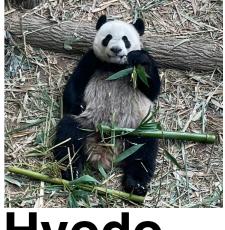
Compositeness of exotic hadrons with decay and coupled-channel effects

T. Kinugawa and T. Hyodo arXiv:2303.07038 [hep-ph]

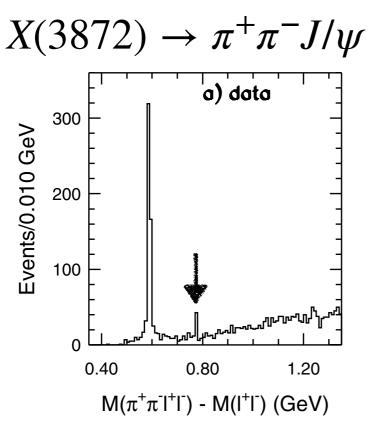


Tomona Kinugawa

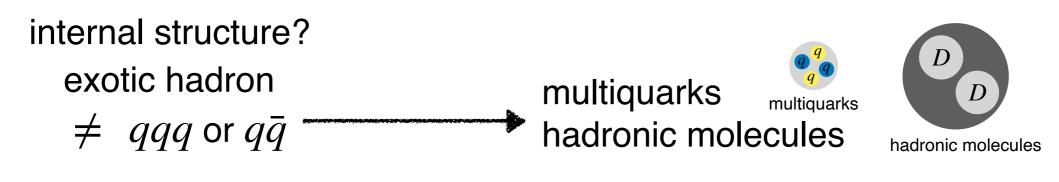
Tetsuo Hyodo

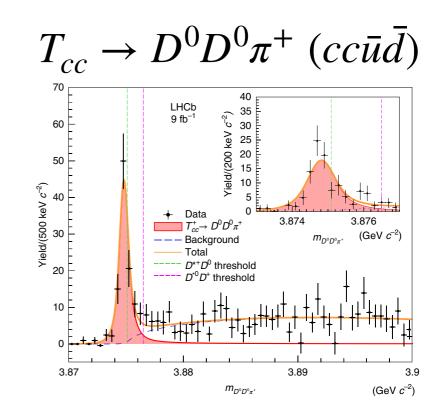
Department of Physics, Tokyo Metropolitan University March 28th, J-PARCハドロン研究会 2023

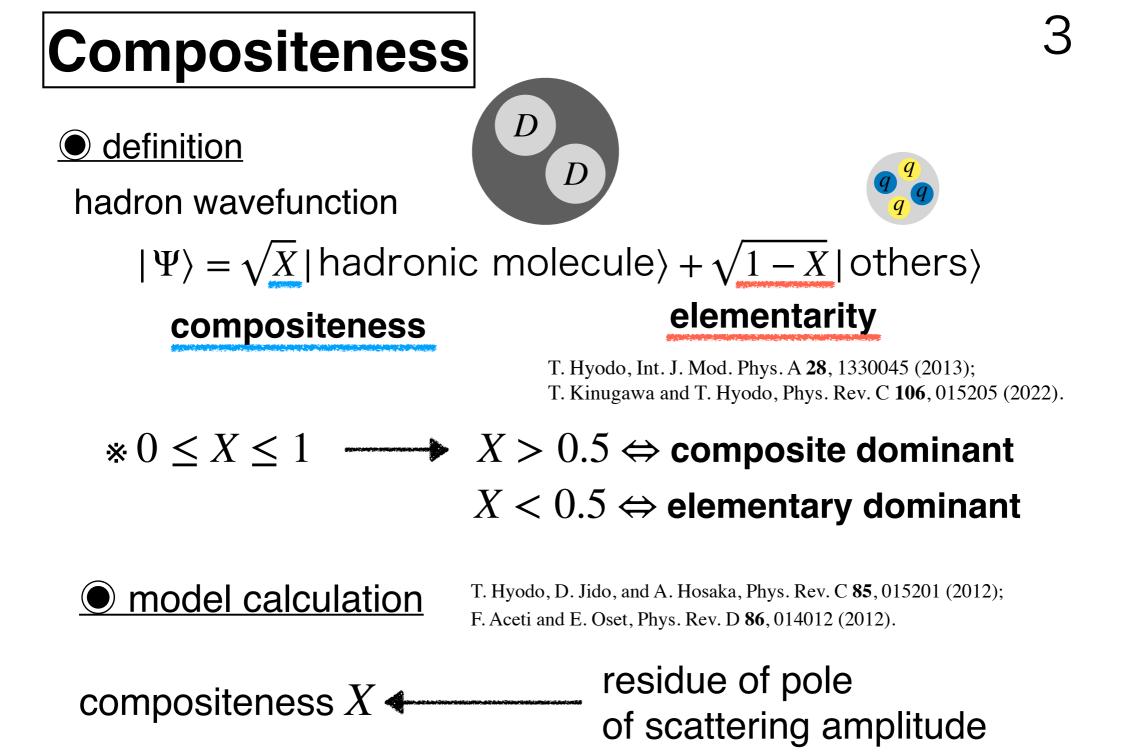
Near-threshold exotic hadrons



LHCb Collaboration, Nature Phys. **18** (2022) no.7, 751-754; LHCb Collaboration, Nat. Commun. **13** 3351 (2022).







