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A systematic description of the evolution of the giant dipole resonance (GDR) at non-zero temperature T is presented
within the Phonon Damping Model (PDM). The damping of the GDR is caused by coupling to all ph, pp and hh
configurations at T 6= 0, where the coupling to pp and hh configurations is responsible for the increase and saturation
of the GDR width as a function of T. The results of numerical calculations for the GDR width, the strength function
and the integrated yield of the 
 rays in 120Sn and 208Pb at 0 � T � 6 MeV are obtained in a reasonable agreement
with the most recent experimental data.

Introduction

First of all let me thank all of you for your participation
in NUCOLEX 99. This is the strongest support that you
have given to us in organizing this small scale symposium
and workshop. NUCOLEX 99 is the best proof that the two
topics: the nuclear incompressibility and the giant dipole
resonance (GDR) built on compound states of highly excited
nuclei (the hot GDR), that we choose to discuss at this meet-
ing, are quite actual and of great importance. Indeed, I can
say without exaggeration that the hot GDR is one of the phe-
nomena that make the 50 year-old subject of giant resonance
still very attractive.

The hot GDR has been studied intensively during the last
two decades in heavy-ion fusion reactions (See Ref. 1 for the
reviews). It has been now well established that the GDR
width increases sharply with increasing excitation energy E∗

up to E∗ ∼ 130 MeV in tin isotopes.2–6) At higher E∗ a satu-
ration of the GDR width has been systematically reported.7,8)

Besides the width saturation the heavy-ion fusion measure-
ments also showed that the integrated yield of the γ-rays from
the decay of the hot GDR in tin isotopes seemed to saturate
at E∗ ≥ 350 MeV in the GDR region within 12 ≤ Eγ ≤ 20
MeV9,10) and in the region above 20 MeV (20 ≤ Eγ ≤ 35
MeV).10)

A considerable attention was attributed to the effects of an-
gular momentum J and temperature T on the evolution of
the hot GDR. Existing data and calculations showed that
the angular momentum effects seemed to be unimportant
at least for spins J ≤ 36 ~ and mass number A ≥ 120.5,7,11)

Recently a new method employing small-angle light-ion scat-
tering to excite the nucleus has been proposed to study the
evolution of the GDR as a function of temperature T inde-
pendently of angular momentum effects.12,13) In particular,
Ref. 13 has shown that the GDR widths measured in inelastic
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α-scattering experiments and in fusion reactions do not differ
much in their evolution with T while the angular momentum
is about 10 to 20 ~ lower in case of the inelastic scattering
data. This is a clear indication that the effect of spin on the
hot GDR in tin isotopes is not significant.

In the present situation an adequate approach to the damp-
ing of the hot GDR must give a consistent description of
three following issues:
(1) the width increase and its saturation of the GDR as a
function of T ;
(2) the observed shape evolution of the GDR at various tem-
peratures;
(3) the saturation of the integrated yield of γ rays at E∗ >
300 MeV in the GDR region and in the region above it.

Among the theoretical studies devoted to the damping of
the hot GDR in recent years we refer two models, which
have been proposed by the Milan group 14,15) and Catania
group,16–18) respectively. They have been frequently quoted
by several experimental groups. Meanwhile, the authors of
Ref. 19 have pointed out that not only the comparison of
the calculated full width at half maximum (FWHM) with
the experimental GDR width, but also the complete shape
of the GDR strength function should be considered (issue
(2)) to achieve a meaningful comparison between theory and
experiment. The detailed analysis in Ref. 19, which includes
the entire shape of the strength function, has shown that both
the Milan model and the Catania model failed to reproduce
the observed GDR shape.

In this talk we will present a review on a microscopic model
for the damping of the hot GDR—the so-called Phonon Damp-
ing Model (PDM), which has been proposed and developed
by us in Refs. 20 and 21. In the PDM the GDR is gener-
ated by a collective vibration (the GDR phonon), which is
damped via coupling to all ph as well as pp and hh configu-
rations appearing at T �= 0. The novelty of the PDM is in
the the coupling of the GDR phonon to particle-particle (pp)
and hole-hole (hh) configurations, which is decisively impor-
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tant for a consistent description of the width increase and
its saturation. The application of the PDM in a systematic
study of the hot GDR width in 90Zr, 120Sn, and 208Pb has
been found in an overall agreement with the data in a wide
temperature interval 0 ≤ T ≤ 6 MeV, which covered both
the regions of the width increase and its saturation. We also
show in this talk how the PDM has been applied to a system-
atic description for the width and shape of the hot GDR in
120Sn and 208Pb. Finally, we hope that this study can shed
a further light on the question under debate on whether the
GDR disappears or still persists at high T .

Formalism

The PDM applies the double-time Green function
method22,23) to determine the physical processes which the
GDR phonon undergoes and to derive a closed set of equa-
tions for the Green functions. The final goal is to obtain
an approximate equation for the propagation of the GDR
phonon, which is damped due to the presence of a polariza-
tion operator containing the effects of coupling to all ss′ con-
figurations ((s, s′) = (p, h), (p, p′) and (h, h′)). The damping
of the GDR is defined as the imaginary part of the analytic
continuation of the polarization operator in the complex en-
ergy plane. This is the advantage of using the double-time
Green function method, since the usual Green function of
the Schwinger type, in general, cannot be continued in the
complex plane.

