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and background components. The signal component is described 
by the convolution of the detector resolution with a resonant shape, 
which is modelled by a relativistic P-wave two-body Breit–Wigner 
(BW) function modified by a Blatt–Weisskopf form factor with a 
meson radius parameter of 3.5 GeV−1. The use of a P-wave reso-
nance is motivated by the expected JP = 1+ quantum numbers for 
the T+

cc

 state. A two-body decay structure T+
cc

→ AB is assumed with 
m

A

= 2m

D

0 and m
B

= m

π

+, where m
π

+ stands for the known mass 
of the π+ meson. Several alternative prescriptions are used for the 
evaluation of the systematic uncertainties. Despite its simplicity, the 
model serves well to quantify the existence of the T+

cc

 state and to 
measure its properties, such as the position and the width of the 
resonance. A follow-up study91 investigates the underlying nature 
of the T+

cc

 state, expanding on the modelling of the signal shape and 
the determination of its physical properties. The detector resolution 
is modelled by the sum of two Gaussian functions with a common 
mean, where the additional parameters are taken from simulation 
(Methods) with corrections applied32,92,93. The root mean square of 
the resolution function is around 400 keV c−2. A study of the D0π+ 
mass distribution for D0D0π+ combinations in the region above the 
D*0D+ mass threshold but below 3.9 GeV c−2 shows that approxi-
mately 90% of all random D0D0π+ combinations contain a genuine 
D*+ meson. On the basis of this observation, the background com-
ponent is parameterized by the product of a two-body phase space 
function and a positive second-order polynomial. The resulting 
function is convolved with the detector resolution.

The fit results are shown in Fig. 1, and the parameters of interest, 
namely the signal yield, N, the mass parameter of the BW function rel-
ative to the D*+D0 mass threshold, δm

BW

≡ m

BW

− (m
D

∗+ +m

D

0), 
and the width parameter, ΓBW, are listed in Table 1. The statistical 
significance of the observed T+

cc

D

0

D

0

π

+ signal is estimated using 
Wilks’ theorem to be 22 s.d. The fit suggests that the mass param-
eter of the BW shape is slightly below the D*+D0 mass threshold.  
The statistical significance of the hypothesis δmBW < 0 is estimated 
to be 4.3 s.d.

To validate the presence of the signal component, several addi-
tional cross-checks are performed. The data are categorized accord-
ing to data-taking periods, including the polarity of the LHCb 
dipole magnet and the charge of the T+

cc

 candidates. Instead of 
statistically subtracting the non-D0 background, the mass of each 
D → K−π+ candidate is required to be within a narrow region around 
the known mass of the D0 meson38. The results are found to be con-
sistent among all samples and analysis techniques. Furthermore, 
dedicated studies are performed to ensure that the observed 
signal is not caused by kaon or pion misidentification, doubly 
Cabibbo-suppressed D0 → K+π− decays or D0

D

0 oscillations, decays 
of charm hadrons originating from beauty hadrons or artefacts due 
to the track reconstruction creating duplicate tracks.

Systematic uncertainties for the δmBW and ΓBW parameters are 
summarized in Table 2 and described below. The largest systematic 
uncertainty is related to the fit model and is studied using pseudo-
experiments with alternative parameterizations of the D0D0π+ mass 
shape. Several variations in the fit model are considered: changes 
in the signal model due to the imperfect knowledge of the detector 
resolution, an uncertainty in the correction factor for the resolution 
taken from control channels, parameterization of the background 
component and the additional model parameters of the BW func-
tion. The model uncertainty related to the assumption of JP = 1+ 
quantum numbers of the state is estimated and listed separately. 
The results are affected by the overall detector momentum scale, 
which is known to a relative precision of δα = 3 × 10−4 (ref. 94). The 
corresponding uncertainty is estimated using simulated samples 
where the momentum scale is modified by factors of (1± δα). In 
the reconstruction, the momenta of charged tracks are corrected 
for energy loss in the detector material, the amount of which is 
known with a relative uncertainty of 10%. The resulting uncertainty 
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Fig. 1 | The distribution of the D0D0π+ mass. The distribution of the 
D0D0π+ mass after statistical subtraction of the contribution of the non-D0 
background, with the result of the fit with the two-component function 
described in the text. The horizontal bin width is indicated on the vertical 
axis legend. The inset shows a zoomed signal region with a fine binning 
scheme. Uncertainties on the data points are statistical only and represent 
one standard deviation, calculated as a sum in quadrature of the assigned 
weights from the background subtraction procedure.