Low-energy universality

- scattering length $a_0 \gg$ typical length scale of system

low-energy universality

E. Braaten and H.-W. Hammer, Phys. Rept. 428, 259 (2006);F. P. Naidon and S. Endo, Rept. Prog. Phys. 80, 056001 (2017).

 \rightarrow length scales are written only by $|a_0|(\rightarrow \infty)$

for bound states ?

$$a_0 = R$$
 $R = 1/\sqrt{2\mu B}$ $a_0 \to \infty \longrightarrow B \to 0$

universality holds for weakly-bound states!!

- compositeness X = 1 in $B \rightarrow 0$ limit _{T. Hyodo, Phys. Rev. C 90, 055208 (2014)}.

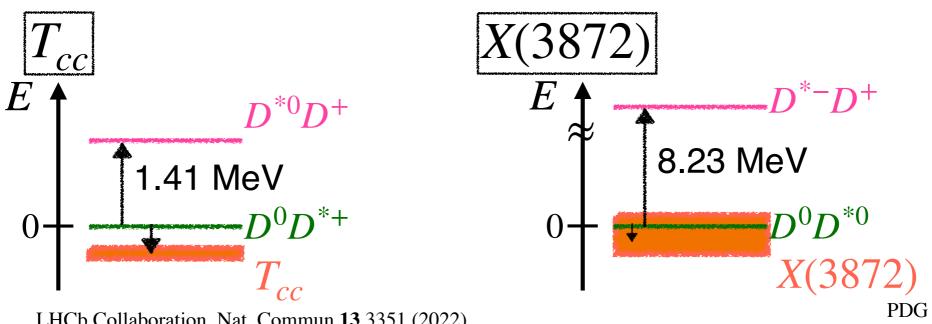
near threshold poles = composite dominant ?

e.g. ⁸Be, ¹²C Hoyle state $\rightarrow \alpha$ cluster? H. Horiuchi, K. Ikeda, and Y. Suzuki, Prog. Theor. Phys. Suppl. **52**, 89 (1972).

Decay & coupled ch. effects

However...

actual exotic hadrons ---decay and coupled channel



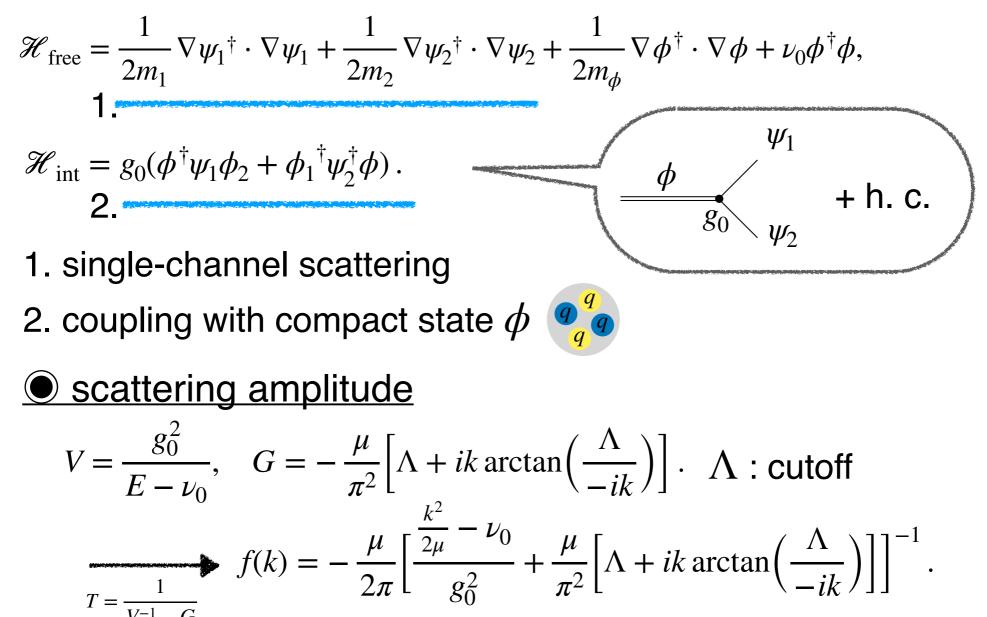
LHCb Collaboration, Nat. Commun 13 3351 (2022).

other ch. than threshold ch. make deviation from X = 1Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017).

This work... study those deviations quantitatively!

Model

Single-channel resonance model



Model scales and parameters

- typical energy scale : $E_{\rm typ} = \Lambda^2/(2\mu)$
- three model parameters g_0,ν_0,Λ
- 1. calculation with given B