In this section we give the outline of two approximation
schemes of the PDM. The first one (PDM-1) has been pro-
posed and discussed in detail in Ref. 20. The PDM-1 treats
the effects of higher-order graphs such as 1s1s′⊗phonon or/and
two-phonon ones by selecting parameters of the model at T =
0. The second approximation scheme (PDM-2) is a further
development to include explicitly all the forward-going pro-
cesses up to two-phonon ones at T �= 0 in the same order of
the interaction strength. It has been discussed in detail in
Ref. 21.

The PDM is based on a model Hamiltonian, which is com-
posed of three terms, namely

H =
X

s

Esa
†
sas +

X
q

ωqQ
†
qQq

+
X
ss′q

F
(q)

ss′ a
†
sas′(Q

†
q +Qq). (1)

The first term is the single-particle field, where a†
s and as

are creation and destruction operators of a particle or hole
state with energy Es = εs − εF with εs being the single-
particle energy and εF the Fermi energy. The second term
is the phonon field, where Q†

q and Qq are the creation and
destruction operators of a phonon with energy ωq . The last
term describes the coupling between the first two terms with
F

(q)

ss′ denoting the coupling matrix elements. The indices s
and s′ denote particle (p, Ep > 0) or hole (h, Eh < 0), while
the index q is reserved for the phonon state q = {λ, i} with
multipolarity λ (the projection µ of λ in the phonon index is
omitted for simplicity). The sums over q run over λ ≥ 1.

The PDM-1
The PDM-1 considers the following double-time Green func-
tions, which describe23)

(1) The propagation of a free particle (or hole):

Gs′;s(t− t′) = 〈〈as′(t); a
†
s(t

′)〉〉, (2)

(2) The propagation of a free phonon:

Gq′;q(t− t′) = 〈〈Qq′(t);Q
†
q(t

′)〉〉, (3)

(3) The particle-phonon coupling in the single-particle field:

Γ−
s′q;s(t− t′) = 〈〈as′(t)Qq(t); a

†
s(t

′)〉〉, (4)

Γ+
s′q;s(t− t′) = 〈〈as′(t)Q

†
q(t); a

†
s(t

′)〉〉, (5)

(4) The transition between a nucleon pair and a phonon:

G−
ss′;q(t− t′) = 〈〈a†

s(t)as′(t);Q
†
q(t

′)〉〉. (6)

A closed set coupled equations for Green functions in Eqs. (2)–
(6) has been obtained in Ref. 20, following the standard
method of double-time Green functions 23) applied to the
Hamiltonian in Eq. (1). After making the Fourier trans-
form to the energy plane E and eliminating functions Γ−(E),
Γ+(E) and G(E) by expressing them in terms of Gs;s′(E)
and Gq;q′(E), a set of two equations has been obtained for
Gs;s′(E) and Gq;q′(E), which describe the p (h) and phonon
propagations, respectively. For the propagation of a single p
(or h) state s = s′ and a single phonon state q = q′ these
equations become:

Gs(E) =
1

2π

1

E −Es −Ms(E)
,

G(PDM1)
q (E) =

1

2π

1

E − ωq − P
(PDM1)
q (E)

, (7)

where the mass operator Ms(E) and the polarization opera-

tor P
(PDM1)
q (E) are

Ms(E) =
X
q′s′

F
(q′)
ss′ F

(q′)
s′s (

νq′ + 1− ns′

E − Es′ − ωq′
+

ns′ + νq′

E − Es′ + ωq′
),

P (PDM1)
q (E) =

X
ss′

F
(q)
ss′ F

(q)
s′s

ns − ns′

E − Es′ + Es
. (8)

The dampings of the single-particle state γs(ω) and of the

phonon state γ
(PDM1)
q (ω) are derived as the imaginary parts

of the analytic continuation in the complex energy plane
E = ω ± iε of the mass Ms(E) and polarization operators

P
(PDM1)
q (E), respectively:

γs(ω) = π
X
q′s′

F
(q′)
ss′ F

(q′)
s′s [(νq′ + 1− ns′)

× δ(ω − Es′ − ωq′) + (ns′ + νq′)

× δ(ω − Es′ + ωq′)], (9)
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γ(PDM1)
q (ω) = π

X
ss′

F
(q)
ss′ F

(q)
s′s (ns − ns′)

× δ(ω − Es′ + Es). (10)

The single-particle occupation number ns (for phonon νq)
in Eqs. (8) and (9) has the form of a Fermi (Bose) dis-
tribution folded with a distribution of Breit-Wigner type
with an ω-dependent width 2γs(ω) (2γq(ω)) and centered at:

Ẽs = Es +Ms(Ẽs) (ω̃q = ωq + P
(PDM1)
q (ω̃q)). If γs is small,

ns can be well approximated by an exact Fermi distribution
function with energy Ẽs. For νq this is not valid because γq

can be large.