Table 1 | Parameters obtained from the fit to the D0D0π+ mass 
spectrum: signal yield, N, BW mass relative to the D*+D0 
mass threshold, δmBW, and width, ΓBW. The uncertainties are 
statistical only

Parameter Value

N 117!±!16
δmBW −273!±!61!keV!c−2

ΓBW 410!±!165!keV

Table 2 | Systematic uncertainties for the δmBW and ΓBW 
parameters. The total uncertainty is calculated as the sum 
in quadrature of all components except for those related to 
the assignment of JP quantum numbers, which are handled 
separately

Source σ

δm

BW

(

keV c

−2

)

σΓ
BW

(keV)

Fit model
Resolution model 2 7
Resolution correction factor 1 30
Background model 3 30
Model parameters <1 <1
Momentum scale 3 —
Energy loss corrections 1 —
D*+!−!D0 mass difference 2 —
Total 5 43

JP quantum numbers +11

−14

+18

−38
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LHCb Collaboration, Nature Phys. 18 (2022) no.7, 751-754;
LHCb Collaboration, Nat. Commun 13 3351 (2022).
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最低でも ccūd̄

 (2021年発見)Tcc

=  or  で到達できない量子数qqq qq̄

Tcc → D0D0π+ (cūcūud̄)



ハドロンの波動関数
|Tcc⟩ = X |hadronic molecule⟩ + 1 − X |others⟩
複合性 (ハドロン分子状態の重み)

D0

D*+ c cū
d̄

複合性

◉ 計算方法

◉ 簡易的な定義

3

※ 定義より 0 ≤ X ≤ 1  なら複合的X > 0.5

a0 = R
2X

1 + X
+ 𝒪 (

Rtyp

R )

S. Weinberg, Phys. Rev. 137, B672 (1965);
Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017);
T. Kinugawa and T. Hyodo, Phys. Rev. C 106, 015205 (2022) 

 Rtyp = max{Rint, re, ⋯}

 : 散乱長 a0

R ≡ (2μB)−1/2,  : 束縛エネルギーB

(  : 相互作用長さ,  : 有効レンジ)Rint re

1. 弱束縛関係式 (モデル非依存)

2. モデル計算



模型計算

ℋfree =
1

2mD0
∇D0† ⋅ ∇D0 +

1
2mD*+

∇D*+† ⋅ ∇D*+ +
1

2mΨ
∇ψ† ⋅ ∇ψ + ν0ψ†ψ,

ℋint = g0(ψ†D0D*+ + D0†D*+†ψ) .

①

②
① 1チャンネル散乱
② コンパクトな4クォーク状態  ( ) との結合Ψ ccūd̄

◉ 1チャンネル共鳴模型
E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008).

4

◉ 散乱振幅

Ψ
D0

D*+
g0

f(k) = [−
2π
μ (

k2

2μ − ν0

g2
0

) −
2Λ
π

− ik]
−1

.

V =
g2

0

E − ν0
, G = −

μ
π2 (Λ +

π
2

ik) .

T =
1

V−1 − G

 : カットオフ
※  で消える項は無視
                                

Λ
Λ → ∞

(k ≪ Λ)

+ h. c.



模型のパラメタ 5
・カットオフ  : 0.14 GeV =  (  交換)Λ mπ π

 束縛状態の条件式  ∵ f −1 = 0

・結合定数  : g0 g2
0(Λ, ν0, B) = ( κ2

2μ
+ ν0) 2π

μ(2Λ/π − κ)
, κ = 2μB .

束縛状態の条件式

・散乱の閾値から測った4クォーク状態のエネルギー ν0
E

Tcc

Ψ (ccūd̄)
D0D*+0

0.36 MeVB = ・EFT以外の模型で決める
e.g.  MeV (クォーク模型)

・可能な範囲で変化させる

ν0 = 7
M. Karliner and J. L. Rosner, PRL 119, 202001 (2017)

 を固定   を自由に変化させるB, Λ ν0

g2
0(Λ, ν0, B)

LHCb Collaboration, Nature Phys. 18 
(2022) no.7, 751-754.