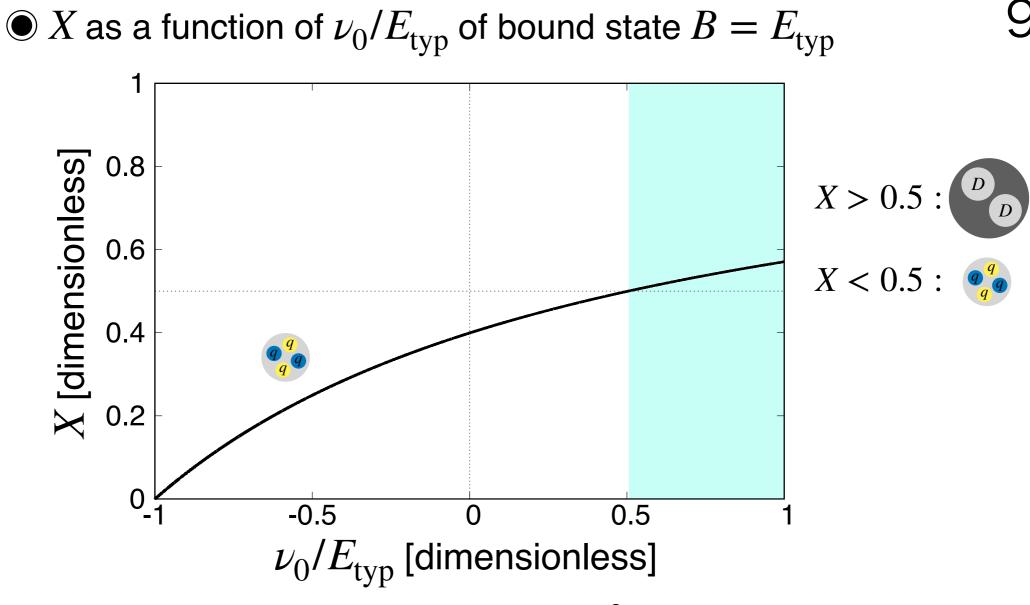
coupling const. g_0 : $g_0^2(B, \nu_0, \Lambda) = \frac{\pi^2}{\mu} (B + \nu_0) \left[\Lambda - \kappa \arctan(\Lambda/\kappa) \right]^{-1}$

- : bound state condition $f^{-1} = 0$ $\kappa = \sqrt{2\mu B}$.
- 2. use dimensionless quantities with Λ

3. energy of bare state ν_0 varied in the region : $-B/E_{\rm typ} \le \nu_0/E_{\rm typ} \le 1$ \therefore to have $g_0^2 \ge 0$ & applicable limit of EFT

Calculation

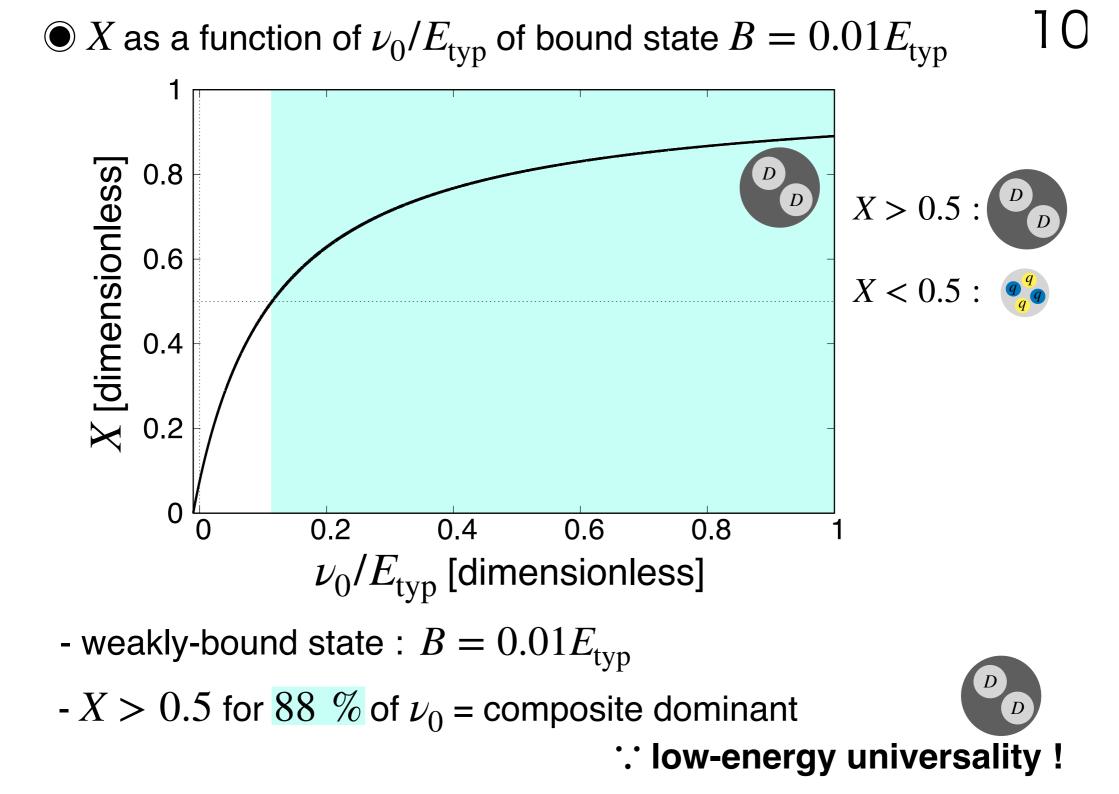
<u>compositeness X</u> Scattering amplitude : $T = \frac{1}{V^{-1} - G}$ Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017). $X = \frac{G'(-B)}{G'(-B) - [V^{-1}(-B)]'}, \quad \alpha'(E) = d\alpha/dE$ $= \left[1 + \frac{\pi^2 \kappa}{g_0^2 \mu^2} \left(\arctan(\Lambda/\kappa) - \frac{\Lambda/\kappa}{1 + (\Lambda/\kappa)^2}\right)^{-1}\right]^{-1}.$ - ν_0 region : $-B/E_{tvp} \leq \nu_0/E_{tvp} \leq 1$ X > 0.5compositeness X as a function of ν_0 X < 0.5or with fixed Binternal structure of bound state?