The main approximation of the PDM-1 consists of closing
the hierarchy of the Green functions to Eqs. (2)–(6) based on
the following decoupling approximation, which is originated
from the approximate second quantization22) and modified
thermodynamically for the nonzero temperature case:

〈〈as1 Q†
qQq′| {z }; a

†
s〉〉 = δqq′νqGs1;s,

〈〈as1 Qq′Q
†
q| {z }; a

†
s〉〉 = δqq′(1 + νq)Gs1;s, (11)

〈〈a†
sas1| {z }(Q†

q′ +Qq′);Q
†
q〉〉 = δss1nsGq′;q,

〈〈as′a
†
s1| {z }as1 ; a

†
s〉〉 = δs′s1(1− ns′)Gs′1;s. (12)

This restricts the couplings in the mass operator Ms(E) to
at most 2p1h configurations if the phonon operator generates
the collective ph excitation. The contribution of the coupling
to higher-order Green functions of “1p1h⊕phonon” or two-
phonon type which causes the quantal (spreading) width ΓQ

of the ground-state (g.s.) GDR is assumed to be independent
of T and included effectively by selecting the parameters of
the model at T = 0. The justification of this approxima-
tion comes from the fact that the quantal width ΓQ depends
weakly on T as has been shown by several numerical calcula-
tions in Refs. 24 and 25 and will be confirmed in the PDM-2
version of our model below.

The PDM-2
The PDM-2 includes explicitly the coupling to all forward-
going processes up to two-phonon ones by introducing in ad-
dition to the Green functions in Eqs. (2)–(6) the following
double-time Green functions which describe

(5) The transition between a 1p1h⊗phonon (1p1p⊗phonon
or 1h1h⊗phonon) configuration and a phonon:

Γ−,+
ss′q′;q(t− t′) = 〈〈a†

s(t)as′(t)Qq′(t);Q
†
q(t

′)〉〉, (13)

(6) The transition between two- and one-phonon configura-
tions:

G−−,+
q1q2 (t− t′) = 〈〈Qq1(t)Qq2(t);Q

†
q(t

′)〉〉. (14)

The backward-going processes described by the Green
functions G+,+

q′;q (t − t′) = 〈〈Q†
q′(t);Q

†
q(t

′)〉〉, Γ+,+
ss′q′;q(t −

t′) = 〈〈a†
s(t)a

†
s′(t)Q

†
q′(t);Q

†
q(t

′)〉〉, and G++,+
q1q2 (t − t′) =

〈〈Q†
q1(t)Q

†
q2(t);Q

†
q(t

′)〉〉 are neglected because the poles of

their Fourier transforms would be located at negative en-
ergies faraway from the GDR region. Hence, just like the Y -
amplitudes in the random-phase approximation (RPA), they
are not expected to affect noticeably the damping of GDR.

A set of coupled equations for an hierarchy of Green functions
has been derived applying again the standard procedure de-
scribed in Ref. 23. Employing the decoupling scheme similar
to Eqs. (11) and (12) we closed this set to the functions (2)–
(6), (13) and (14). Making then the Fourier transform to the
energy plane E and performing several simple manipulations
to express the Fourier transforms of other functions in the
set in terms of the Fourier transform of function (3) by using
the same decoupling scheme, we come to the final expression
for the propagation of a single phonon (q = q′) as

G(PDM2)
q (E) =

1

2π

1

E − ωq − P
(PDM2)
q (E)

. (15)

The explicit form of the polarization operator P
(PDM2)
q (E)

in Eq. (15) is

P (PDM2)
q (E) =

X
ss′s1q′

F
(q)
ss′

E −Es′ + Es

×
h F

(q′)
s′s1

Mqq′
ss1(E)

E − Es1 + Es − ωq′
− F

(q′)
s1s Mqq′

s1s′(E)

E −Es′ + Es1 − ωq′

i
, (16)

where the vertex function Mss′ is

Mqq′
ss′ (E) =

X
s2

n (1− ns′ + νq′)(ns − ns2)

E − Es2 + Es
F

(q′)
s′s2

F (q)
s2s

− (ns + νq′)(ns2 − ns′)

E − Es′ + Es2

F (q′)
s2s F

(q)
s′s2

+ns2(ns − ns′)
h F

(q)
s′sF

(q′)
s2s2

E − ωq − ωq′

+ δqq′
X
q1

F
(q1)
s′s F

(q1)
s2s2

E − ωq1 − ωq′

io
. (17)

The phonon damping γ
(PDM2)
q (ω) is again defined as the an-

alytic continuation of the polarization operator P
(PDM2)
q (E)

in Eq. (16) into the complex energy plane, namely

γ(PDM2)
q (ω) = |ImP (PDM2)

q (ω ± iε)|. (18)

