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and background components. The signal component is described 
by the convolution of the detector resolution with a resonant shape, 
which is modelled by a relativistic P-wave two-body Breit–Wigner 
(BW) function modified by a Blatt–Weisskopf form factor with a 
meson radius parameter of 3.5 GeV−1. The use of a P-wave reso-
nance is motivated by the expected JP = 1+ quantum numbers for 
the T+

cc

 state. A two-body decay structure T+
cc

→ AB is assumed with 
m

A

= 2m

D

0 and m
B

= m

π

+, where m
π

+ stands for the known mass 
of the π+ meson. Several alternative prescriptions are used for the 
evaluation of the systematic uncertainties. Despite its simplicity, the 
model serves well to quantify the existence of the T+

cc

 state and to 
measure its properties, such as the position and the width of the 
resonance. A follow-up study91 investigates the underlying nature 
of the T+

cc

 state, expanding on the modelling of the signal shape and 
the determination of its physical properties. The detector resolution 
is modelled by the sum of two Gaussian functions with a common 
mean, where the additional parameters are taken from simulation 
(Methods) with corrections applied32,92,93. The root mean square of 
the resolution function is around 400 keV c−2. A study of the D0π+ 
mass distribution for D0D0π+ combinations in the region above the 
D*0D+ mass threshold but below 3.9 GeV c−2 shows that approxi-
mately 90% of all random D0D0π+ combinations contain a genuine 
D*+ meson. On the basis of this observation, the background com-
ponent is parameterized by the product of a two-body phase space 
function and a positive second-order polynomial. The resulting 
function is convolved with the detector resolution.

The fit results are shown in Fig. 1, and the parameters of interest, 
namely the signal yield, N, the mass parameter of the BW function rel-
ative to the D*+D0 mass threshold, δm

BW

≡ m

BW

− (m
D

∗+ +m

D

0), 
and the width parameter, ΓBW, are listed in Table 1. The statistical 
significance of the observed T+

cc

D

0

D

0

π

+ signal is estimated using 
Wilks’ theorem to be 22 s.d. The fit suggests that the mass param-
eter of the BW shape is slightly below the D*+D0 mass threshold.  
The statistical significance of the hypothesis δmBW < 0 is estimated 
to be 4.3 s.d.

To validate the presence of the signal component, several addi-
tional cross-checks are performed. The data are categorized accord-
ing to data-taking periods, including the polarity of the LHCb 
dipole magnet and the charge of the T+

cc

 candidates. Instead of 
statistically subtracting the non-D0 background, the mass of each 
D → K−π+ candidate is required to be within a narrow region around 
the known mass of the D0 meson38. The results are found to be con-
sistent among all samples and analysis techniques. Furthermore, 
dedicated studies are performed to ensure that the observed 
signal is not caused by kaon or pion misidentification, doubly 
Cabibbo-suppressed D0 → K+π− decays or D0

D

0 oscillations, decays 
of charm hadrons originating from beauty hadrons or artefacts due 
to the track reconstruction creating duplicate tracks.

Systematic uncertainties for the δmBW and ΓBW parameters are 
summarized in Table 2 and described below. The largest systematic 
uncertainty is related to the fit model and is studied using pseudo-
experiments with alternative parameterizations of the D0D0π+ mass 
shape. Several variations in the fit model are considered: changes 
in the signal model due to the imperfect knowledge of the detector 
resolution, an uncertainty in the correction factor for the resolution 
taken from control channels, parameterization of the background 
component and the additional model parameters of the BW func-
tion. The model uncertainty related to the assumption of JP = 1+ 
quantum numbers of the state is estimated and listed separately. 
The results are affected by the overall detector momentum scale, 
which is known to a relative precision of δα = 3 × 10−4 (ref. 94). The 
corresponding uncertainty is estimated using simulated samples 
where the momentum scale is modified by factors of (1± δα). In 
the reconstruction, the momenta of charged tracks are corrected 
for energy loss in the detector material, the amount of which is 
known with a relative uncertainty of 10%. The resulting uncertainty 
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Fig. 1 | The distribution of the D0D0π+ mass. The distribution of the 
D0D0π+ mass after statistical subtraction of the contribution of the non-D0 
background, with the result of the fit with the two-component function 
described in the text. The horizontal bin width is indicated on the vertical 
axis legend. The inset shows a zoomed signal region with a fine binning 
scheme. Uncertainties on the data points are statistical only and represent 
one standard deviation, calculated as a sum in quadrature of the assigned 
weights from the background subtraction procedure.

Table 1 | Parameters obtained from the fit to the D0D0π+ mass 
spectrum: signal yield, N, BW mass relative to the D*+D0 
mass threshold, δmBW, and width, ΓBW. The uncertainties are 
statistical only

Parameter Value

N 117!±!16
δmBW −273!±!61!keV!c−2

ΓBW 410!±!165!keV

Table 2 | Systematic uncertainties for the δmBW and ΓBW 
parameters. The total uncertainty is calculated as the sum 
in quadrature of all components except for those related to 
the assignment of JP quantum numbers, which are handled 
separately

Source σ

δm

BW

(

keV c

−2

)

σΓ
BW

(keV)

Fit model
Resolution model 2 7
Resolution correction factor 1 30
Background model 3 30
Model parameters <1 <1
Momentum scale 3 —
Energy loss corrections 1 —
D*+!−!D0 mass difference 2 —
Total 5 43

JP quantum numbers +11

−14

+18

−38
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LHCb Collaboration, Nature Phys. 18 no.7, 751-754 (2022);
LHCb Collaboration, Nat. Commun. 13 3351 (2022).

