レンジ補正を考慮した 弱束縛関係式の応用

<u>Tomona Kinugawa</u>

Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University March 17th JPS 2022 spring

エキゾチックハドロンの候補 $\Lambda(1405), XYZメソン$ など ノドロン分子状態

ハドロンの波動関数

$|\Psi\rangle = \sqrt{X} |\text{hadronic molecule}\rangle + \sqrt{1 - X} |\text{others}\rangle$ 複合性(ハドロン分子状態の重み)

有効レンジr_eの導入による弱束縛関係式のレンジ補正
?

______ ゼロレンジの有効レンジモデルの特徴: $a_0 = R\left\{\frac{2X}{1+X} + O\left(\frac{R_{typ}}{R}\right)\right\}$

-1チャンネル: $|\Psi\rangle = |\text{hadronic molecule}\rangle \Leftrightarrow X = 1$ -相互作用が点状(ゼロレンジ): $R_{\text{typ}} \to 0 \qquad \Leftrightarrow a_0 = R$?

くりこまれた散乱振幅 (
$$R_{
m int}
ightarrow 0$$
):

E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008), 0709.0499.

$$a_0 = R \frac{2r_e/R}{1 - (r_e/R - 1)^2} = R \left[1 + \mathcal{O}\left(\left| \frac{r_e}{R} \right| \right) \right] \implies a_0 \neq R$$

*r_e*による弱束縛関係式のレンジ補正

弱束縛関係式のレンジ補正 arXiv:2111.06619

T. Kinugawa, T. Hyodo, (2021),

$$a_0 = R\left\{\frac{2X}{1+X} + O\left(\frac{R_{typ}}{R}\right)\right\}$$
相互作用長さ: $R_{typ} \longrightarrow R_{int}$

 R_{typ} の再定義: $R_{\text{typ}} = \max \{ R_{\text{int}}, R_{\text{eff}} \},$

$$\boldsymbol{R}_{\text{eff}} = \max\left\{ \left| r_e \right|, \frac{\left| P_s \right|}{R^2}, \cdots \right\}.$$

 $R_{typ} = R_{int}$ のとき、従来の弱束縛関係式に帰着

数値計算による改良の妥当性の評価

有効レンジモデル ($R_{int} \neq 0$)

弱束縛関係式が有用なのは...

 $X_l < X_{\text{exact}} < X_u$

T. Kinugawa, T. Hyodo, (2021), arXiv:2111.06619

 $R_{\rm typ} = R_{\rm eff}$

束縛状態	粒子1	粒子2	a_0	r_e	$R_{ m int}$	
d	p	n	5.42 fm	$1.75~\mathrm{fm}$	$1.43 \mathrm{~fm}$	[1]
X(3872)	D^0	\bar{D}^{*0}	$28.5~\mathrm{fm}$	$-5.34 \mathrm{~fm}$	$1.43~\mathrm{fm}$	[2]
$N\Omega$ dibaryon	N	Ω	$5.30~{ m fm}$	$1.26~\mathrm{fm}$	$0.676~\mathrm{fm}$	[3]
$\Omega\Omega$ dibaryon	Ω	Ω	4.6 fm	$1.27~\mathrm{fm}$	$0.949~\mathrm{fm}$	[4]
$^{3}_{\Lambda}\mathrm{H}$	d	Λ	16.8 fm	$2.3~\mathrm{fm}$	$4.31 \mathrm{~fm}$	[5]
⁴ He dimer	⁴ He	⁴ He	189 B.R.	13.8 B.R.	10.2 B.R.	[6]

 $a_0 > R_{int}$ なので低エネルギー普遍性が成り立つ ${}^3_{\Lambda}$ H 以外の束縛状態: $|r_e| > R_{int}$ → レンジ補正が重要

[1] R. Machleidt, Phys. Rev. C **63**, 024001 (2001), nucl-th/0006014.

[2] A. Esposito, L. Maiani, A. Pilloni, A. D. Polosa and V. Riquer (2021), 2108.11413.

[3] HAL QCD, T. Iritani *et al.*, Phys. Lett. B **792**, 284 (2019), 1810.03416.

[4] S. Gongyo *et al.*, Phys. Rev. Lett. **120**, 212001 (2018), 1709.00654.

[5] H. W. Hammer, Nucl. Phys. A 705, 173 (2002), nucl-th/0110031.

[6] A. Kievsky and M. Gattobigio, Phys. Rev. A 87, 052719 (2013), 1212.3457.