Function P
(PDM2)
q (E) in Eq. (16) includes all 1s1s′, 1s1s′ ⊗

phonon ((s, s′) = (p, h), (p, p′) and (h, h′)) and two-phonon

processes at the same second order in F
(q)
ss′ . In the limit of

high temperature the vertex function Mqq′
ss′ in Eqs. (16) and

(17) tends to

Mq1q′
ss′ (E)|T→∞ −→ 1

4

X
s2

n 1

ωq′

h Es2 − Es

E − Es2 +Es
F

(q′)
s′s2

F (q)
s2s

+
Es2 − Es′

E − Es′ + Es2

F (q′)
s2s F

(q)
s′s2

i

+
1

2T
(Es′ − Es)

h F
(q)
s′s F

(q′)
s2s2

E − ωq − ωq′

+ δqq′
X
q1

F
(q1)
s′s F

(q1)
s2s2

E − ωq1 − ωq′

io
, (19)
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which means that it decreases as O(T−1) with increasing T
because of the factor T−1 in front of two-phonon terms on
the r.h.s. of Eq. (19). Neglecting these two-phonon processes
would lead to a constant width at high temperature because
the first two terms on the r.h.s. of Eq. (19) are independent

of T provided F
(q)
ss′ , Es and ωq do not or depend weakly on

T . More details on the derivation of the PDM-2 equations
and their diagrammatic illustration in connection with the
NFT24) can be found in Ref. 21.

In both versions of the PDM, the mechanism that determines
the behavior of the GDR as a function of temperature is the
coupling of GDR to both ph as well as pp and hh configu-
rations. This lies mathematically in the factor ns − ns′ in
Eqs. (8), (10) and (17). In order to demonstrate this effect,
we display in the top pannels of Fig. 1 the single particle oc-

cupation number ns as a function of temperature for s = p
and h. Both the occupation numbers nh and np approach
1
2
at T → ∞, but from different sides. As a result, the dif-

ference nh − np decreases with increasing T (Fig. 1 bottom
left). As we will see later, this leads to the decrease of the
quantal width as the temperature increases. On the contrary,
the difference nh −nh′ (np −np′ ) increases with increasing T
in the low temperature region, but after reaching the maxi-
mum, it decreases at high T (Fig. 1 bottom right). This leads
to the increases of the thermal width in the low temperature
region, and its saturation in the region where the difference
nh − nh′ (np − np′) reaches the maximum. The PDM just
gives a natural and simple explanation of the temperature
dependence of the GDR full width in the whole temperature
interval 0 ≤ T ≤ 5–6 MeV.

Fig. 1. Single particle occupation number as a function of temperature.

GDR parameters and integrated yield of γ rays
The GDR energy ωGDR is determined within the PDM at
the pole ω̄ of G

(i)
q (ω), i.e.

ω̄ − ωq − P (i)
q (ω̄) = 0, (20)

where ω̄ is real and P
(i)
q (ω̄) is the real part of P

(i)
q (E) with

P
(i)
q (E) being defined from Eq. (8) (i = PDM1) or Eq. (16)

(i = PDM2).

The FWHM ΓGDR of the GDR at energy ωGDR is defined
twice as much as the phonon damping γ

(i)
q (ω)
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Γ
(i)
GDR = 2γ(i)

q (ω = ω̄). (21)

The shape of the GDR is described by the strength function
S

(i)
q (ω), which is derived from the spectral intensity J

(i)
q (ω)

in the standard way using the analytic continuation of the
Green function G

(i)
q (ω ± iε) 22) and by expanding P

(i)
q (ω)

around ω̄23). The final form of S
(i)
q (ω) is

S(i)
q (ω) =

1

π

γ
(i)
q (ω)

(ω − ω̄)2 + [γ
(i)
q (ω)]2

. (22)

Since the damping γ
(i)
q (ω) depends on the energy variable

ω, which runs over the γ-ray energy Eγ , the shape of the

strength function S
(i)
q (ω), strictly speaking, is not given by a

single Breit-Wigner curve. The spectral intensity J
(i)
q (ω) is

related to the strength function S
(i)
q (ω) as

J(i)
q (ω) =

S
(i)
q (ω)

eω/T − 1
. (23)

This form is proportional to the exponential shape of the γ-
ray spectra observed in experiments while the strength func-
tion S

(i)
q (ω) can be directly compared with the divided spec-

tra in the linear scale normalized by a strength constant.

The value of the FWHM of the GDR Γ
(i)
GDR given by Eq. (21)

is more reliable than the width extracted from the energy dis-
persion

σ =

q
(E2)− (E)2, (24)

Ek =

R E2
E1

ωkSq(ω)dωR E2
E1

Sq(ω)dω
, (k = 1, 2), (25)

because the variance σ is sensitive to the choice of cutoff
energies E1 and E2 introduced in the distant wings of the
strength distribution, especially when the strength function
is described by a Lorentzian or a Breit-Wigner curve. Mean-
while the empirical widths are the FWHM, which can be
described by ΓGDR in Eq. (21).

The present formalism considers the hot GDR, its width and
shape as a result of averaging over the grand canonical en-
semble at a given temperature. Therefore the yield of the
γ-ray can be calculated here following the standard statis-
tical model using simplifying assumptions. They include a
T 2-dependence for the neutron-decay width and the first or-
der of the logarithmic expansion of the level density.26) This
allows us to calculate the integrated yield Y

(i)
γ within the

interval E1 ≤ ω ≤ E2 as follows:

Y (i)
γ ∝ 1

T 2

Z E2

E1

ω3J(i)
q (ω)e(Bn/T )dω, (26)

where Bn represents the neutron binding energy and Jq(ω)
is the spectral intensity defined in Eq. (23). This quantity
should be compared with the empirically extracted yield,
where a Lorentzian strength function fGDR(ω) multiplied by

exp(−ω/T ) was used instead of J
(i)
q (ω).1) We have checked

that in the region of the GDR peak a Lorentzian distribu-
tion centered at ωGDR with a FWHM ΓGDR has almost the

same shape as the Breit-Wigner one divided by ωGDR with
the same width.

