the multi-detector system TRASMA. The SM analysis of
the γ-ray spectra was done after characterising the EX of
the source, utilising the earlier experimental results for a
similar system, viz., 40Ca + 48Ti [218]. Interestingly, after
taking the reduction factor R = Γ↓/(Γ↓ + ΓCN ) in the γ-
ray decay probability at each stage (with Γ↓ = 6.5MeV),
a sharp cut-off in EX was not needed to explain the data.
The authors defined the cut-off energy as the value of EX

at which R = 1/2. The deduced values of Ecutoff/A were
∼ 5.4 and 4.7MeV for the two reactions with a larger error
bar for the second reaction. These values are significantly
higher than ∼ 2MeV in the A ∼ 110 region.

In a recent experiment [21], the study was extended
to lower beam energies in the inverse-kinematic reac-
tions 116Sn + 12C at Eb = 17 and 23MeV/nucleon and
116Sn + 24Mg at Eb = 17MeV/nucleon. In the earlier ex-
periments, the nuclei were populated at EX much higher
than the Ecutoff values. This measurement addressed the
gradual vanishing of the GDR vibration as a function of
EX . The experiment was done at LNS Catania using the
MEDEA detector array. Fusion-like residues were detected
by a solenoid spectrometer. From a detailed analysis of the
charged particle spectra and the charge distribution of the
residues, the values of EX were deduced as ∼ 150, 190 and
270MeV for the above three cases and the mass numbers
of the equilibrated sources were 124, 123 and 132, respec-
tively. With the GDR widths of ∼ 11.0 and 12.5MeV, the
experimental spectra were reproduced at the two lower
EX (i.e. up to EX = 190MeV) without any quenching of
the GDR. At EX = 270MeV, the analysis needed a cut-
off in EX for the GDR vibration, as was seen in the earlier
works, in order to reproduce the experimental spectrum.
The value of Ecutoff/A was deduced as ∼ 1.7MeV with
A ∼ 132. This showed that the phenomenon of quenching
sets in gradually above a certain EX .

In order to quantify the gradual vanishing of the GDR
with EX , the experimental and the SM-calculated spectra
were integrated between 12 and 20MeV (in the GDR re-
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Fig. 29. Upper panel: experimental GDR γ-ray multiplic-
ity (Eγ = 12–20MeV) and SM prediction (continuous lines)
for 116Sn + 12C and 116Sn + 24Mg reactions at Eb = 17 and
23 MeV/nucleon (filled circles) and 36Ar + 98Mo reaction at
higher Eb (open circles). Lower panel: gradual quenching of the
GDR with EX/A shown as the ratio of experimental and SM-
calculated γ-ray multiplicities in the upper panel. (Adapted
from ref. [21].)

gion). These are shown in fig. 29 as a function of excitation
energy per nucleon for different reactions including those
at much higher energies. A decrease in the experimental
yield, as compared to the calculation, is seen at higher EX .
The lower panel in the figure shows the ratio between the
two yields. A smooth decrease of this ratio is observed as
a function EX/A, starting above ∼ 1.5MeV and contin-
uing up to the highest energy, indicating a quenching of
the GDR which sets in at ∼ 2MeV per nucleon.

A connection between the vanishing of the GDR vi-
bration and the liquid-to-gas (LG) phase transition has
been proposed by many authors. In the experiments on
the caloric curve studies, a plot of the deduced T as a
function of EX showed a flat region signifying a mixed
phase [219]. The excitation energy at which the flatten-
ing starts signals the setting in of the phase transition.
A plot of this excitation energy per nucleon as a function
of A shows a decrease with A (fig. 30). From the experi-
mental results in different mass regions [21,217], the limit-
ing excitation energies (Elimit

X /A) for the existence of the
GDR were summarised [21] as ∼ 5.0, 2.1 and 1.7MeV for
A ∼ 60–70, 105–111 and 132, respectively. These, thus,
also show a decrease with A (fig. 30). A broad similarity
in the A-dependence of the limiting excitation energies per
nucleon, related to both phenomena, provides an experi-
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Fig. 30. Excitation energy per nucleon at which the LG phase
transition sets in (filled symbols) and the GDR vibration is
quenched (open symbols) showing a broad similarity in the
A-dependence. (Adapted from ref. [21].)

mental indication [21] of the connection between the GDR
quenching and the LG phase transition.