 $0 \le X \le 1$ を用いて 決定したXの範囲

束縛状態	複合性 X		
d	$0.738 \le X \le 1$		
X(3872)	$0.530 \le X \le 1$		
$N\Omega$	$0.801 \le X \le 1$		
$\Omega\Omega$	$0.791 \le X \le 1$		
$^3_{\Lambda}{ m H}$	$0.745 \le X \le 1$		
⁴ He dimer	$0.92 \le X \le 1$		

- 複合成分が支配的: 0.5 < X
- X(3872) のモデル計算との比較

M. Takizawa and S. Takeuchi, PTEP 2013, 093D01 (2013), arXiv:1206.4877.

 $|X(3872)\rangle = c_1 |c\bar{c}\rangle + c_2 |D^0\bar{D}^{*0}\rangle + c_3 |D^+D^{*-}\rangle$

 $|c_2|^2 = X, \quad 0.759 \le X \le 0.897$

▶ 弱束縛関係式の結果は整合性がある

T. Kinugawa, T. Hyodo, (2022), arXiv:2201.04283

- 弱束縛関係式: 観測量 → 複合性(X)
$$a_0 = R\left\{\frac{2X}{1+X} + O\left(\frac{R_{\text{typ}}}{R}\right)\right\}$$

- r_e による弱束縛関係式のレンジ補正

-*R*_{typ}の再定義による弱束縛関係式の改良:
 *R*_{typ} = max {*R*_{int}, *R*_{eff}}, *R*_{eff} = max { |*r_e*|,…}
 -数値計算から、レンジ補正が適用可能範囲を広げるとわかった
 -改良した弱束縛関係式を実際の物理系へ応用、Xを見積もった
 →レンジ補正が重要な状態が存在することがわかった
 -今後は不安定状態の弱束縛関係式のレンジ補正を議論したい

レンジ補正を考慮した 弱束縛関係式の応用

<u>Tomona Kinugawa</u>

Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University March 17th JPS 2022 spring

弱束縛関係式
$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{typ}}{R}\right)\right\}$$

<u>低エネルギー普遍性</u>

固有エネルギーが小さい束縛状態なら系の詳細によらず成り立つ 物理量が a_0 のべきでスケールされる — $P = a_0$

-その他の長さスケール *f(k)* =
$$\left[-\frac{1}{a_0} + \frac{r_e}{2}k^2 - \frac{P_s}{4}k^4 + \dots - ik\right]^{-1}$$

有効レンジr_eの導入による弱束縛関係式のレンジ補正?

有効レンジモデル E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008), 0709.0499.

ゼロレンジの有効レンジモデルの特徴:

-1チャンネル: $|\Psi\rangle = |\text{hadronic molecule}\rangle \Leftrightarrow X = 1$

-相互作用が点状(ゼロレンジ): $R_{typ} \rightarrow 0$

$$\Rightarrow a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\} \to R$$

くりこまれた散乱振幅 ($R_{int} \rightarrow 0$):

$$a_0 = R \frac{2r_e/R}{1 - (r_e/R - 1)^2} = R \left[1 + \mathcal{O}\left(\left| \frac{r_e}{R} \right| \right) \right] \implies a_0 \neq R$$

*r_o*による弱束縛関係式のレンジ補正

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}$$

改良した弱束縛関係式が有用な範囲は?

中心値:
$$X_c = \frac{a_0/R}{2 - a_0/R}$$

誤差項の定量的な評価: $\xi \equiv R_{typ}/R$

Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017).

$$X_u = \frac{a_0/R + \xi}{2 - a_0/R - \xi}, \quad X_l = \frac{a_0/R - \xi}{2 - a_0/R + \xi}$$

弱束縛関係式が有用なのは...

$$X_l < X_{\text{exact}} < X_u$$

- $r_e \neq 0$: $\xi_{\text{eff}} = |r_e/R| \longrightarrow r_e$ による誤差
- モデルの性質による X の値(真の値 X_{exact})

 $X_{\text{exact}} = 1$

数値計算 精度

弱束縛関係式から見積もられるXの精度

実質的な誤差の幅 \overline{E} $\overline{E} = \overline{X}_u - \overline{X}_l, \quad \overline{X}_u = \min\{X_u, 1\}, \quad \overline{X}_l = \max\{X_l, 0\},$

意味のある見積もりのためには、多くとも $\bar{E} \leq 0.5$

数値計算 適用可能範囲