Tcc → D0D0π+ (ccūd̄)

S. K. Choi et al. (Belle), Phys. Rev. Lett. 91, 262001 (2003). 

X(3872) → π+π−J/ψ

internal structure?
exotic hadron

multiquarks

hadronic molecules

D*
D

q q̄
q

q̄

  or ≠ qqq qq̄
multiquarks
hadronic molecules

well as the specific ionization in the CDC. This classi-
fication is superseded if the track is identified as a lepton:
electrons are identified by the presence of a matching
ECL cluster with energy and transverse profile consistent
with an electromagnetic shower; muons are identified by
their range and transverse scattering in the KLM.

For the B! K!!!"J= study we use events that have
a pair of well identified oppositely charged electrons or
muons with an invariant mass in the range 3:077<
M‘!‘" < 3:117 GeV, a loosely identified charged kaon,
and a pair of oppositely charged pions. In order to reject
background from " conversion products and curling
tracks, we require the !!!" invariant mass to be greater
than 0.4 GeV. To reduce the level of e!e" ! q !qq (q #
u; d; s, or c quark) continuum events in the sample, we
also require R2 < 0:4, where R2 is the normalized Fox-
Wolfram moment [8], and j cos#Bj< 0:8, where #B is the
polar angle of the B-meson direction in the CM frame.

Candidate B! ! K!!!!"J= mesons are recon-
structed using the energy difference "E $ ECM

B "
ECM
beam and the beam-energy constrained mass
Mbc $

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

%ECM
beam&2 " %pCM

B &2
q

, where ECM
beam is the beam

energy in the CM system, and ECM
B and pCM

B are the
CM energy and momentum of the B candidate. The sig-
nal region is defined as 5:271 GeV<Mbc < 5:289 GeV
and j"Ej< 0:030 GeV.

Figure 1(a) shows the distribution of "M $
M%!!!"‘!‘"& "M%‘!‘"& for events in the "E-Mbc
signal region. Here a large peak corresponding to  0 !
!!!"J= is evident at 0.589 GeV. In addition, there is a
significant spike in the distribution at 0.775 GeV.
Figure 1(b) shows the same distribution for a large sample
of generic B- !BB Monte Carlo (MC) events. Except for the
prominent  0 peak, the distribution is smooth and fea-
tureless. In the rest of this Letter we use M%!!!"J= &
determined from "M!MJ= , whereMJ= is the PDG [9]
value for the J= mass. The spike at "M # 0:775 GeV
corresponds to a mass near 3872 MeV.

We make separate fits to the data in the  0

(3580 MeV<M!!!"J= < 3780 MeV) and the M #

3872 MeV (3770 MeV<M!!!"J= < 3970 MeV) re-
gions using a simultaneous unbinned maximum likeli-
hood fit to the Mbc, "E, and M!!!"J= distributions [10].
For the fits, the probability density functions (PDFs) for
the Mbc and M!!!"J= signals are single Gaussians; the
"E signal PDF is a double Gaussian composed of a
narrow ‘‘core’’ and a broad ‘‘tail.’’ The background
PDFs for "E and M!!!"J= are linear functions, and
the Mbc background PDF is the ARGUS threshold func-
tion [11]. For the  0 region fit, the peak positions and
widths of the three signal PDFs, the "E core fraction, as
well as the parameters of the background PDFs, are left as
free parameters. The values of the resolution parameters
that are returned by the fit are consistent with MC-based
expectations. For the fit to theM # 3872 MeV region, the
Mbc peak and width, as well as the "E peak, widths, and
core fraction (96.5%) are fixed at the values determined
from the  0 fit.

The results of the fits are presented in Table I.
Figures 2(a)–2(c) show the Mbc, M!!!"J= , and "E
signal-band projections for the M # 3872 MeV signal
region, respectively. The superimposed curves indicate
the results of the fit. There are clear peaks with consistent
yields in all three quantities. The signal yield of 35:7'
6:8 events has a statistical significance of 10:3$, deter-
mined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

"2 ln%L0=Lmax&
p

, where Lmax and L0 are
the likelihood values for the best-fit and for zero-signal
yield, respectively. In the following we refer to this as the
X%3872&.

We determine the mass of the signal peak relative to
the well measured  0 mass:

MX # Mmeas
X "Mmeas

 0 !MPDG
 0

# 3872:0' 0:6%stat& ' 0:5%syst& MeV:

Since we use the precisely known value of the  0 mass [9]
as a reference, the systematic error is small. The M 0

measurement, which is referenced to the J= mass that
is 589 MeV away, is "0:5' 0:2 MeV from its world-
average value [12]. Variation of the mass scale from M 0

toMX requires an extrapolation of only 186 MeVand, thus,
the systematic shift in MX can safely be expected to be
less than this amount.We assign 0.5 MeVas the systematic
error on the mass.

The measured width of the X%3872& peak is $ # 2:5'
0:5 MeV, which is consistent with the MC-determined
resolution and the value obtained from the fit to the  0
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FIG. 1. Distribution of M%!!!"‘!‘"& "M%‘!‘"& for se-
lected events in the "E-Mbc signal region for (a) Belle data
and (b) generic B- !BB MC events.

TABLE I. Results of the fits to the  0 and M # 3872 MeV
regions. The errors are statistical only.

Quantity  0 region M # 3872 MeV region

Signal events 489' 23 35:7' 6:8
Mmeas
!!!"J= peak 3685:5' 0:2 MeV 3871:5' 0:6 MeV
$M!!!"J= 3:3' 0:2 MeV 2:5' 0:5 MeV
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hadron wavefunction
|Ψ⟩ = X |hadronic molecule⟩ + 1 − X |others⟩

D*
D q̄ q

q̄q

compositeness elementarity

Compositeness 3

※ 0 ≤ X ≤ 1   composite dominantX > 0.5 ⇔
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013).

  elementary dominantX < 0.5 ⇔

◉ definition

- quantitative analysis of internal structure

T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. C 85, 015201 (2012);
F. Aceti and E. Oset, Phys. Rev. D 86, 014012 (2012). 

nuclei & atomic systems T. Kinugawa, T. Hyodo, Phys. Rev. C 106, 015205 (2022) etc.