4.4 Specific shear viscosity of hot nuclei from GDR

Recent experiments on ultra-relativistic heavy-ion colli-
sions at the Relativistic Heavy-Ion Collider (RHIC) [220–
223] at Brookhaven National Laboratory and the Large
Hadron Collider (LHC) [224,225] at CERN have made key
discoveries on the creation and study of the quark-gluon
plasma (QGP). The analysis of the data revealed that the
strongly interacting matter formed in these collisions is a
nearly perfect fluid with a very low specific shear viscosity
η/s where η is the shear viscosity and s is the entropy vol-
ume density. In order to apply hydrodynamics to nuclear
systems such as a hot nucleus, the quantum mechanical
uncertainty principle requires that it has a finite viscosity.
Kovtun, Son and Starinets [226] conjectured that η/s has
a universal lower bound of h̄/(4πkB) = KSS, known as
the KSS bound or unit, for all fluids.

As mentioned earlier the giant resonance damping, in
semiclassical theories, is related to the nuclear viscosity.
By evaluating the p-moments, eq. (46) is reduced to the
Navier-Stokes–like equations of motion with the memory-
dependent coefficient of shear viscosity η(T ) [106]. For T <
εF and ω0 < εF , the shear viscosity is found within the
FLDM as [106,227]

η(T ) =
2
5
ρεF

τ̄

1 + (ω0τ̄)2
, (76)

where the notation τ̄ denotes τcoll in eq. (52) at ζ = 1 and
at τ̃ given by the parameterisation (eq. (53))

τ̄ = τcoll(ζ = 1, τ̃ = α/T 2). (77)

Adopting εF = 40MeV, ρ = 0.16 fm−3, α = 9.2MeV
and ω = 20MeV, Auerbach and Shlomo [227] obtained
η/s 
 4–19 and 2.5–12.5 KSS for heavy and light nu-
clei, respectively. The shortcomings of these results are
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the large uncertainty and the use of the Fermi-gas entropy
S = 2aT in estimating the specific shear viscosity.

A better estimation of η/s was proposed in ref. [228]
where the Green-Kubo’s relation was used to derive the
T -dependence of η in terms of the GDR parameters as

η(T ) = η(0)
ΓD(T )
ΓD(0)

ED(0)2 + [ΓD(0)/2]2

ED(T )2 + [ΓD(T )/2]2
. (78)

This expression and the microscopic entropy can be used
to calculate η/s using the GDR widths and energies with
η(0) as a parameter. The value of η(0) is between 0.6u
and 1.2u where u = 10−23 MeV s fm−3, as discussed in
refs. [12,229].

The predictions of η and η/s as a function of T by
using the PDM, pTSFM, ACM and FLDM, for 120Sn and
208Pb, are shown in fig. 31. The figure also shows the
empirical results derived from the experimental GDR pa-
rameters [20]. It is seen from the figure that the PDM
provides the best overall agreement with the empirical
results. The ratio η/s decreases sharply with T up to
∼ 1.5MeV and more gradually at higher T to reach
∼ 2–3 KSS at T = 5MeV. In the same work [228], a
model-independent estimate was made assuming the max-
imal value of the GDR width Γmax 
 3ΓD(0) 
 0.9ED(0)
and ED(T ) = ED(0). This gives ηmax 
 2.55 × η(0).
The high-T limit of the entropy density was obtained as
smax 
 0.22 kB . The derived minimum value of the spe-
cific shear viscosity was (η/s)min 
 2.2+0.4

−0.9 KSS using
η(0) = 1.0+0.2

−0.4 u. Based on this model-independent assess-
ment as well as the results from various models discussed
above, one can conclude that for medium-mass and heavy
nuclei η/s ∼ 1.3–4.0 KSS at T = 5MeV. This is about 3–
5 times smaller (and of lesser uncertainty) than 4–19 KSS

predicted by the FLDM [227] for heavy nuclei (derived
using η(0) = 0.6 u). These discussions indicate that the
specific shear viscosity in hot nuclei at T = 5MeV is ex-
pected to have nearly the same value as that of the QGP
(1.5–2.5 KSS) at T > 170MeV.