6模型計算
・  の範囲 : ν0 −B ≤ ν0 ≤ Λ2/(2μ)

 を与える  : g2
0 ≥ 0 ν0 −B ≤ ν0

有効場の理論における上限 : ν0 ≤ Λ2/(2μ)

①  の関数としての  

②  の関数としての 

ν0 g2
0

ν0 X

◉ 計算するもの

 の内部構造？Tcc

D0

D*+

 X > 0.5

c cū
d̄or

 X < 0.5

X =
G′￼(−B)

G′￼(−B) − [V−1(−B)]′￼

.

X = [1 +
2π

Rμ2g2
0 ]

−1

, R = 1/ 2μB .

複合性 X
T = V + VGT
α′￼(E) = dα/dE

Y. Kamiya and T. Hyodo, 
PTEP 2017, 023D02 (2017).



7計算結果

・ほとんど ( ) の  の範囲で複合的 ( )84 % ν0 X ≥ 0.5

  の関数としての  (左) と  (右) ν0 g2
0 X

D0

D*+

 MeV−B ≤ ν0 ≤ Λ2/(2μ), B = 0.36

 との結合のみで作られた束縛状態なのに 
                             低エネルギー普遍性 (  が小)
ccūd̄ X > 0.5

B
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まとめ

-  のエネルギー  を変えながら複合性  の計算ccūd̄ ν0 X

- 有効場の理論  複合性  の計算   の内部構造？X Tcc

- コンパクトな4クォーク状態 ( ) と  との結合を持つ模型ccūd̄ D0D*+

8

- 2チャンネルへの拡張 :  チャンネルの追加D*0D+

- さらなる相互作用 : 4点相互作用の追加

◉ 今後の見通し
D0

D*+λ0

D0

D*+

ほとんど ( ) の  の範囲で複合的84 % ν0

-  波散乱の場合に低エネルギー普遍性が現れるか？p

 との結合のみで作られた束縛状態なのに複合的
                              低エネルギー普遍性
ccūd̄

∵

-  の近似なしの計算G G = −
μ
π2 [Λ + ik arctan( Λ

−ik )]



有効場の理論を用いた
の性質Tcc

Tomona Kinugawa          Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University　　　　                                        　
September 7th　JPS 2022 autumn



有効場の理論 (EFT) 10
ある微視的な理論の低エネルギー極限を記述

k
 (カットオフ)Λ

ℋmicro

ℋEFT
 :  の

             現象を記述
ℋEFT k ≪ Λ

e.g. Eulaer-Heisenberg理論 (QED)
       カイラル摂動論 (QCD)

イメージ

点状相互作用
(EFT) k ≪ Λ ∼ mπ

微視的構造
が見える

π



動機
◉ エキゾチックハドロン候補の複合性
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TABLE IV. The uncertainties ⇠e↵ , ⇠int, the estimated com-
positeness X and the length scale Rtyp in the improved weak-
binding relation. X(⇠e↵) (X(⇠int)) stands for X estimated
with ⇠e↵ (⇠int).

bound state ⇠e↵ ⇠int X(⇠e↵) X(⇠int) Rtyp

d 0.405 0.331 1.68+3.18
�0.943 1.68+2.14

�0.824 Re↵

X(3872) 0.160 0.0428 0.743+0.282
�0.213 0.743+0.0675

�0.0626 Re↵

D⇤
s0(2317) 0.0949 0.341 1.61+0.369

�0.288 1.61+2.09
�0.804 Rint

Ds1(2460) 0.192 0.345 1.12+0.540
�0.358 1.12+1.22

�0.566 Rint

N⌦ dibaryon 0.277 0.149 1.40+1.20
�0.600 1.40+0.523

�0.364 Re↵

⌦⌦ dibaryon 0.337 0.252 1.56+1.95
�0.773 1.56+1.22

�0.626 Re↵
3
⇤H 0.157 0.295 1.35+0.532

�0.366 1.35+1.25
�0.605 Rint

4
He dimer 0.0757 0.0560 1.08+0.177

�0.152 1.08+0.128
�0.114 Re↵

TABLE V. The compositeness X consistent with the defini-
tion (36) estimated by the improved weak-binding relation.

bound state compositenessX
d 0.74  X  1

X(3872) 0.53  X  1

D⇤
s0(2317) 0.81  X  1

Ds1(2460) 0.55  X  1

N⌦ dibaryon 0.80  X  1

⌦⌦ dibaryon 0.79  X  1

3
⇤H 0.74  X  1

4
He dimer 0.93  X  1

almost purely composite state with a small fraction of
the other components (. 7 %). On the other hand, the
compositeness of X(3872) and Ds1(2460) can be as low
as ⇠0.5, which is the boundary of the composite domi-
nance. Therefore, it is expected that the other compo-
nents would play a substantial role in these states. We
find that Eq. (36) gives a reasonable estimation of the
compositeness of the deuteron 0.74  X  1, indicat-
ing its composite nature. The compositeness of the N⌦

dibaryon is also meaningfully estimated thanks to the
range correction (28).