, f0(980) a0(980)
Λ(1405)

Y. Kamiya and T. Hyodo, PTEP 2017, Phys. Rev. C 93, 035203 (2016);
T. Sekihara, S. Kumano, Phys. Rev. D 92, 034010 (2015) etc.

T. Sekihara, T. Hyodo, Phys. Rev. C 87, 045202 (2013) ;
Z.H. Guo, J.A. Oller, Phys. Rev. D 93, 096001 (2016) etc.

deuteron is not an elementary particle Weinberg, S. Phys. Rev. 137, 672–678 (1965).



Near-threshold states

E

D0D*0

X(3872)

EE

0

Tcc X(3872)
E

D0D*+

Tcc

EE

0

D*−D+

8.23 MeV
D*0D+

1.41 MeV
∼∼

LHCb Collaboration, Nat. Commun 13 3351 (2022). PDG

4



Near-threshold states 5

- compositeness  in  limit (universality)X = 1 B → 0
near threshold states ( ) is composite dominant ?B ≠ 0

T. Hyodo, Phys. Rev. C 90, 055208 (2014) .

- However, elementary dominant states is realized 
    with fine tuning T. Hyodo, Phys. Rev. C 90, 055208 (2014) ;

C. Hanhart, J. R. Pelaez, and G. Rios, Phys. Lett. B 739, 375 (2014).

How finely tuning parameter?

E

D0D*0

X(3872)

EE

0

Tcc X(3872)
E

D0D*+

Tcc

EE

0

∼∼

LHCb Collaboration, Nat. Commun 13 3351 (2022). PDG



Model

ℋfree =
1

2m1
∇ψ1† ⋅ ∇ψ1 +

1
2m2

∇ψ2† ⋅ ∇ψ2 +
1

2mϕ
∇ϕ† ⋅ ∇ϕ + ν0ϕ†ϕ,

ℋint = g0(ϕ†ψ1ψ2 + ψ1†ψ†
2 ϕ) .

1.

2.
1. single-channel scattering
2. coupling with compact state  ϕ

◉ single-channel resonance model
E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008).

6

ϕ
ψ1

ψ2
g0

◉ scattering amplitude

f(k) = −
μ
2π [

k2

2μ − ν0

g2
0

+
μ
π2 [Λ + ik arctan( Λ

−ik )]]
−1

.

V =
g2

0

E − ν0
, G = −

μ
π2 [Λ + ik arctan( Λ

−ik )] .

T =
1

V−1 − G

 : cutoff                               Λ

+ h. c.

q̄ q
q̄q



Model scales and parameters 7

results do not depend on cutoff  Λ

 bound state condition  ∵ f −1 = 0

 coupling const.  : g0 g2
0(B, ν0, Λ) =

π2

μ
(B + ν0)[Λ − κ arctan (Λ/κ)]

−1

κ = 2μB .

3. energy of bare quark state ν0
varied in the region : −B/Etyp ≤ ν0/Etyp ≤ 1

 to have  & applicable limit of EFT∵ g2
0 ≥ 0

1. calculation with given B

- typical energy scale : Etyp = Λ2/(2μ)

- three model parameters g0, ν0, Λ

2. use dimensionless quantities with  Λ



8Calculation

compositeness  as a function of  X ν0
internal structure of bound state?

 X > 0.5

or
 X < 0.5

D*
D

q̄ q
q̄q

X =
G′￼(−B)

G′￼(−B) − [V−1(−B)]′￼

,

= [1 +
π2κ
g2

0 μ2 (arctan(Λ/κ) −
Λ/κ

1 + (Λ/κ)2 )
−1

]
−1

.

◉ compositeness X

α′￼(E) = dα/dE

Y. Kamiya and T. Hyodo, 
PTEP 2017, 023D02 (2017).

T =
1

V−1 − G
scattering amplitude : 

-  region :  ν0 −B/Etyp ≤ ν0/Etyp ≤ 1



2
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9◉  as a function of  of bound state X ν0/Etyp B = Etyp

 bare state origin∵-  only for of X > 0.5 25 % ν0

- typical energy scale : B = Etyp = Λ2/(2μ)

 X > 0.5 :

 X < 0.5 :



3

 [dimensionless]ν0/Etyp

 [d
im

en
si

on
le

ss
]

X

スライド用

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

10

-  for of   realization of universality !X > 0.5 88 % ν0

- weakly-bound state : B = 0.01Etyp

◉  as a function of  of bound state X ν0/Etyp B = 0.01Etyp

 X > 0.5 :

 X < 0.5 :



Application to  and Tcc X(3872) 11
◉ exotic hadron         decay and coupled channel

LHCb Collaboration, Nat. Commun 13 3351 (2022). PDG
6

D0D*0

D*−D+

X(3872)

E

0

 MeVB = 0.04

 MeVΔω = 8.23

 MeVΓ = 1.19

Tcc

X(3872)

D0D*+

D*0D+

Tcc

E

0

 MeVB = 0.36

 MeVΔω = 1.41

 MeVΓ = 0.048

large
 and Γ Δω

small
 and Γ Δω



12Effect of decay & coupled channel
|Ψ⟩ = X1 |threshold ch⟩ + X2 |coupled ch⟩ + 1 − (X1 + X2) |others⟩