4.5 Pre-equilibrium GDR

The discussion so far has been on the statistical GDR
excited in an equilibrated nucleus. However, before the
equilibration, a direct mechanism of the GDR excitation
is possible. This arises due to a large-amplitude dipole os-
cillation, termed as the pre-equilibrium GDR (PEQGDR),
induced in the charge-asymmetric reaction channels with
different N/Z ratio of the projectile and the target. In the
first stage of the collision, nuclei move towards the N/Z
equilibration inducing the PEQGDR. Since this mode is
excited before equilibration, when the nuclear system is
very deformed, the GDR energy is lower than that of the
equilibrated system. Experimentally, the PEQGDR has
been studied by measuring high-energy γ-ray spectra in
fusion reactions and deep inelastic collisions (DIC).

The first indication of the PEQGDR was seen [230] in
the reactions 35Cl + 64Ni and 35Cl + 92Mo at Eb = 271
and 260MeV, respectively, studied in Saclay. High-energy
γ-ray spectra were measured in coincidence with the out-
going fragments. From a comparison of the experimen-
tal and calculated γ-ray spectra emitted from the ex-
cited fragments, an excess yield was observed at Eγ ∼
10–11MeV. This was attributed to the GDR γ-ray emis-
sion at a highly deformed pre-equilibrium stage. In a
similar experiment [231] on the reaction 32S + 74Ge at
Eb = 320MeV, performed in Legnaro, the measured γ-
ray spectrum in coincidence with the reaction products
revealed an excess yield at Eγ ∼ 10–15MeV when com-
pared with the SM calculations. This was consistent with
the emission from a touching configuration of the projec-
tile and the target. The analysis of the measured fragment-
γ-ray angular correlation also showed a pre-equilibrium
component at a similar energy.

In an experiment [232], performed in Legnaro, a com-
parative study was made between the reactions 32S + 64Ni
and 32S + 58Ni. The magnitude of the difference (δN/Z)
between the N/Z of the projectile and the target are
∼ 0.28 and 0.07, respectively, for the two reactions. High-
energy γ-ray spectra were measured in coincidence with
the reaction products. The spectra created in coincidence
with the quasi-elastic (QE) events were similar for the
two reactions whereas those in coincidence with the DIC
events showed a difference. In the latter case, there was an
excess yield at Eγ ∼ 10–18MeV in the reaction channel
with a larger δN/Z . This observation provided a strong ev-
idence for the PEQGDR. Its absence in the QE reaction
was attributed to the fact that the reaction time was too
small to relax the charge degrees of freedom.

The first fusion reaction experiment showing the ex-
citation of the PEQGDR [233] was performed in Chalk
River. High-energy γ-rays were measured using the 8π-
spectrometer [234] in the 36S + 104Pd and 40Ca + 100Mo
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reactions (with δN/Z = 0.01 and 0.38, respectively) pop-
ulating 144Sm at EX = 71MeV. An enhanced yield of
∼ 16%, seen for Eγ ∼ 8–18MeV in the second reaction,
was attributed to the PEQGDR γ-ays. A Boltzmann-
Uehling-Uhlenbeck (BUU) [235] calculation showed con-
sistency with the experimental findings.

A series of experiments was reported [236–238] on a
systematic study of the energy dependence of the PE-
QGDR excitation considering the theoretical predictions
of a rise and fall of its excitation probability as a func-
tion of Eb [239,240]. The pairs of reactions, leading to the
similar composite systems, studied were (a) 32S + 100Mo
and 36S + 96Mo at Eb = 6 and 9MeV/nucleon and (b)
40Ar + 92Zr and 36Ar + 96Zr at Eb = 15–16MeV/nucleon.
The mass asymmetry, defined in terms of the radii as
(RP −RT )/(RP +RT ) where P and T refer to the projec-
tile and the target, respectively, were almost the same in
both pairs. This eliminated the possible mass-asymmetry–
dependent effects in the reactions [241].