- typical energy scale : $B = E_{typ} = \Lambda^2/(2\mu)$

- X > 0.5 only for 25 % of ν_0 = elementary dominant \P^q

: bare state origin



Effect of decay

Introducing decay effect

- formally : introducing decay channel in lower energy region than binding energy

----- eigenenergy becomes complex

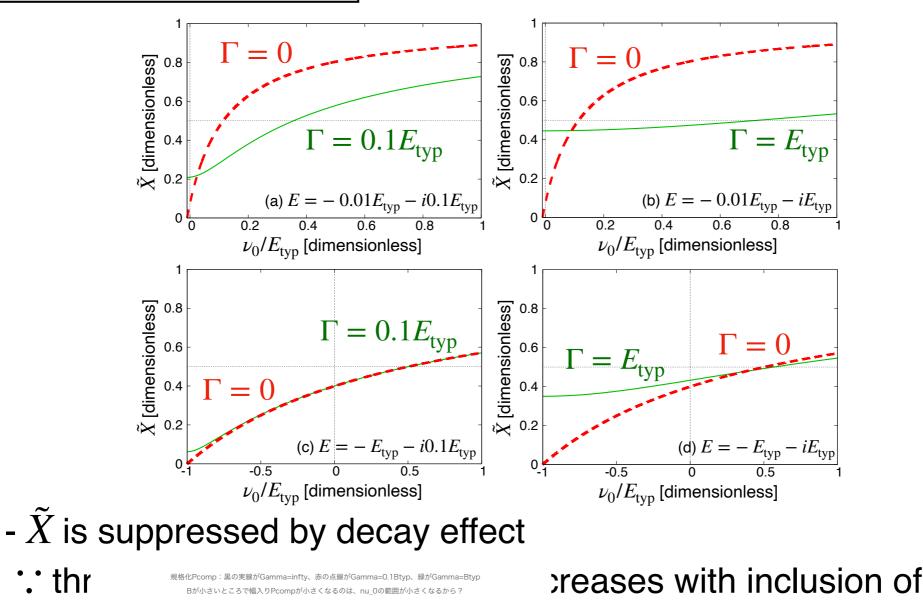
- effectively : coupling const. $g_0 \in \mathbb{C}$

$$E = -B \longrightarrow E = -B - i\Gamma/2$$

compositeness

 $X \in \mathbb{R} \longrightarrow X \in \mathbb{C}$ $\tilde{X} = \frac{|X|}{|X| + |1 - X|}$ T. Sekihara, *et. al.*, PRC 93, 035204 (2016).

Effect of decay

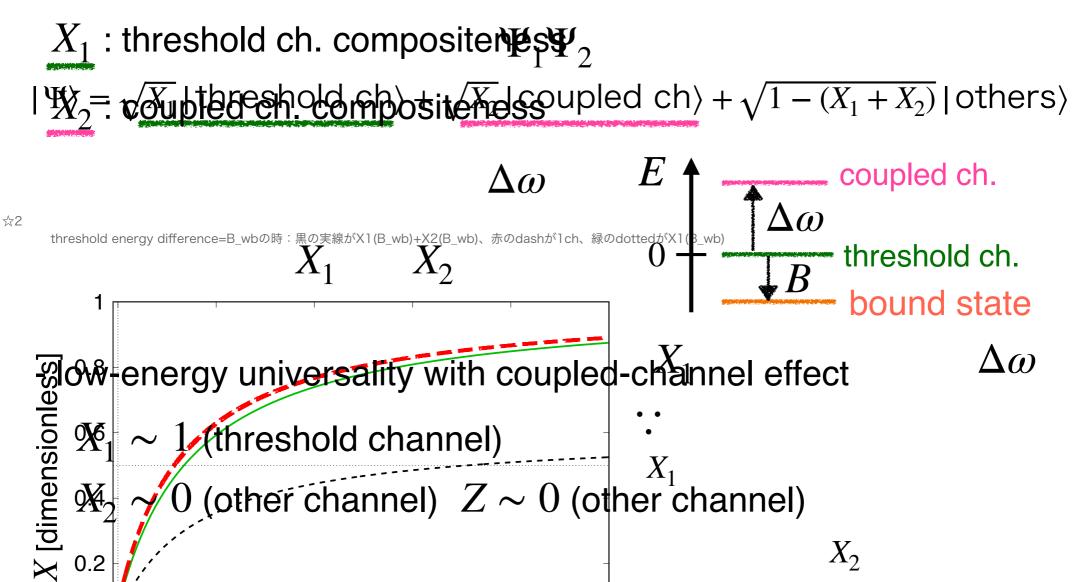


deca deca \tilde{X} is determined by ratio of B to Γ

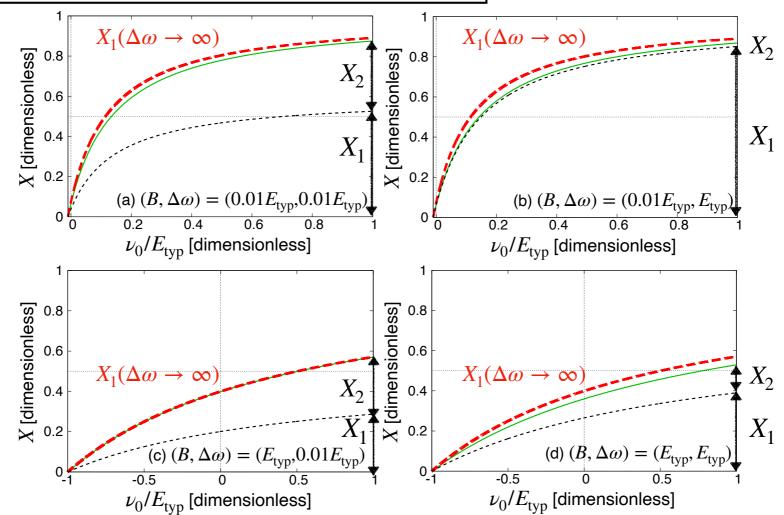
Effect of coupled channel

13

Effect of coupled $\sqrt{champled}$ ch + $\sqrt{1 - (X_1 + X_2)}$ | others)