- ch. 1 couples to ch. 2 through  with same coupling const.ϕ
- threshold energy difference Δω

ϕ
ψ1

ψ2
g0g0

Ψ1

Ψ2

10Effect of coupled channel
- introducing coupled channel Ψ1Ψ2
|Ψ⟩ = X1 |threshold ch⟩ + X2 |coupled ch⟩ + 1 − (X1 + X2) |others⟩

14

threshold energy difference=B_wbの時：黒の実線がX1(B_wb)+X2(B_wb)、赤のdashが1ch、緑のdottedがX1(B_wb)
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X
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 [dimensionless]ν0/Etyp
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 1

 0  0.2  0.4  0.6  0.8  1

(a) (B, Δω) = (0.01Etyp,0.01Etyp)

- threshold energy difference Δω E

threshold ch.

coupled ch.

bound state

EE

0 B
Δω

- compositeness  and X1 X2

X1

X2

-  also needs for 
low-energy universality
Δω → ∞

-  is suppressed by X1 Δω
 threshold ch. component 

( ) decreases with 
increase of coupled ch. 
component ( )

∵
X1

X2

X(Δω → ∞)
BΓ

- decay width E = − B − iΓ/2
g0 ∈ ℂ- effectively introduced : coupling const. 

X̃j =
|Xj |

∑j |Xj | + |Z |
, ( j = 1,2)

◉ compositeness T. Sekihara, T. Arai, J. Yamagata-Sekihara and S. Yasui, PRC 93, 035204 (2016).

 : threshold ch. compositenessX̃1

 : coupled ch. compositenessX̃2
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19

 [MeV]ν0

Tcc(2ch decay)とdecayなしの比較 
緑solidがX_1+X_2(w/ decay) 

あかdashedはX_1+X_2(w/o decay) 
黒dottedはX_1(w/ decay)

(a)   (  [MeV])Tcc E = − 0.36 − 0.024i

論文に載せる
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 coupled ch. contribution (small )∵ Δω
- difference of ( ) and  is too smallX̃1 + X̃2 Γ = 0 X̃1 + X̃2

Application to Tcc

E

D0D*+

D*0D+

Tcc

EE

0

 ∵ Γ ≪ B

-  is not negligibleX̃2

We can neglect decay contribution 

X̃1 + X̃2

 MeV (  meson)Λ = 140 π



14

20

 [MeV]ν0

 [d
im

en
si

on
le

ss
]

X̃
X(3872)(2ch decay)とdecayなしの比較 

緑solidがX_1+X_2(w/ decay) 
あかdashedはX_1+X_2(w/o decay) 

黒dottedはX_1(w/ decay)

論文に載せる

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10
(b)  (  [MeV])X(3872) E = − 0.04 − 0.595i

X̃1

X̃2
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Application to X(3872)

E

D0D*0

D*−D+

X(3872)

EE

0

8.23 MeV

- difference of ( ) and  is largeX̃1 + X̃2 Γ = 0 X̃1 + X̃2
 large decay width contribution∵

-  is much smaller than X̃2 X̃1
coupled ch. effect is small

(Γ = 0)
X̃1 + X̃2

 MeV (  meson)Λ = 140 π



15Summary
- internal structure of exotic hadrons EFT & compositeness

- shallow bound state 

- decay and coupled channel effects are introduced

-  and  with decay and coupled ch. effectsTcc X(3872)

both decay and coupled ch. effects suppress compositeness

 : important coupled ch. effect with negligible decay effectTcc

T. Kinugawa and T. Hyodo, arXiv:2303.07038 [hep-ph]

 : important decay effect with negligible coupled ch. effectX(3872)

fine tuning is necessary to realize elementary dominant state
 composite dominant  even from bare state



16Compositeness of  by other workTcc
paper by L. R. Dai, J. Son and E. Oset

L. R. Dai, J. Son and E. Oset, arXiv: 2306.01607 [hep-ph].

- Both molecular and non-molecular states are realized by 
tuning of parameters

- However, case with small compositeness is excluded by 
experimental data (  and )a0 re

- relativistic model

2

in [36] and concludes that the sum of probabilities the D0D⇤+ and D+D⇤0 components, is compatible with unity,

stressing the molecular nature of the state. The value of the e↵ective range and scattering length to determine the

compositeness of a state has also been emphasized from the very beginning in the pioneer work of Weinberg [37] under

strict conditions of zero range interaction and very small binding, but the first condition was released in a recent work

[38] and both conditions were released in the work of [39], leading in both cases to strategies based on the knowledge

of the binding, e↵ective range and scattering length that improve considerably over the original formulas of Ref. [37].

The formalism presented here and the conclusions are general, but we particularize to the study of the Tcc(3875) and

show that the large e↵ective range and scattering length that one obtains assuming a genuine state to be responsible

for the Tcc binding are very far o↵ from those already determined from the experimental study of this state.

II. FORMALISM

Let us assume that we have a hadronic state of bare mass mR, not generated by the interaction of meson-meson

components, for instance a compact quark state. We assume that even if small, the state couples to one meson-meson

component, where the e↵ects of this state can be observed. We think from the beginning on the Tcc(3875) and the

DD⇤ component. To simplify the study we consider an I = 0 state and just one channel, although the consequences

are general and would apply to the lowest threshold of the D0D⇤+ component. This said, we can write for the DD⇤

amplitude the diagram of Fig. 1 and the DD⇤ amplitude of Eq. (1).

D

D⇤

R
D

D⇤

FIG. 1: DD⇤ amplitude based on the genuine resonance R.

t̃DD⇤,DD⇤(s) =
g̃2

s� sR
(1)

D

D⇤

D

D⇤

+

D

D⇤

+ + · · ·

FIG. 2: Iterated diagram of Fig. 1 implementing unitarity of the DD⇤ amplitude.