The first pair of reactions (with δN/Z ∼ 0.38 and 0.04,
respectively) was studied in Legnaro. High-energy γ-ray
spectra were measured at various angles, including 90◦,
in coincidence with the fusion-like residues. The contri-
bution from the bremsstrahlung process was subtracted
in the data analysis. The reduction in EX due to the
PEQ particle emission was calculated with the existing
systematics [151]. The effective values of EX were 117 and
173.5MeV, for both reactions, at the lower and the higher
Eb, respectively. The comparisons of the spectra measured
in the two reactions are shown in fig. 32. At the lower Eb,
the spectra in both reactions were identical and could be
described by a SM calculation with the GDR energy of
14.3MeV. The excess yield in the more charge-asymmetric
channel was thus consistent with zero. At the higher Eb,
the spectra showed a large difference. For the reaction
channel with δN/Z ∼ 0.04, the SM calculation explained
the data with the GDR energy of ∼ 14MeV. In the other
reaction with δN/Z ∼ 0.38, there was an excess yield of
∼ 25% at Eγ = 8–21MeV at θ = 90◦. These observations
established that the PEQGDR emission depends on the
beam energy or the reaction time.

The dependence on the reaction time was supported
by a different observation in another experiment [242] on
the reaction pair 16O + 98Mo and 48Ti + 64Ni. These have
δN/Z ∼0.33 and 0.10, respectively. Although the differ-
ence in δN/Z is less here, an excess yield of ∼ 36% was
seen in the first reaction in a similar Eγ-range. In this
case, (EX ∼ 110MeV in the CN) the beam energy is even
less than 9MeV/nucleon. However, the reaction pair has
a large mass-asymmetry difference and the first reaction,
with more mass asymmetry, has a faster reaction time to
produce the CN. This showed that the excitation of the
PEQGDR depends on the reaction time. This, in turn,
agrees with the finding that for a given mass asymmetry,
the excess yield goes up at higher Eb.

The second pair of reactions (with δN/Z ∼ 0.08 and
0.40, respectively) was studied at LNS Catania. High-
energy γ-ray spectra were measured with the MEDEA
array in coincidence with fusion-like residues. Proton and
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α-particle spectra were measured in order to characterise
the effective EX and A of the source. These were deduced,
in both channels, as EX ∼ 285MeV and A ∼ 126, re-
spectively. For the more charge-symmetric reaction, the
bremsstrahlung-subtracted spectrum was fitted with the
SM calculations. (However, the fit could be obtained by
using a lower EX = 250MeV, which implies the quenching
of the statistical GDR as discussed earlier). A comparison
of the bremsstrahlung-subtracted spectra showed an in-
crease in yield in the more charge-asymmetric channel. In
this case, the integrated yield for Eγ ∼ 8–21MeV showed
only a 12% increase at θ = 90◦. This is lower than that
measured at Eb = 9MeV/nucleon and, hence, shows a rise
and fall of the PEQGDR excitation with beam energy.

The difference spectra between the charge-asymmetric
and charge-symmetric reactions, measured at Eb = 9 and
16MeV/nucleon, were fitted with Lorentzian shapes. The
extracted GDR energies (widths) were ∼ 11.4 (3.0)MeV
and 12.2 (3.7)MeV, respectively. The energies are lower
than the CN-GDR energies of ∼ 14MeV implying a de-
formed source for the PEQGDR γ-rays. The analysis of
the measured angular distribution of γ-rays provided more
information. For the charge-symmetric reaction, the a2

values for different Eγ-bins were consistent with the sta-
tistical GDR γ-ray emission from a non-collective oblate
nucleus. On the other hand, the angular dependence of
the difference in the yields between the two channels (for
Eγ ∼ 9–21MeV) showed a prominent anisotropy consis-
tent with a2 = −1. This implied that the GDR γ-ray
emission takes place from a system oscillating along the
beam direction, as is expected for the PEQGDR.

For a quantitative understanding, the BNV calculation
was done at Eb = 6, 9 and 16MeV/nucleon. The calcula-
tions revealed, as mentioned earlier, that a faster reaction
time is conducive to the PEQGDR excitation. However, at
a high beam energy (15–20MeV/nucleon), the γ-ray emis-
sion gets hindered by a faster damping of the mode and the
faster particle emissions. These calculations, which depend
on the NN collision cross-section σNN and the nuclear
density ρ, showed an agreement with the data at Eb = 6



Eur. Phys. J. A (2016) 52: 143 Page 37 of 42

Eb (MeV/nucleon)
4 6 8 10 12 14 16 18

0

1

2

3

4 S+Mo Data
Ar+Zr Data
1
2
3
4
5
6

M
γ 

(
3
)

x 
1
0

Fig. 33. Multiplicity of PEQGDR γ-rays at various beam en-
ergies in Ar + Zr and S + Mo reactions and results of BNV
calculations elaborated in ref. [238]. Lines 1,3,5 refer to the
first reaction and 2,4,6 to the second. Lines 1,2 are obtained
with asymmetric soft equation of state and 5,6, with asym-
metric stiff equation of state, both sets using nuclear density
ρ = 0.14 fm−3. Lines 3,4 are obtained using free NN cross-
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and 16MeV/nucleon. The data at Eb = 9MeV/nucleon
could, however, be reproduced with a lower in-medium
σNN and a constant ρ = 0.14 fm−3 (fig. 33). The authors
concluded that this aspect should be further investigated
both experimentally and theoretically in future.

