

Tomona Kinugawa

Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University August 6th-9th YONUPA summer school 2022

● 簡易的な定義

ハドロンの波動関数

 $|\Psi\rangle = \sqrt{X} |\text{hadronic molecule}\rangle + \sqrt{1 - X} |\text{others}\rangle$ **複合性** (ハドロン分子状態の重み)

 \bar{q} q

999

q

● 計算方法 (弱束縛関係式)
S. Weinberg, Phys. Rev. 137, B672 (1965);
Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017);
T. Kinugawa and T. Hyodo, Phys. Rev. C 106, 015205 (2022)

$$a_0$$
: 散乱長
 $R \equiv (2\mu B)^{-1/2}, B: 束縛エネルギー$
 $R_{typ} = \max\{R_{int}, r_e, \cdots\}$ ($R_{int}: 相互作用長さ, r_e: 有効レンジ$)
 $R \gg R_{typ}$ のとき: 観測量 (a_0, B) ~ 複合性(X)
* 定義より $0 \le X \le 1$ ~ $X \ge 0.5$ なら**複合的**

T. Kinugawa and T. Hyodo, Phys. Rev. C 106, 015205 (2022)

● エキゾチックハドロン候補の複合性

弱束縛関係式による複合性 X の見積もり

bound state d X(3872)	$compositeness X$ $0.74 \le X \le 1$ $0.53 \le X \le 1$	浅い束縛状態は模型非依存に 複合性を見積もれる
$D_{s0}^{*}(2317)$ $D_{s1}(2460)$ $N\Omega$ dibaryon $\Omega\Omega$ dibaryon ${}_{\Lambda}^{3}\mathrm{H}$ ${}^{4}\mathrm{He}$ dimer	$0.81 \le X \le 1$ $0.55 \le X \le 1$ $0.80 \le X \le 1$ $0.79 \le X \le 1$ $0.74 \le X \le 1$ $0.93 \le X \le 1$	$ \longrightarrow $ 調べた状態全てにおいて 複合的 ($X \ge 0.5$)

T_{cc} は観測量 (有効レンジ) の不定性が大きすぎて 弱束縛関係式から複合性を見積もれない... ▶ 束縛エネルギーを再現する模型を用いて *X* を計算

ある微視的な理論の低エネルギー極限を記述

e.g. Eulaer-Heisenberg理論 (QED) カイラル摂動論 (QCD)

●1チャンネル共鳴模型 $\mathscr{H}_{\text{free}} = \frac{1}{2m_{D^0}} \nabla D^{0^{\dagger}} \cdot \nabla D^0 + \frac{1}{2m_{D^{*+}}} \nabla D^{*+^{\dagger}} \cdot \nabla D^{*+} + \frac{1}{2m_{\Psi}} \nabla \psi^{\dagger} \cdot \nabla \psi + \nu_0 \psi^{\dagger} \cdot \psi,$ $\mathscr{H}_{int} = g_0(\psi^{\dagger} D^0 D^{*+} + D^{0^{\dagger}} D^{*+\dagger} \psi).$ Ψ ≻ − + h. c. ≻ ⊅*+ $\overline{g_0}$ ① 1チャンネル散乱 ② コンパクトな4クォーク状態 Ψ (ccūd) との結合 散乱振幅 $\Lambda:$ カットオフ $V = \frac{g_0^2}{F - \mu_0}, \quad G = -\frac{\mu}{\pi^2} \left(\Lambda + \frac{\pi}{2} ik \right). \quad *\Lambda \to \infty \quad \forall i \lambda \in \Pi$ $f(k) = \left[-\frac{2\pi}{\mu} \left(\frac{\frac{k^2}{2\mu} - \nu_0}{\frac{\varrho_0^2}{2\mu}} \right) - \frac{2\Lambda}{\pi} - ik \right]^{-1}.$

- ・カットオフ Λ : 0.14 GeV = m_{π} (π 交換)
- ・結合定数 g_0 : $g_0^2(\Lambda, \nu_0, B) = \left(\frac{\kappa^2}{2\mu} + \nu_0\right) \frac{2\pi}{\mu(2\Lambda/\pi \kappa)}, \kappa = \sqrt{2\mu B}$. : 束縛状態の条件式 $f^{-1} = 0$
- ・散乱の閾値から測った4クォーク状態のエネルギー u_0

・可能な範囲で変化させる

 $-B \leq \nu_0 \leq \Lambda^2/(2\mu_0)$

LHCb Collaboration, Nat. Phys. (2022).

 g_0^2 が小さい $\checkmark cc\bar{u}\bar{d}$ と散乱状態との結合が小さい

<hr/>
<hr/

- 有効場の理論 → 複合性 X の計算 → T_{cc} の内部構造? - コンパクトな4クォーク状態 (ccūd) との結合を持つ模型 - ccūd のエネルギーを変えながら複合性 X の計算 → ほとんど (84 %) の ν₀ の範囲で複合的 ccūd との結合のみで作られた束縛状態なのに複合的 ∵ 低エネルギー普遍性

Tomona Kinugawa

Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University August 6th-9th YONUPA summer school 2022

クォークモデルでの ν_0

・散乱の閾値から測った離散固有状態のエネルギー ν_0

カットオフを変えた計算