This amplitude is not unitarity. It is rendered unitary immediately by iterating the diagram of Fig. 1 as shown in

Fig. 2. What we are doing with the diagram of Fig. 2 is to insert the DD⇤ selfenergy in the propagator of Eq. (1).

We have then

tDD⇤,DD⇤(s) =
g̃2

s� sR � g̃2GDD⇤(s)
(2)

where GDD⇤(s) is the DD⇤ selfenergy which we choose to regularize with a sharp cuto↵.

GDD⇤(s) =

Z

|q|<qmax

d3q

(2⇡)3
!1 + !2

2!1 !2

1

s� (!1 + !2)2 + i✏
(3)



History of compositeness 17

application to …

nuclei & atomic systems

- Weinberg’s work (1960s)
deuteron is not an elementary particle  weak-binding relation

- application to exotic hadrons (2000s-)

generalization to unstable states

with effective field theory 

with spectral function 
with effective range expansion

“compositeness” 

Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017) etc.
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◉ model calculation T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. C 85, 015201 (2012);

F. Aceti and E. Oset, Phys. Rev. D 86, 014012 (2012). 

residue of scattering amplitude g

=
G′￼(E)

G′￼(E) − [V−1(E)]′￼

E=−B

α′￼(E) = dα/dEX = − g2 G′￼(E)
E=−B

T =
1

V−1 − G
 : effective interactionV
 : loop functionG

 : model dependent  cutoff dependentG(E)
 : model independent   (observable)g2 Ton(−B)

Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017).



for 0  ⇠  1. It is expected that the exact value of X is contained within Xl  X  Xu.
Numerically, Xu and Xl can go beyond the definition domain of the compositeness 0 

X  1, depending on the values of a0,R and ⇠. However, the results X � 1 and X  0 do not
make sense, because the exact value of X is not contained there. Therefore, we define

X̄u = min{Xu, 1}, X̄l = max{Xl, 0}, (6)

to restrict the uncertainty band of the compositeness within the definition domain of X:

X̄l  X  X̄u, (7)

as illustrated in Fig. 1. We regard this uncertainty band (7) as the estimated compositeness
and discuss the internal structure of the bound state with it. It is clear that the estimated
compositeness with the uncertainty band (7) is restricted within 0  X  1, and we can
interpret X as the probability. More details about the estimation of X are discussed in Sec. III
and IV in Ref. [5].

1
X

0

Eq. (7)

 form 
weak-binding relation

X

1
X

0

 form 
weak-binding relation

X

Eq. (7)

Figure 1. Schematic illustration of the definition of the uncertainty band (7). The left panel shows the
case for Xu > 1 (X̄u = 1), and the right shows that for Xl < 0 (X̄l = 0).

3 Application to physical systems

Now we estimate the compositeness X of the actual physical systems with the uncertainty
estimation discussed in Sec. 2.2. We consider the deuteron, X(3872), D⇤s0(2317), Ds1(2460),
N⌦ dibaryon, ⌦⌦ dibaryon, 3

⇤
H, and 4He dimer. The deuteron d in the p-n scattering is

chosen as the typical observed hadron. X(3872) in the D0-D̄⇤0 scattering, D⇤s0(2317) in the
D-K scattering, and Ds1(2460) in the D⇤-K scattering are the candidates for the exotic hadrons
which are experimentally observed [7]. N⌦ and ⌦⌦ dibaryons are the states obtained by
the lattice QCD calculation [11, 12]. We can apply the weak-binding relation not only to
the hadron systems but also to the nuclei and atomic systems. 3

⇤
H in the ⇤-d scattering is

an example of nuclei, and 4He dimer which is the weakly bound state of 4He atoms is an
example in the atomic systems.

For the estimation of X from the weak-binding relation, we need the scattering length
a0, the reduced mass µ, the binding energy B, the e↵ective range re, and the interaction
range Rint. The radius of the bound state is calculated by R =

p
2µB. We tabulate relevant

quantities in Tab. 1. We note that Rint is not an observable, and therefore it is determined
from the theoretical consideration. The procedure to determine these physical quantities is
explained in Ref. [5].

Weak-binding relation 19

- for weakly bound states, R ≫ Rtyp

X =
a0

2R − a0
+ 𝒪 (

Rtyp

R )
 : scattering lengtha0

R = 1/ 2μB

 : typical length scale in systemRtyp

compositeness  observables (a0, B)

◉ range correction

 important to consider effective range
- our work : range correction  uncertainty estimation 

compositeness of deuteron : 0.74 ≤ X ≤ 1

S. Weinberg, Phys. Rev. 137, 672–678 (1965).

Y. Li, F.-K. Guo, J.-Y. Pang, and J.-J. Wu, Phys. Rev. D 105, L071502 (2022);
J. Song, L. R. Dai, and E. Oset, Eur. Phys. J. A 58, 133 (2022);
M. Albaladejo, J. Nieves, Eur. Phys. J. C 82, 724 (2022);
T. Kinugawa, T. Hyodo, Phys. Rev. C 106, 015205 (2022).

compositeness of deuteron X ∼ 1.7 > 1 our uncertainty
 estimation



Low-energy universality
scattering length  
      typical length scale of system 

a0( → ∞)
≫ Rtyp

length scales are written only by |a0 |
- for bound states ?

low-energy universality 

- compositeness  in  limitX = 1 B → 0
near threshold states ( ) = composite dominant ?B ∼ 0

universality holds for weakly-bound states!