The PEQGDR was observed at a much higher beam
energy [217] of Eb = 25MeV/nucleon in the reaction pair
40Ca + 48Ca and 40Ca + 46Ti. The experiment was dis-
cussed in an earlier section. The ratios of the γ-ray yields,
in coincidence with heavy residues, from the two reactions
were created at various angles. An enhancement in the
yield for the more charge-asymmetric channel, as expected
for the PEQGDR excitation, was seen in a broad Eγ re-
gion around 10MeV. The γ-ray spectra at all angles were
added after applying the Doppler correction assuming the
source velocity to be that of the fusion-like residues. The
ratio of the angle-summed spectra for the two reactions
also showed an enhancement at Eγ ∼ 10MeV indicating
that the PEQGDR γ-rays are emitted from a source with
velocity of the fusion-like residues.

5 Summary and outlook

In this review we have discussed the developments and the
present status in the field of the damping of the GDR in
hot and rotating nuclei. The research work in the field of
the PEQGDR has been briefly addressed.

The measurement of the GDR width, which arises due
to the damping, as a function of temperature and angu-
lar momentum requires the use of exclusive experimental
techniques which have progressed considerably over the
years. This has been matched by the progress in the the-
oretical understanding as well.

Experimental observations on the T - and J-depend-
ence of the GDR width covering a wide range of T , J and
nuclear systems, can be broadly summarised as follows.
The GDR width is rather insensitive to the change of T
up to ∼ 1MeV and increases rapidly up to a moderate T
of ∼ 2.5MeV. At higher T , there are claims of observing
the saturation of the GDR width. This observation has,
however, been questioned in some works which have em-
phasised the need for a better characterisation of the EX

and T of the source. A reanalysis of the data, after tak-
ing into account the pre-equilibrium effects in the mass-
asymmetric channel, has shown a monotonic increase of
the width at least up to T ∼ 3.2MeV. On the other hand,
a recent experiment in a mass-symmetric channel, which
shows negligible PEQ effects, has suggested the satura-
tion of the GDR width at T ∼ 3MeV. This highlights the
need to resolve this important issue in future experiments.
At still higher temperatures, there are observations point-
ing to the quenching of the GDR strength. In this regime
again, various authors use a saturated GDR width in the
data analysis. The GDR quenching has been related to
the competition between the equilibration time for the
excitation of the GDR and the lifetime of the nucleus or
the transition of the hot nucleus to a chaotic regime. In
this regard, an interesting suggestion has been made on
the connection between the vanishing of the collective vi-
bration and the liquid-to-gas phase transition in nuclear
systems.

The disentangling of the effects of J and T on the GDR
width has been made mostly in the moderate T -regime.
The GDR width depends weakly on J at low J-values and
increases more rapidly beyond a certain J . This value of J
depends on the nuclear mass number, being, for example,
∼ 30 for A ∼ 110. In heavier nuclei (A ∼ 180) the width
is roughly constant up to the highest measured J ∼ 50.
An interesting aspect of the GDR at high angular mo-
mentum in certain systems is the Jacobi transition which
leads to a highly deformed shape beyond a certain critical
J . Measurements in A ∼ 40–60 systems have shown strong
evidence of such a transition. There are also indications
of the GDR built on the superdeformed shapes in 143Eu.