Numerical results

Ingredients of numerical calculations
We assume that the GDR is generated by a single collective
and structureless phonon with energy ωq close to the energy
ωGDR. The single-particle energies defined in the Woods-
Saxon potentials at T = 0 were used in calculations. The
levels near the Fermi surface for 208Pb are replaced with the
empirical ones. The procedure of selecting ωq and the matrix
elements F

(q)

ss′ of the coupling to ph, pp and hh configurations
is as follows.

In the PDM-1 the coupling matrix elements F
(q)
ss′ are

parametrized as F
(q)
ph = F1 for (s, s′) = (p, h) and F

(q)

pp′ =

F
(q)
hh′ = F2 for (s, s′) = (p, p′) or (h, h′).

In general the PDM-2 contains the explicit coupling to
phonons with different multipolarities λ. In the present ap-
plication of the PDM-2, as a test for the effect of coupling to
quadrupole vibration we retain only dipole and quadrupole
phonons in the two-phonon configuration mixing. Conse-
quently, from the sums on the r. h. s. of Eqs. (16) and (17)
there remain only one dipole phonon with q = q′, which corre-
sponds to the GDR (λ = 1) and one quadrupole phonon with
q1 with energy close to the energy E

2+
1
of the first quadrupole

state (λ = 2). The values of ωq and F1 (within PDM-1) or

F
(1)
1 (within PDM-2) have been selected so that the solution

ω̄ of Eq. (20) is equal to the empirical value of ωGDR while
ΓGDR(ω̄) reproduces the empirical FWHM of the g.s. GDR
(i.e. the quantal width ΓQ at T = 0). The value of F2 (for

PDM-1) or F
(1)
2 (for PDM-2) has been chosen so that the

energy ω̄ is stable against varying T . In PDM-2 we first set
the ratio r = F

(2)
i /F

(1)
i (i = 1, 2) when choosing ωq, F

(1)
1 and

F
(2)
1 in order to achieve a stable solution for Eq. (20). These

parameters are kept unchanged when T is varied. This en-
sures that all the T -dependence comes from dynamical effects
of configuration mixing, and not due to adjusting parameters.
The smearing parameter ε in Eq. (18) was chosen to be 0.5
MeV. The results were found to be stable against varying ε
within 0.2 ≤ ε ≤ 1.0 MeV. The dipole sum rule was also
checked to be conserved against varying T . The PDM-1 pa-
rameters ωq, F1 and F2 (three parameters) have been given
in Ref. 20. The selected values of the PDM-2 parameters ωq,

F
(1)
1 , F

(1)
2 and r (four parameters) for 120Sn and 208Pb are

presented in Ref. 21.

Temperature dependence of GDR width
The GDR widths ΓGDR calculated within two versions of the
PDM are shown in Fig. 2 (a) for 120Sn and in Fig. 2 (b) for
208Pb. They are compared with the revised data from inelas-
tic α-scattering experiments13) and also from Refs. 7 and 8.
The values of the width obtained within the PDM-1 (dotted
and dashed curves) have been reported previously Ref. 20.
It is seen that the theoretical curves in both versions of the
PDM reproduce reasonably well the data including the width
saturation at T ≥ 3–4 MeV in case of 120Sn.7,8) The values
of the width obtained within the PDM-2 (solid and dash-
dotted curves) are somewhat smaller than those calculated
in PDM-1 at T ≥ 1.5–2 MeV in 120Sn and T ≥ 0.7–0.8 MeV
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Fig. 2. Total width of GDR as a function of T for 120Sn (a) and 208Pb
(b). Dotted: results within PDM-1 without the effect of single-
particle damping. Dashed: results within PDM-2 including the effect
of single-particle damping. Solid: results within PDM-2 without the
effect of single-particle damping. Dash-dotted: results within PDM-2
including the effect of single-particle damping. Squares, triangles and
diamonds: data from Refs. 7, 8 and 13, respectively.

in 208Pb. The reason is that in the PDM-1 the coupling
to all multipolarities is included effectively in a sense of av-
erage, while in the PDM-2 the present calculation includes
only one dipole phonon and one quadrupole phonon in the
doorways. On the other hand the slight difference between
the results obtained in two approximations indicates the im-
portance of mixings with λ = 1 and 2 in reproducing the hot
GDR width and shape as will be seen later. The effect of the
single-particle damping on the GDR width is seen to be week
in both versions of the PDM by comparing the solid curve
obtained without this effect with the dash-dotted curve cal-
culated with taking into account this effect in PDM-2. Sim-
ilarly, one should compare the dotted and dashed curves for
PDM-1.