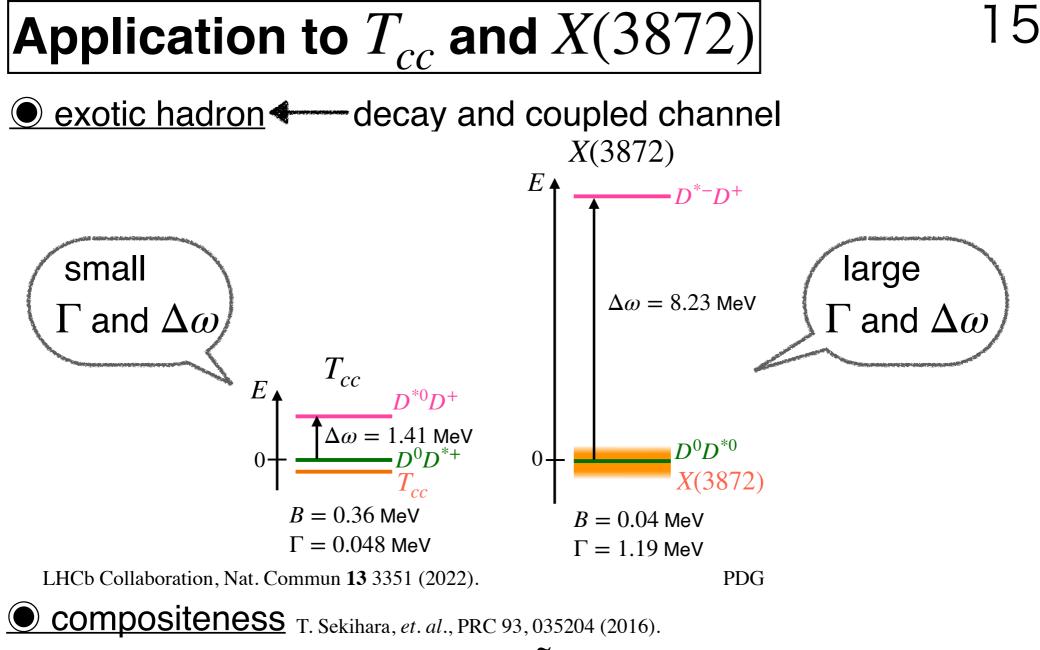


Effect of coupled channel

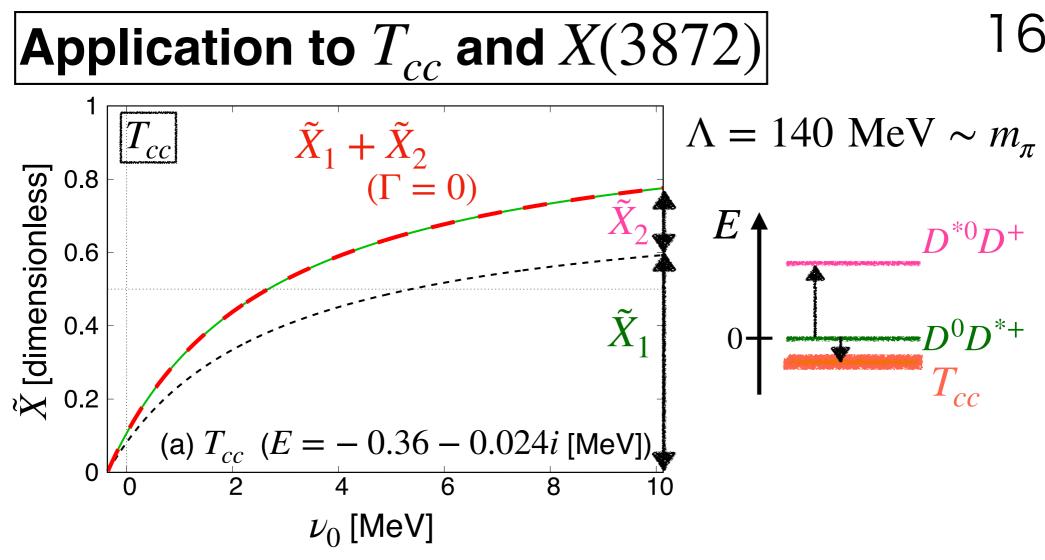


- X_1 is suppressed by channel coupling

: threshold ch. component (X_1) decreases with inclusion of coupled ch. component (X_2)