20

E. Braaten and H.-W. Hammer, Phys. Rept. 428, 259 (2006) ;
F. P. Naidon and S. Endo, Rept. Prog. Phys. 80, 056001 (2017).

T. Hyodo, Phys. Rev. C 90, 055208 (2014) .

8Be, 12Ce.g. 
H. Horiuchi, K. Ikeda, and Y. Suzuki, Prog. Theor. Phys. Suppl. 52, 89 (1972) .

 cluster?α

 :   R = 1/ 2μB a0 = R → ∞ B → 0

Hoyle state



universality
 and  are shallow-bound statesTcc X(3872)

21

1. naive expectation : near-threshold states 
are composite dominant

2. However, elementary dominant states is realized 
    with fine tuning

In this work, we study fine tuning quantitatively!

How finely tuning parameter?

.
T. Hyodo, Phys. Rev. C 90, 055208 (2014) ;
C. Hanhart, J. R. Pelaez, and G. Rios, Phys. Lett. B 739, 375 (2014).

 low-energy universality is important!

D*
D

q̄ q
q̄q



Effect of decay 22

X̃ =
|X |

|X | + |1 − X |

◉ introducing decay effect

compositeness
X ∈ ℝ X ∈ ℂ

E = − B E = − B − iΓ/2

g0 ∈ ℂ

- formally : introducing decay channel in lower energy region than 
binding energy

- effectively : coupling const. this work

eigenenergy becomes complex

ℋint = g0(ϕ†ψ1ϕ2 + ϕ1
†ψ†

2 ϕ) .

T. Sekihara, T. Arai, J. Yamagata-Sekihara and S. Yasui, 
PRC 93, 035204 (2016).
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-  is suppressed by decay effectX̃

 threshold ch. component ( ) decreases with inclusion of 
decay ch. component ( )
∵ X̃

1 − X̃

11
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FIG. 9. The compositeness X̃ as a function of the normalized bare state energy ⌫0/Etyp for �B  ⌫0  Etyp. The solid
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channel 1 to channel 2, here we introduce the coupling
of channel 2 and the bare state �. We employ the same
coupling constant g0 with that for channel 1 and �. The

interaction Hamiltonian leads to
Hint = g0(�

† 1 2 +  †
1 

†
2�+ �† 1 2 + 

†
1 

†
2�). (47)

We now consider the on-shell T-matrix Ton(k) of the
coupled-channel scatterings. As in the single-channel
case in Sec. II A, the scatterings occur through the ef-
fective interaction with the bare state � exchange. In
the coupled-channel scattering, Ton(k), the effective in-
teraction V (k) and the loop function G(k) are expressed
by the matrices in the channel space. In this model, the
on-shell T-matrix is given by

Ton(k1) = V (k1) + V (k1)G(k1)Ton(k1), (48)

V (k1) =

✓
v(k1) v(k1)
v(k1) v(k1)

◆
, (49)

G(k1) =

✓
G1(k1) 0

0 G2(k2(k1))

◆
. (50)

Here each component of V (k) and G(k) is

v(k1) =
g20

k2
1

2µ1
� ⌫0

, (51)

Gi(ki) = �µi

⇡2


⇤+ iki arctan

✓
� ⇤

iki

◆�
, (52)

Γ = 0 Γ = 0

large Γ

E = − 0.01Etyp − i0.1Etyp E = − 0.01Etyp − iEtyp

small Γ
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- suppression of  is determined by ratio of  to X̃ B Γ

E = − 0.01Etyp − i0.1Etyp
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channel 1 to channel 2, here we introduce the coupling
of channel 2 and the bare state �. We employ the same
coupling constant g0 with that for channel 1 and �. The

interaction Hamiltonian leads to
Hint = g0(�

† 1 2 +  †
1 

†
2�+ �† 1 2 + 

†
1 

†
2�). (47)

We now consider the on-shell T-matrix Ton(k) of the
coupled-channel scatterings. As in the single-channel
case in Sec. II A, the scatterings occur through the ef-
fective interaction with the bare state � exchange. In
the coupled-channel scattering, Ton(k), the effective in-
teraction V (k) and the loop function G(k) are expressed
by the matrices in the channel space. In this model, the
on-shell T-matrix is given by

Ton(k1) = V (k1) + V (k1)G(k1)Ton(k1), (48)

V (k1) =

✓
v(k1) v(k1)
v(k1) v(k1)

◆
, (49)

G(k1) =
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G1(k1) 0
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channel 1 to channel 2, here we introduce the coupling
of channel 2 and the bare state �. We employ the same
coupling constant g0 with that for channel 1 and �. The

interaction Hamiltonian leads to
Hint = g0(�

† 1 2 +  †
1 

†
2�+ �† 1 2 + 

†
1 

†
2�). (47)

We now consider the on-shell T-matrix Ton(k) of the
coupled-channel scatterings. As in the single-channel
case in Sec. II A, the scatterings occur through the ef-
fective interaction with the bare state � exchange. In
the coupled-channel scattering, Ton(k), the effective in-
teraction V (k) and the loop function G(k) are expressed
by the matrices in the channel space. In this model, the
on-shell T-matrix is given by

Ton(k1) = V (k1) + V (k1)G(k1)Ton(k1), (48)

V (k1) =

✓
v(k1) v(k1)
v(k1) v(k1)

◆
, (49)

G(k1) =

✓
G1(k1) 0

0 G2(k2(k1))

◆
. (50)

Here each component of V (k) and G(k) is

v(k1) =
g20

k2
1

2µ1
� ⌫0

, (51)