It has been shown in PDM-120) that the total width is com-
posed of the quantal width ΓQ due to coupling of the GDR
phonon to ph configurations and the thermal width ΓT due
to coupling to pp and hh configurations at T �= 0. One of the
main conclusions of Ref. 20 was that the behavior of the total
width at high temperatures is mostly driven by the thermal
width ΓT since the quantal width ΓQ decreases slightly as
temperature increases. In order to see whether this conclu-
sion still holds within the PDM-2 which includes higher-order
processes up to two-phonon ones we have performed the cal-
culations of ΓQ by switching off the coupling to pp and hh
configurations in the sums on the r.h.s. of Eqs. (16) and (17).
The results are displayed in Fig. 3 by solid curves which show
a clear decrease as T increases. Exclusion of two-phonon
terms at T �= 0 in Eq. (17) results in a quantal width, which
is practically independent of T (dashed curves) similarly to

Fig. 3. Quantal width ΓQ as a function of T for 120Sn (a) and 208Pb (b).
Solid: quantal width ΓQ obtained within PDM-2. Dashed: quan-
tal width ΓQ obtained within PDM-2 when the contribution of the
two-phonon processes at T 6= 0 is omitted.

the conclusion of Ref. 24.

The GDR widths obtained within PDM-1 for 120Sn and 208Pb
in a larger temperature interval up to T = 6 MeV are shown
in Fig. 4 (a) and (b), respectively . The results are compared
with the inelastic α-scattering data from Ref. 12. The the-
oretical curves for the full width show a clear saturation at
T ≥ 4 MeV. At this symposium, Snover reported on the new
data analysis and measurements that seem to have no evi-
dence of the width saturation up to T � 3.2 MeV. According
to our calculations discussed above, the temperature region
below T = 3.2 MeV is the region where the GDR width is
still expected to increase.

Evolution of GDR shape
The GDR strength function S

(PDM1)
q (ω) calculated within

the PDM-1 is compared with the normalized experimental
one fE1(Eγ)

13) in Fig. 5 for 120Sn and Fig. 6 for 208Pb. The
experimental values of Eγ have been shifted up by 1.5 MeV
in 120Sn and by 1 MeV in 208Pb in order to achieve a best
agreement. This is due to the fact that the PDM assumes
a temperature-independent GDR energy ωGDR equal to the
energy of the g.s. GDR. The solution ω̄ of Eq. (20) has
been found to be stable around 15.4 MeV for 120Sn and 13.5
MeV for 208Pb at all temperatures using the selected val-
ues of the parameters in both versions PDM-1 and PDM-2.
Meanwhile the experimental resonance energy was found in
Ref. 13 to be lower than the g.s. GDR energy by an amount
roughly equal to this shift. In other measurements the g.s.
GDR energy (T = 0) has been used for the best fit of the
data at T �= 0.2,4–9) At present no systematic dependence of
the GDR energy on the excitation energy E∗ (or temperature
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Fig. 4. Total width of GDR obtained within PDM-1 as a function of T
for 120Sn (a) and 208Pb (b). Dashed: quantal width. Dotted: thermal
width. Solid: full width. Date are from Ref. 12.

Fig. 5. GDR strength function in 120Sn calculated within PDM-1 at sev-
eral temperatures. Solid: results obtained with the effect of single-
particle damping. Dashed: results without the effect of single-particle
damping. Diamonds: normalized data from Ref. 13.

Fig. 6. Same as Fig. 5 for 208Pb.

T ) has been confirmed and more studies are called for to re-
solve this issue. Therefore we do not consider reasonable at
this stage to vary the parameters of our model with temper-
ature to achieve the decrease of the GDR energy in Ref. 13.
Inclusion of this energy shift yields a good agreement be-
tween the calculations in PDM-1 and the available data for
the evolution of the GDR shape in 120Sn (Fig. 5). The PDM-
1 could even reproduce the fine structure on two shoulders
of the experimental resonance peak, especially the one in the
low-energy region. For 208Pb the data do not strictly follow
a Breit-Wigner or Lorentzian shape. At T = 1.85 MeV the
experimental shape of the GDR has even a pronounced struc-
ture between 20–25 MeV while the resonance peak seems to
be too low. Nonetheless the agreement between the results
of calculations in the PDM-1 and the data for 208Pb is also
satisfactory (Fig. 6).

Shown in the left columns ((a)-(d)) of Figs. 7 and 8 are
the results of calculations within PDM-2 and the same data
from Figs. 5 and 6. Since the present version of the PDM-
2 restricts the coupling to ph, pp and hh configurations via
the doorways, which included only dipole and quadrupole
phonons, the calculated shape is found slightly narrower and
higher at its peak position. This restriction also causes some
structure between (15–20) MeV at energies around ωq +ωq1 .

Nonetheless an overall agreement between theory and data is
achieved also in PDM-2. Taking into account more collective
quadrupole phonons or/and phonons of higher multipolarities
can improve the agreement. However it would certainly make
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Fig. 7. GDR strength function in 120Sn calculated within PDM-2 at sev-
eral temperatures. Notation is the same as in Fig. 3. In (e) - (f):
results of calculations using 
(PDM2)

q (!)+∆
 instead of 
(PDM2)
q (!)

are shown with the corresponding values of ∆
.