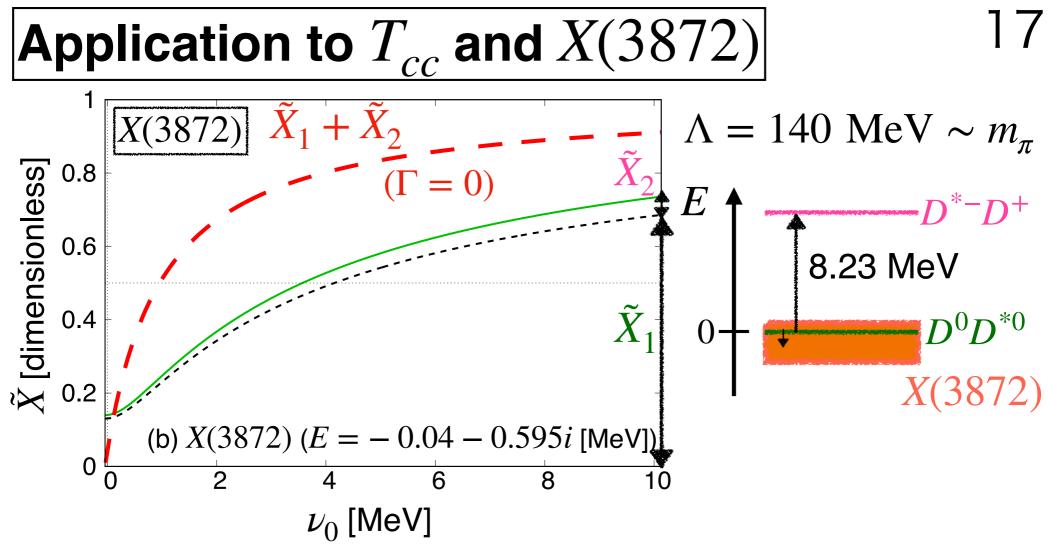
- \tilde{X}_2 is not negligible

 \therefore coupled ch. contribution (small $\Delta \omega$)

- difference of $\tilde{X}_1 + \tilde{X}_2 (\Gamma = 0)$ and $\tilde{X}_1 + \tilde{X}_2$ is too small

 $\Box \Gamma \ll B$

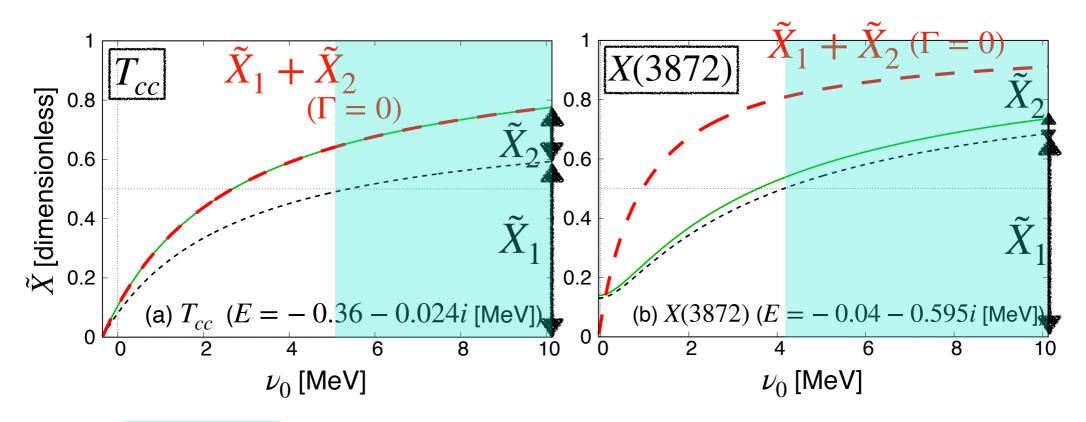
----> We can neglect decay contribution



- difference of $\tilde{X}_1 + \tilde{X}_2(\Gamma = 0)$ and $\tilde{X}_1 + \tilde{X}_2$ is large

- : large decay width contribution
- \tilde{X}_2 is much smaller than \tilde{X}_1
 - coupled ch. effect is small

Application to T_{cc} and X(3872)



- T_{cc} : $\tilde{X}_1 > 0.5$ for 45 % of ν_0 region

- X(3872) : $\tilde{X}_1 > 0.5$ for 59 % of ν_0 region
- coupled ch. effect is more important for T_{cc} than X(3872)
- decay effect is more important for X(3872) than T_{cc}

Summary T. Kinugawa and T. Hyodo arXiv:2303.07038 [hep-ph]

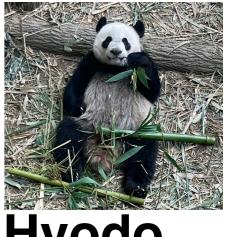
- internal structure of exotic hadrons compositeness
- model with bare state coupled to the scattering state
- shallow bound state is composite dominant even from bare state
 - : low-energy universality
- decay and coupled channel effects are introduced
- ----- both decay and coupled ch. effect suppress compositeness

- X of T_{cc} and X(3872) are calculated with decay and coupled ch. effects

T_{cc} : important coupled ch. effect with negligible decay effect *X*(3872) : important decay effect with negligible coupled ch. effect **→** non-composite state is realized without significant fine tuning

Compositeness of exotic hadrons with decay and coupled-channel effects

arXiv:2303.07038 [hep-ph]