Among the several theoretical approaches to calculat-
ing the GDR strength function in hot and rotating nuclei,
the TSFM has been most widely employed in the compar-
ison with the experimental data. The J-dependence of the
width is explained reasonably well by the model. Here, the
contribution to the width at low J comes from the ther-
mal shape fluctuations. On the other hand, the J-driven
shape changes and the consequent width increase become
important at high J . The T -dependence of the width is
not very well reproduced by this model, particularly at
low T . An improvement in this model, by including pair-
ing fluctuations, is able to describe the GDR width at low
T . Due to the fluctuations, the pairing correlations do not
vanish abruptly but decrease monotonically with T . At
higher T , the inclusion of the additional CN-decay width
seems to be enough to explain some data while other ex-
periments point to the need of an additional T -dependent
contribution which could arise from the collisional damp-
ing. The macroscopic model CDM predicts a monotonic
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increase of the width with T but does not address the J-
dependence. The experimental data at high T do not agree
with the CDM predictions. At medium T its predictions
reasonably agree with the experimental data provided the
free NN scattering cross-sections are used rather than the
more appropriate in-medium cross-sections.

The microscopic models, which go beyond the FT-
RPA, have shown that the GDR (quantal) spreading
width Γ ↓, which arises from the coupling to 2p2h config-
urations, is almost independent of T . Among the various
microscopic models, the PDM is the most successful one.
The results of the PDM calculations including pairing fluc-
tuations agree with the T -dependence of the experimental
widths at low and moderate T . The model also predicts
the saturation of the width as well as the quenching of the
GDR γ-ray yield at very high T .

An interesting offshoot of the GDR studies is the ex-
traction of the T -dependence of specific shear viscosity η/s
of a hot nuclear system using the corresponding GDR pa-
rameters. If η/s is extrapolated to T ∼ 5MeV it roughly
matches with that for a very different system, viz., the
QGP at T > 170MeV. The values are not far from the
KSS lower bound.

Although considerable progress has been made in both
theory and experiment in this field, more efforts are
needed for a detailed understanding of the GDR in highly
excited nuclei. In the regime of moderate T and high
J , different procedures are often employed by different
groups in the data analysis and in the evaluation of the
average values of T and J for comparing with the theory.
This leads to varied opinions on the success of a partic-
ular model. Ideally, the comparison should be made be-
tween the experimental γ-ray cross-sections and the statis-
tical model calculations in which the theoretical (EX , J)-
dependent GDR strength function is used at various steps
of decay. The next best choice would be to use the theo-
retical (T, J)-dependent strength function. A uniform pre-
scription of the NLD employed in various experiments is
very important. Keeping these aspects in mind, more sys-
tematic measurements are necessary for establishing the
success or failure of various models. One particular ex-
ample could be to establish whether or not the (T, J)-
dependence of the GDR width needs the inclusion of addi-
tional contributions, besides those from the shape fluctua-
tion and the CN-lifetime effects. Another systematic mea-
surement would be on the dependence on the N/Z ratio of
the CN. An extension of these measurements will be car-
ried out in future experiments with exotic beams address-
ing the pygmy dipole resonance in hot neutron-rich nuclei.

More systematic measurements at low T are needed
to confirm that the GDR width remains at almost the
GS value up to a certain T . Any controversial observation
(for example in 114Sn) in this regard should be revisited.
Measurements should also be made at low T and high J
because in this case the pairing-fluctuation effect, which
seems to explain the low-T behaviour at low J , should be
negligible.

Highly deformed shapes (Jacobi or superdeformed)
have been seen or suggested only in a few cases using the
GDR measurements. These interesting phenomena need

to be established in more systems. A particularly impor-
tant issue in this area is the mechanism of population of
these shapes and their survival in the decay chain of an
excited compound nucleus.

In the high-T regime, the important point of the
proper characterisation of the nuclear systems should be
addressed critically in the analysis of the γ-ray spectra.
This needs additional measurements of particle spectra,
as has been done in some experiments. The saturation of
the GDR width needs to be addressed with more experi-
ments considering the present controversial claims. This is
particularly important because of the different predictions
of the various models on this issue. The connection of the
LG phase transition with the quenching of the collective
vibration at high T was suggested by some authors. This
important issue needs more systematic measurements to
validate the assertion.

The experimental study of the PEQGDR has pro-
gressed over the years establishing this phenomenon in
different systems. The comparison with the theoretical
predictions is generally satisfactory but needs more work
for a full understanding of the phenomenon. The PE-
QGDR γ-ray emission could have important consequences
in the production of superheavy elements in heavy-ion re-
actions. As has been pointed out by some authors, this
phenomenon provides a fast cooling process in the fusion
path. This will be particularly relevant in future experi-
ments with exotic beams.
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