Fig. 8. Same as Fig. 7 for 208Pb.

the calculations within the PDM-2 more complicate. At least
it would increase the number of the parameters of the model
unless the structure of phonon operators is defined microscop-
ically in terms of ph pairs as in the RPA. In the meantime a
simple way to include effectively the contribution of the miss-
ing doorway configurations in the present calculations within
the PDM-2 is to add a parameter ∆γ to γ

(PDM2)
q (ω) to min-

imize the discrepancy between Γ
(PDM2)
GDR and Γ

(PDM1)
GDR . The

strength functions calculated with increasing γ
(PDM2)
q (ω) by

∆γ are shown in the right columns ((e)-(h)) of Figs. 7 and
8. The overall agreement between theory and experiment is
clearly improved. In our opinion it is unlikely that the main
features of the results obtained within PDM-1 or PDM-2
(with this additional parameter ∆γ) will be altered signif-
icantly by more sophisticated microscopic calculations, given
the fact that the hot GDR occurs in the stochastization re-
gion of high level densities and high excitation energies.27)

This comparison also shows that, despite its simplicity, the
PDM-1 has offered a quite reasonable agreement with the
data for the width and shape of the hot GDR. The PDM-2
on the other hand has demonstrated that including explicitly
the coupling to higher-order configurations does not change
the conclusions of the PDM-1, in particular regarding the
weak temperature dependence of the quantal width ΓQ. This
is a clear indication that the quantal effect of complex con-
figurations mixing is relatively insensitive to the change of
temperature. Therefore it can be well incorporated in the
parameters of the model selected at T = 0 as has been done
in PDM-1. The evolution of the GDR shape at T �= 0, there-
fore, does not depend much on the complexity of the doorway
components, but is governed mostly by the presence of the
coupling to incoherent pp and hh configurations.

Integrated yield of γ rays
The integrated yields Y

(i)
γ of γ rays in 120Sn calculated

within PDM-1 and PDM-2 are plotted as a function of ex-
citation energy E∗ in Fig. 9 ((a) and (b)). The results have
been obtained upon performing the integration in Eq. (25)
within two intervals 12 ≤ Eγ ≤ 20 MeV +∆Eγ and 12
MeV +∆Eγ ≤ Eγ ≤ 35 MeV. Since the width calculated in
PDM-1 is larger than the one obtained within PDM-2, the
value of ∆Eγ has been chosen to be 1 MeV (dashed curve)
and 2 MeV (dash-dotted curve) within PDM-1, and 0 (solid
curve) within PDM-2. These results are compared with the
data within (12–20) MeV9,10) (Fig. 9 (a)) and within (20–35)
MeV 10) (Fig. 9 (b)), respectively. The results reproduce
reasonably well the observed saturation of the yield in the
GDR region. In the region (20–35) MeV (Fig. 9 (b)) the
PDM-1 gives somewhat larger values for the integrated yield
(dashed and dash-dotted curves) as compared to the data
while the results obtained within the PDM-2 (solid curve)
are found in a better agreement with the data. In general
the trend of saturation of the yield is also reproduced by the
PDM in this region. The saturation of the yield at E∗ ≥
300 MeV is understood here as a natural consequence of the
saturation of the GDR shape and its width at T > 4 MeV,
not by an exceedingly large value of the width as has been
proposed previously in Refs. 9, 16–18. It is worth noticing
that the value of the integrated yield in the region above the
GDR (within (20–35) MeV) is more sensitive to the change in
the value of ∆Eγ than within the GDR region (12–20) MeV.
The reason is that the integration in Eq. (25) involved larger
energies in the region above the GDR and also that the dis-

50



Fig. 9. Integrated yields of the 
 rays as a function of excitation energy
E � in 120Sn. Diamonds and squares: data from Refs. 9 and 10, re-
spectively (∆E
 = 0). In (a) and (b): dashed and dash-dotted:
the results obtained within PDM-1 with ∆E
 = 1 and 2 MeV, re-
spectively; solid: results obtained within PDM-2 with ∆E
 = 0. In
(c) and (d): the results from the calculations using a Breit-Wigner
strength function of an !-independent width ΓGDR centered at !GDR

from different models are shown. Here: dashed and solid: results ob-
tained within PDM-1 and PDM-2, respectively; dotted: results using
the width from the Milan model of Ref. 14; dash-dotted and solid
with crosses: results using the parametrizations of the Catania model
in Refs. 16 and 17, respectively.

tribution of the GDR is rather flat in the tail above 20 MeV.
As seen in Fig. 9 (b) an increase of ∆Eγ from 2 MeV to 3
MeV reduced noticeably the saturated value of the integrated
yield in the region above the GDR. We emphasize that the
microscopic structure of the strength function S