We compare our results with that of the previous
works focusing on the deuteron d, X(3872), D⇤

s0(2317)

and Ds1(2460). The pioneering work for d by Wein-
berg [9] concluded that d was the composite state while
the quantitative determination of the compositeness was
not given. In Ref. [47], the compositeness of d was quan-
titatively calculated as 1.68+2.15

�0.83 with the uncertainty es-
timation from the correction terms in the previous weak-
binding relation. This result corresponds to X(⇠int) in
Table IV. By taking the range correction into account ap-
propriately, we find the uncertainty band of the compos-
iteness of d, shown as X(⇠e↵) in Table IV, is larger than
that of Ref. [47]. In recent works [27–29], deuteron was
found to be composite dominant. In particular, Ref. [29]
concluded that values of X smaller than ⇠ 0.7 were very

implausible. Those results are qualitatively consistent
with our estimation 0.74  X  1.
The compositeness of D⇤

s0(2317) and Ds1(2460) are
discussed in Refs. [28, 29, 42]. For D⇤

s0(2317), Ref. [28],
Ref. [29] and Ref. [42] found that X > 0.6, X > 0.5
and X ⇠ 0.72, respectively. For Ds1(2460), Ref. [28] and
Ref. [42] found that 0.4 < X < 0.7 and X ⇠ 0.57, re-
spectively. Our results (0.81  X  1 for D⇤

s0(2317) and
0.55  X  1 for Ds1(2460)) are similar to the previous
works; D⇤

s0(2317) is relatively composite dominant, and
Ds1(2460) can contain appreciable amount of the non-
composite components. The quantitative difference of
the results of Ds1(2460) may be attributed to the large
uncertainty ⇠int = 0.345 which indicates that the bind-
ing energy of Ds1(2460) is not sufficiently small. We note
that the inputs a0 and re for the charmed-strange mesons
still have a large uncertainty, for instance a0(KD) =

+1.3±0.5±0.1 fm and re(KD) = �0.1±0.3±0.1 fm [42].
The structure of X(3872) was studied in the hybrid

model of cc̄ and hadronic molecules [48]. Assuming the
wavefunction of X(3872) as

|X(3872)i = c1 |cc̄i+ c2 |D0D̄⇤0i+ c3 |D+D⇤�i , (72)

they determined the coefficients ci from the compari-
son with the experiments which lead to �0.947  c2 
�0.871. Because the D0D̄⇤0 compositeness of X(3872)

corresponds to X = |c2|2, this result is interpreted as
0.759  X  0.897. Our model independent result
0.53  X  1 contains that of the model calculation [48],
as expected.

VI. SUMMARY

In this work, we have discussed the range correction
to the weak-binding relation for the systems with a large
effective range. We introduce an effective field theory to
deal with the bound states in various models. Based on
the effective range model in the zero range limit, we show
the necessity of the range correction in the weak-binding
relation. A prescription of the range correction is pre-
sented as the redefinition of Rtyp in the correction terms
as the maximum length scale among the interaction range
Rint and the length scale in the effective range expansion
Re↵ . This range correction results in the modification of
the uncertainty estimation of the compositeness, which
should be performed in conjunction with the definition
of the compositeness.
The applicability of the weak-binding relations has

been studied numerically with the effective range model
(X = 1) and the resonance model (X < 1). In both
cases, we show that the range correction improves the
weak-binding relation with the larger applicable region
than the previous one. We have also studied the preci-
sion of the estimation of X to calculate the magnitude of
the uncertainty Ē.
Finally, we study the compositeness of the actual