Gi(ki) = �µi

⇡2


⇤+ iki arctan

✓
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Γ = 0

Γ = 0.1Etyp

E = − Etyp − i0.1Etyp

compositeness is more suppressed when  is smallB
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-  with X ≠ 0 Γ ≠ 0
   at ∵ g0 ≠ 0 ν0 = − B

g2
0 (−ν0 + i

Γ
2

; ν0, Λ) =
π2

μ (−i
Γ
2 ) [Λ − κ arctan ( Λ

κ )]
−1

≠ 0

c.f.  at 
  with 

g0 = 0 ν0 = − B
Γ = 0

X = [1 +
π2κ
g2

0 μ2 (arctan(Λ/κ) −
Λ/κ

1 + (Λ/κ)2 )
−1

]
−1



10Effect of coupled channel
- introducing coupled channel Ψ1Ψ2
|Ψ⟩ = X1 |threshold ch⟩ + X2 |coupled ch⟩ + 1 − (X1 + X2) |others⟩
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- threshold energy difference Δω E

threshold ch.

coupled ch.

bound state

EE

0 B
Δω

- compositeness  and X1 X2

X1

X2

-  also needs for 
low-energy universality
Δω → ∞

-  is suppressed by X1 Δω
 threshold ch. component 

( ) decreases with 
increase of coupled ch. 
component ( )

∵
X1

X2

X(Δω → ∞)

26Effect of coupled channel
◉ introducing coupled channel Ψ1Ψ2

|Ψ⟩ = X1 |threshold ch⟩ + X2 |coupled ch⟩ + 1 − (X1 + X2) |others⟩

- low-energy universality with coupled-channel effect
 (threshold channel)X1 ∼ 1
 and  (other channel)X2 ∼ 0 Z ∼ 0

ℋfree = (kinetic terms of ψ1,2, Ψ1,2, ϕ) + ω1Ψ1Ψ†
1 + ω2Ψ2Ψ†

2 + ν0ϕ†ϕ,

ℋint = g0(ϕ†ψ1ψ2 + ψ1†ψ†
2 ϕ + ϕ†Ψ1Ψ2 + Ψ1

†Ψ†
2ϕ) .

- ch. 1 couples to ch. 2 through  with same coupling const.ϕ
- threshold energy difference Δω = ω1 + ω2

ϕ
ψ1

ψ2
g0g0

Ψ1

Ψ2



Compositeness for two-channel case 27

V(k) = (v(k) v(k)
v(k) v(k)), v(k) =

g2
0

k2

2μ1
− ν0

.

G(k) = (G1(k) 0
0 G2(k)),

 G1(k) = −
μ1

π2 [Λ + ik arctan (−
Λ
ik )],

G2(k′￼) = −
μ2

π2 [Λ + ik′￼arctan (−
Λ
ik′￼)] .

k = 2μ1E, k′￼(k) = 2μ2(E − Δω) =
μ2

μ1
k2 − 2μ2Δω .

X1 =
G′￼1

(G′￼1 + G′￼2) − [v−1]′￼

,

X2 =
G′￼2

(G′￼1 + G′￼2) − [v−1]′￼

.



28Effect of coupled channel

-  is suppressed by channel couplingX1

 threshold ch. component ( ) decreases with 
inclusion of coupled ch. component ( )
∵ X1

X2

13
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FIG. 11. The compositeness as a function of the normalized bare state energy ⌫0/Etyp for �B  ⌫0  Etyp at the fixed binding
energy and the threshold energy difference (B,�!) = (0.01Etyp, 0.01Etyp) [panel (a)], (B,�!) = (0.01Etyp, Etyp) [panel (b)],
(B,�!) = (Etyp, 0.01Etyp) [panel (c)], and (B,�!) = (Etyp, Etyp) [panel (d)]. The solid lines represent for X1+X2, the dotted
lines for X1, and the dashed lines for the compositeness in the the single-channel case.

X1 = 0.5 as the probability to find a model with the  1 2

composite dominant state. In Fig. 12, we plot Pcomp as
a function of the normalized binding energy B/Etyp for
�! = Etyp (dashed line), �! = 10Etyp (dotted line),
and �! ! 1 (solid line) representing the single-channel
case. By comparing three lines, we find that Pcomp is sup-
pressed by a finite threshold energy difference �! from
the single-channel case at the same B, and the suppres-
sion becomes larger for smaller �!. The reason for this is
seen as the change of ⌫c in panels (a) and (b) in Fig. 11;
⌫c/Etyp = 0.15 for �! = Etyp [panel (b)] changes to
⌫c/Etyp = 0.71 for �! = 0.01Etyp [panel (a)] so that
the fraction of the composite dominant region decreases.
In Fig. 12, the dashed line becomes zero in the region
B/Etyp � 0.35, where the channel 1 compositeness X1 is
always smaller than 0.5 and there is no X1 dominant re-
gion [see panel (d) in Fig. 11]. At B = 0 in Fig. 12, Pcomp

becomes unity even with the coupled-channel effect with
finite �!. For arbitrary �!, one can always consider the
small binding energy B such that B ⌧ �!. In this case,
the bound state decouples from channel 2, and X2 be-
comes zero as discussed above in the �! ! 1 limit. At
the same time, the bound state is completely dominated

by the composite component of the threshold channel,
X1 ! 1. This is consistent with the consequence of the
low-energy universality.

IV. APPLICATION TO Tcc AND X(3872)

Based on the properties of the near-threshold states
discussed so far in general cases, we now consider the ap-
plication to hadron physics. As prominent examples of
weakly bound exotic hadrons, we discuss the nature of Tcc

and X(3872) by calculating the compositeness with the
effective field theory. As mentioned in the introduction
(see Fig. 1), Tcc is observed slightly below the D0D⇤+

threshold, and the coupled channel of the isospin part-
ner D⇤0D+ exists above the threshold channel. Simi-
larly, X(3872) is the weakly bound state near the D0D̄⇤0

threshold, and couples to the D+D⇤� channel above the
threshold. Both the states decay through the strong in-
teraction. Therefore, to analyze the structure of Tcc and
X(3872), we introduce both contributions of the decay
and the channel coupling discussed in Sec. III.