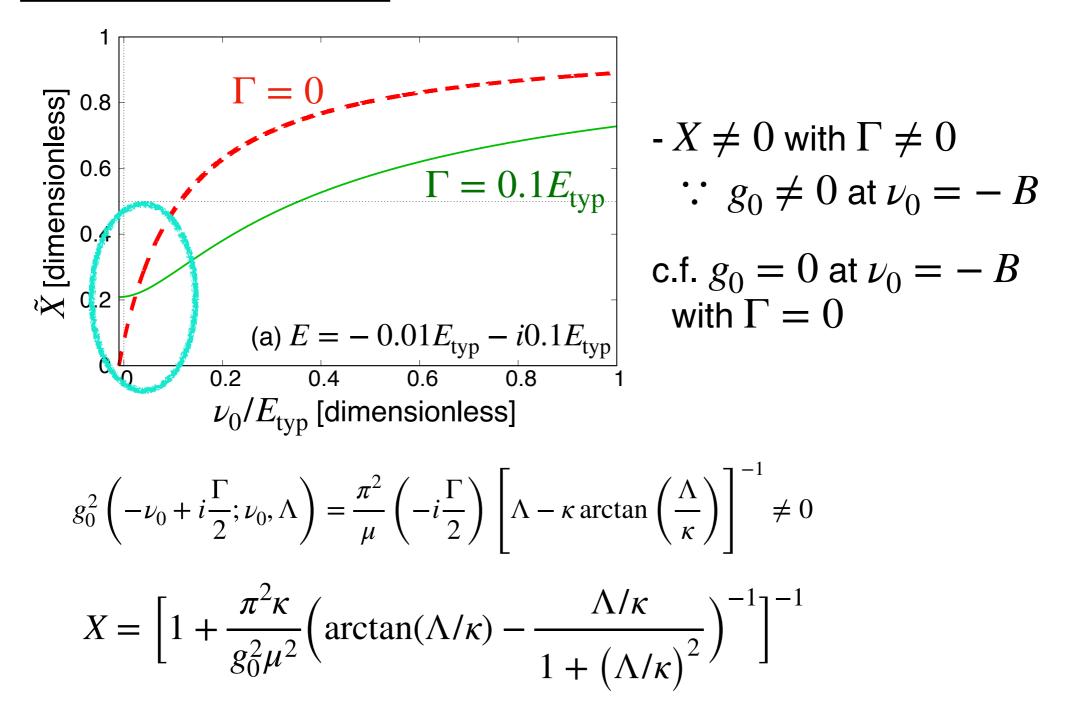


Tomona Kinugawa

Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University March. 16th, 3rd J-PARC HEF-ex WS