hadrons, nuclei and atomic states by the weak-binding

16
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nance. Therefore, it is expected that the other compo-
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We compare our results with that of the previous
works focusing on the deuteron d, X(3872), D⇤
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and Ds1(2460). The pioneering work for d by Wein-
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not given. In Ref. [47], the compositeness of d was quan-
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the results of Ds1(2460) may be attributed to the large
uncertainty ⇠int = 0.345 which indicates that the bind-
ing energy of Ds1(2460) is not sufficiently small. We note
that the inputs a0 and re for the charmed-strange mesons
still have a large uncertainty, for instance a0(KD) =
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0.53  X  1 contains that of the model calculation [48],
as expected.
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In this work, we have discussed the range correction
to the weak-binding relation for the systems with a large
effective range. We introduce an effective field theory to
deal with the bound states in various models. Based on
the effective range model in the zero range limit, we show
the necessity of the range correction in the weak-binding
relation. A prescription of the range correction is pre-
sented as the redefinition of Rtyp in the correction terms
as the maximum length scale among the interaction range
Rint and the length scale in the effective range expansion
Re↵ . This range correction results in the modification of
the uncertainty estimation of the compositeness, which
should be performed in conjunction with the definition
of the compositeness.
The applicability of the weak-binding relations has

been studied numerically with the effective range model
(X = 1) and the resonance model (X < 1). In both
cases, we show that the range correction improves the
weak-binding relation with the larger applicable region
than the previous one. We have also studied the preci-
sion of the estimation of X to calculate the magnitude of
the uncertainty Ē.
Finally, we study the compositeness of the actual

hadrons, nuclei and atomic states by the weak-binding

T. Kinugawa and T. Hyodo, Phys. Rev. C 106, 015205 (2022) 

弱束縛関係式による複合性  の見積もりX

浅い束縛状態は模型非依存に
複合性を見積もれる

調べた状態全てにおいて
複合的（ ）X ≥ 0.5

 は観測量 (有効レンジ) の不定性が大きすぎて
弱束縛関係式から複合性を見積もれない…
Tcc

束縛エネルギーを再現する模型を用いて  を計算X

11



12計算結果
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13計算結果

  が大きい   も大きい (  と逆)g2
0 X ν0 ∼ B

  の関数としての  (左) と  (右) ν0 g2
0 X

 との結合のみで作られた束縛状態なのに 
                             低エネルギー普遍性 (  が小)
ccūd̄ X > 0.5

B

−B −B

  のときν0 ≫ − B

 keV−B ≤ ν0 ≤ Λ2/(2μ), B = 360
 [d

im
en

si
on

le
ss

]
g2 0  [d

im
en

si
on

le
ss

]
X

 [MeV]ν0

0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

 [MeV]ν0

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10



クォークモデルでの  ν0
14

・散乱の閾値から測った離散固有状態のエネルギー ν0

・カットオフ  GeVΛ = 0.14
・束縛エネルギー  GeVB = 0.36

・  のエネルギー  GeVccūd̄ ν0 = 0.007

X = 0.81 (複合的)

・EFT以外の模型で決める
e.g.  MeV (クォーク模型)ν0 = 7

E

Tcc

Ψ (ccūd̄)D0D*+0

0.36 MeVB =

M. Karliner and J. L. Rosner, PRL 119, 202001 (2017)



カットオフを変えた計算 15
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  X(3872) 16
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2チャンネル 17

ℋint = g0(ψ†D0D*+ + D0†D*+†ψ) .

ℋfree =
1

2mD0
∇D0† ⋅ ∇D0 +

1
2mD*+

∇D*+† ⋅ ∇D*+ +
1

2mΨ
∇ψ† ⋅ ∇ψ + ν0ψ†ψ

+ω0D0†D0 + ω+D*+†D*+,
上のチャンネル

E

D0D*+

D*0D+

Tcc

EE

0

∼∼

0.36 MeVB =

1.41 MeVω =

 : 閾値から測った  のエネルギーω0 D0

 : 閾値から測った  のエネルギーω+ D*+

X1 =
G′￼1

(G′￼1 + G′￼2) − [V−1]
,

X2 =
G′￼2

(G′￼1 + G′￼2) − [V−1]
.

◉ 複合性

D*0

D+

D0

D*+

V =
g2

0

E − ν0
, G1,2 = −

μ1,2

π2 (Λ −
π
2

κ1,2) .

 : チャンネル1,2の換算質量μ1,2
κ1 = 2μ1B
κ2 = 2μ1(B + ω)



2チャンネル Tcc
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  X(3872) 19 keV−B ≤ ν0 ≤ Λ2/(2μ0), B = 16
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 と比べると…Tcc

 が小   が大B X1 + X2  が大   ω X1 ≫ X2