As mentioned in Sec. III B, for an unstable state, we

X1

X2

X1(Δω → ∞) X1(Δω → ∞) X2

X1

(B, Δω) = (0.01Etyp,0.01Etyp) (B, Δω) = (0.01Etyp, Etyp)

-  is stableZ = 1 − (X1 + X2)
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this calculation corresponds to  caseΔω → 0
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FIG. 11. The compositeness as a function of the normalized bare state energy ⌫0/Etyp for �B  ⌫0  Etyp at the fixed binding
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lines for X1, and the dashed lines for the compositeness in the the single-channel case.
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and �! ! 1 (solid line) representing the single-channel
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Based on the properties of the near-threshold states
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plication to hadron physics. As prominent examples of
weakly bound exotic hadrons, we discuss the nature of Tcc
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threshold, and couples to the D+D⇤� channel above the
threshold. Both the states decay through the strong in-
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X(3872), we introduce both contributions of the decay
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Application to  (single ch. model)Tcc

- fine tuning is necessary to realize X < 0.5
-  for of  = composite dominantX > 0.5 78 % ν0

◉ single-channel
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(Γ = 0)

X̃1 + X̃2Tcc

- coupled ch. effect is more important for  than Tcc X(3872)
- decay effect is more important for  than X(3872) Tcc

Application to  and Tcc X(3872)

-  :  for of  regionTcc X̃1 > 0.5 45 % ν0
-  :  for of  regionX(3872) X̃1 > 0.5 59 % ν0

-  MeV (  meson)Λ = 140 π
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-  :  for of  regionTcc X̃1 > 0.5 85 % ν0

-  :  for of  regionX(3872) X̃1 > 0.5 87 % ν0

Application to  and Tcc X(3872)
-  MeV (  meson)Λ = 770 ρ

coupled ch. effect : enhanced  decay effect : suppressed 

- typical energy scale  is largerEtyp
 states becomes close to universality limit X → 1
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single-channel scattering model 7
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FIG. 5. The compositeness obtained from the model calculation (13) (solid line) and from the central value of the weak-binding
relation (20) (dashed line) with the fixed binding energy B = Etyp [panel (a)] and B = 0.01Etyp [panel (b)].

X = Xc
wb can be shown because the inverse scattering

amplitude is given up to O(k). In contrast, X devi-
ates from Xc

wb in the resonance model because the four-
point contact interaction induces the higher order terms
of O(k4) in the effective range expansion.

III. EFFECTS OF FOUR-POINT CONTACT
INTERACTION, DECAY AND CHANNEL

COUPLING

As mentioned in the introduction, the actual exotic
hadrons have the finite decay width and the coupling to
the additional scattering channel. One can also consider
the direct interaction in the threshold channel which is
absent in the model in Sec. II. In this section, we consider
the four-point contact interaction, decay and coupled-
channel effect and show how these contributions modify
the results in the previous section. In Sec. III A, we in-
troduce the four-point contact interaction in addition to
the model in the previous section, and study the contri-
bution of the four-point interaction to the compositeness
and low-energy universality. As in the same way, the
decay contribution and coupled-channel contribution are
discussed in III B and III C, respectively.

A. Effect of four-point contact interaction

In this section, we investigate the effect of the direct in-
teraction of  1 and  2 in addition to the model in Sec. II.
For this purpose, we introduce the four-point contact in-
teraction term with the coupling constant �0, and the
interaction Hamiltonian in Eq. (2) becomes

Hint = �0( 
†
1 

†
2 1 2) + g0(�

† 1 2 +  †
1 

†
2�). (27)

Positive �0 > 0 (negative �0 < 0) corresponds to a re-
pulsive (attractive) interaction. Because of the addition
of the contact interaction term, the effective interaction

V (k) in Eq. (4) as a function of the momentum k changes
to

V (k) = �0 +
g20

k2

2µ � ⌫0
, (28)

while the loop function G(k) in Eq. (6) remains un-
changed. The scattering amplitude f(k) is obtained as

f(k) = � µ

2⇡

2

4
 
�0 +

g20
k2

2µ � ⌫0

!�1

+
µ

⇡2

⇢
⇤+ ik arctan

✓
� ⇤

ik

◆���1

. (29)

As in Sec. II A, we consider the bound state with the
eigenmomentum k = i and the binding energy B =
2/(2µ). The compositeness X is calculated from V in
Eq. (28) and G in Eq. (5):

X =

2

641 +
g2
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2
µ2

(B + ⌫0)2
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0
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3

75

�1

.

(30)

The model parameters are the bare state energy ⌫0,
the cutoff ⇤, and the coupling constants �0 and g0. As
in the model in Sec. II A, from the bound state condition
f(i)�1 = 0 with a fixed binding energy, g20 is written in
terms of the binding energy B and other model parame-
ters:

g20(B; ⌫0,�0,⇤) = (B + ⌫0)

 
⇡2

µ

⇤�  arctan
�
⇤


� + �0

!
.

(31)

Furthermore, the use of the dimensionless parameters can
absorb the ⇤ dependence. Therefore, the remaining pa-
rameters ⌫0 and �0 are varied in the calculation of the

comparison of central value of weak-binding relation with model
(a) typical scale binding energy : weak-binding relation ×

(b) weak-binding energy : weak-binding relation ◯
even for elementary dominant state with small ν0