Effect of decay



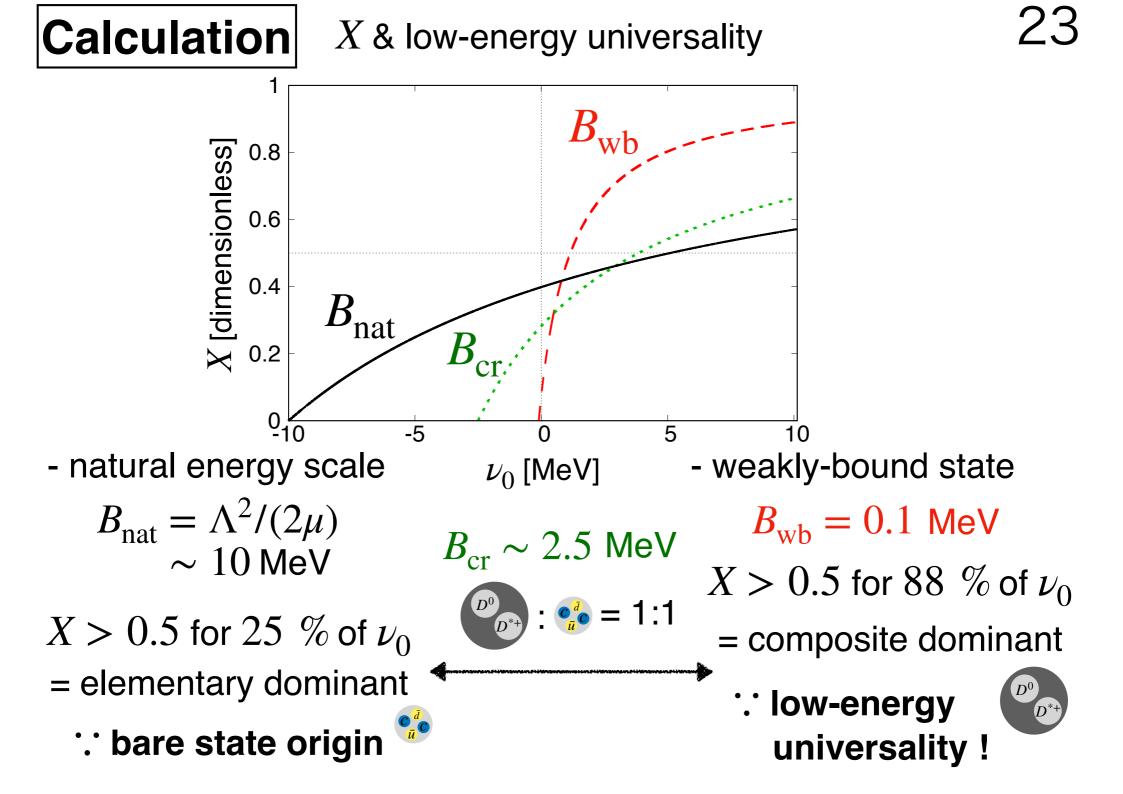
Compositeness for two-channel case

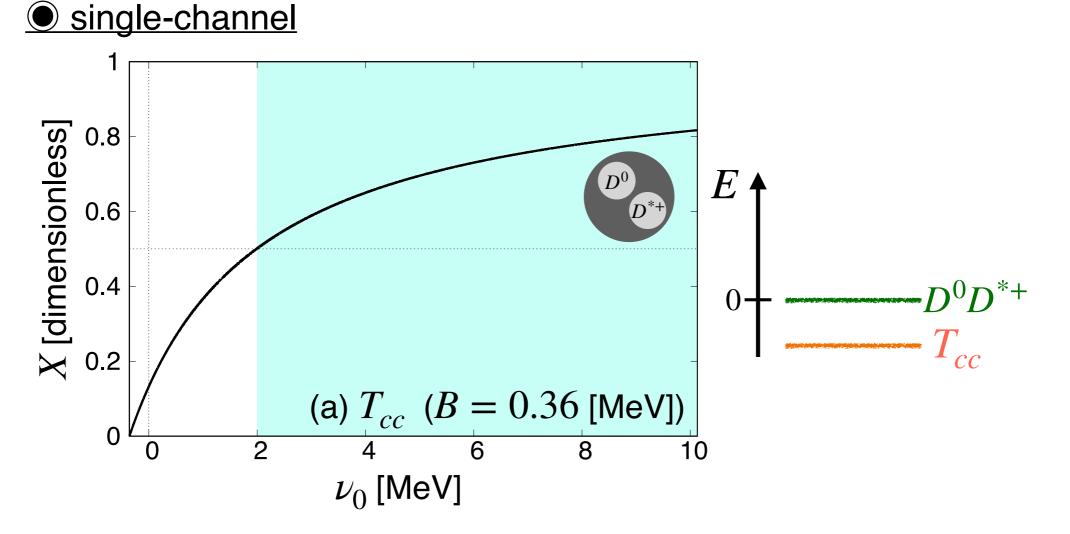
$$\begin{split} V(k) &= \begin{pmatrix} v(k) & v(k) \\ v(k) & v(k) \end{pmatrix}, \ v(k) &= \frac{g_0^2}{\frac{k^2}{2\mu_1} - \nu_0} \,. \\ G(k) &= \begin{pmatrix} G_1(k) & 0 \\ 0 & G_2(k) \end{pmatrix}, \quad G_1(k) &= -\frac{\mu_1}{\pi^2} \begin{bmatrix} \Lambda + ik \arctan\left(-\frac{\Lambda}{ik}\right) \end{bmatrix}, \\ G_2(k') &= -\frac{\mu_2}{\pi^2} \begin{bmatrix} \Lambda + ik \arctan\left(-\frac{\Lambda}{ik'}\right) \end{bmatrix}, \\ k &= \sqrt{2\mu_1 E}, \quad k'(k) &= \sqrt{2\mu_2 (E - \Delta \omega)} = \sqrt{\frac{\mu_2}{\mu_1} k^2 - 2\mu_2 \Delta \omega} \,. \end{split}$$

22

$$X_{1} = \frac{G_{1}'}{(G_{1}' + G_{2}') - [v^{-1}]'},$$

$$X_{2} = \frac{G_{2}'}{(G_{1}' + G_{2}') - [v^{-1}]'}.$$

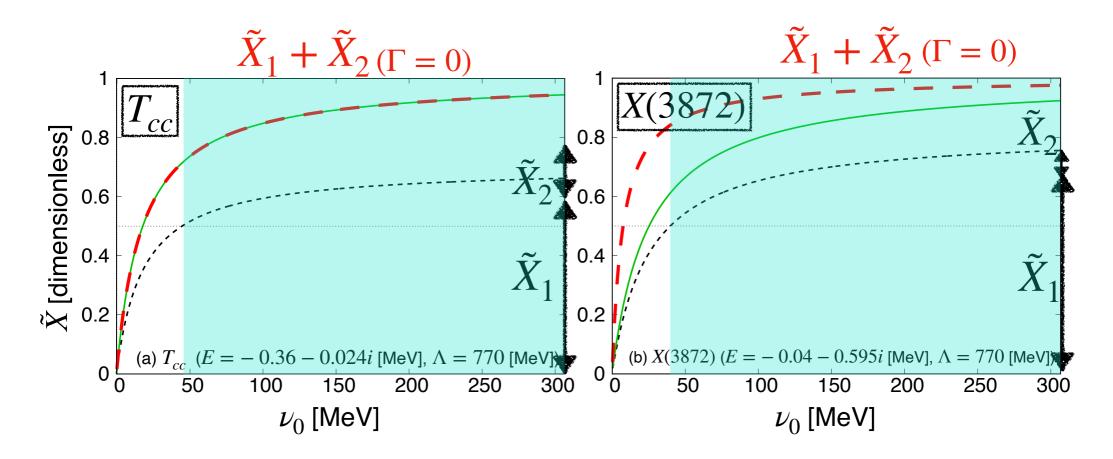




- X > 0.5 for 78 % of ν_0 = composite dominant

- fine tuning is necessary to realize X < 0.5

 T_{cc} and X(3872) with $\Gamma = 770$ MeV



25

- T_{cc} : $\tilde{X}_1 > 0.5$ for 85 % of ν_0 region - X(3872) : $\tilde{X}_1 > 0.5$ for 87 % of ν_0 region