(i)
q (ω) with

an ω-depedent damping γ
(i)
q (ω) is decisively important for

an adequate description of both the shape as well as the inte-
grated yield. As shown in Fig. 9 (c) and (d) a Breit-Wigner

distribution with a width equal to Γ
(i)
GDR and centered at

ωGDR can describe the integrated yield within the GDR re-
gion (Fig. 9 (c)) but strongly overestimates it in the region
above 20 MeV (Fig. 9 (d)). Using the FWHM from the Milan
model14) leads to a similar behavior as shown by the dotted
curves in Fig. 9 (c) and (d). Both the parametrizations for
the width proposed in the Catania model16,17) cannot account
for the data of the yields in the GDR region as well as in the
region above it as shown by the dash-dotted curves and the
curves with crosses. Finally, as a prediction of our model we
plot in Fig. 10 the integrated yield of γ rays calculated in

Fig. 10. Integrated yield of the 
 rays as a function of excitation energy
E � in 208Pb in the GDR region (a) and in the region above it (b).
Notations are the same as in Fig. 9 (a) and (b).

the PDM1 and PDM2 within the interval (10–18) MeV and
(18–33) MeV for 208Pb. The saturated values of the yield
within these intervals amount to around 8 × 10−3 and 1.2 ×
10−3, respectively.

The present calculations did not include the effects of evap-
oration width28) and the GDR equilibration time29) on the
damping of the hot GDR. There are several evidents that
these effects are small even at high temperatures. Indeed, it
has been shown in Ref. 28 that the GDR width should reach
a value of around 30 MeV due to the increase of evaporation
width at E∗ = 400 MeV. However, the same reference has
also pointed out that, in order to fit the data, one needs to
introduce an explicit suppression of the GDR strength when
the compound nucleus reaches an excitation energy around
300 MeV. In such a case, the question of the GDR width
may become irrelevant above the excitation energy where its
strength vanishes or becomes too small. Existing data so far
indicate a saturation, rather than an increase, of the GDR
width at E∗ > 250 MeV in good agreement with the results of
our calculations. The authors of Ref. 13 have also calculated
the strength function of the hot GDR including the evapo-
ration width. They found that the overall spectra resulting
from a complete CASCADE calculations are essentially iden-
tical to the ones obtained without the evaporation width even
for E∗ > 120 MeV. The contribution of the evaporation width
to the total spectrum has been found to be small relatively to
the total spectrum including all decay steps. The authors of
Ref. 29 proposed to take into account the equilibration time
of the GDR, assuming that no GDR is present at the time
of formation of the compound nucleus. However, Ref. 10 has
pointed out that such a hypothesis is probably reasonable if
the projectile and target have the same N/Z ratio. Mean-
while, in Ref. 10, where the saturation of the integrated yield
of γ rays has been reported within and above the GDR re-
gions, the N/Z ratios of the two partners are quite different
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and a substantial dipole moment is present in the entrance
channel. This indicates the presence of GDR already before
the equilibration is achieved. More experimental evidents
are also needed to confirm whether the effects of evaporation
width and equilibration time on the GDR are really small at
high T .

Conclusions

The present talk gives a review of two versions PDM-1 and
PDM-2 of the Phonon Damping Model (PDM) and its appli-
cation to a systematic description of three main characteris-
tics of the hot GDR, namely the GDR width, its shape and
the integrated yield of γ rays, simultaneously. The results of
calculations have been compared with the most recent exper-
imental systematics assessed for these characteristics in 120Sn
and 208Pb in the heavy-ion fusion and inelastic α-scattering
reactions. An overall agreement between theory and experi-
ment has been consistently achieved for all three character-
istics.

The analysis in the present paper allows us to draw the fol-
lowing conclusions.
(1) This is the first time that theory gives a consistent de-
scription of the rapid increase of the width at low T as well
as its saturation at T ≥ 4 MeV taking into account the cou-
pling of the GDR to pp and hh configurations at T �= 0. Both
the PDM1 and PDM2 have confirmed that the quantal width
ΓQ of the GDR due to coupling to only ph configurations de-
creases slightly as T increases. It becomes independent of T
only when the contribution of two-phonon processes in the
expansion to higher-order propagators is neglected.
(2) The PDM is a simple microscopic model yet able to re-
produce reasonably well the measured shape of the GDR in-
cluding some details of its fine structure.
(3) Based on the simplifying assumption of the statistical
model the PDM provides a reasonable account for the exper-
imental integrated yield of γ rays using the microscopically
calculated width of the GDR. Our model describes well the
saturation of the yield in both regions of the GDR and above
it, showing a well defined GDR shape up to T ∼ 6 MeV.
This indicates the existence of the hot GDR even at rather
high temperatures, provided that the energy-weighted sum
rule value is well conserved.
(4) The present versions of the PDM did not yet include a
number of effects discussed in the literature, e.g. coupling
to continuum, the temperature dependence of single-particle
energies, the evaporation width, the GDR equilibration time,
the dependence on angular momentum, etc. There have been
several references showing that these effects may not be sig-
nificant at least up to T ∼ 3 MeV in nuclei with mass number
A ≥ 120.7,10,11,13,19,30) The agreement between the results of
PDM and the data discussed in the present paper may also

serve as an indirect indication that the total contribution of
these effects may not significantly alter the obtained results
up to T ∼ 5–6 MeV.

Numerical calculations were carried out by a 64-bit Alpha
AXP work-station running Digital UNIX (OSF/1) at the
Computer Center of RIKEN.
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