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Weak-binding relation for bound state

a0 = R
2X

1 + X
+ 𝒪 (

Rtyp

R )

|Ψ⟩ = X |hadronic molecule⟩ + 1 − X |others⟩
Compositeness (weight of hadronic molecule)

Hadron wave function

(interaction range)Rtyp

S. Weinberg, Phys. Rev. 137, B672 (1965); Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017).
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Low-energy universality R = a0

Range correction

⇔ X = 1

a0 = R
2re/R

1 − (re/R − 1)2
= R 1 + 𝒪 ( re

R )  ⇒ a0 ≠ R

⇔ a0 = R

E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008), 0709.0499.

The range correction by introducing the effective range re

Properties of the effective range model: 

-Zero range limit:
-Single channel:  only|hadronic molecule⟩

Rtyp → 0

Renormalized scattering amplitude ( ):Rtyp → 0

⇒ a0 = R{ 2X
1 + X

+ 𝒪(
Rtyp

R )}

range correction in the weak-binding relation form re

a0 = R{ 2X
1 + X

+ 𝒪(
Rtyp

R )}
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Rtyp = max{Rint, Reff},

Reff = max{ |re | ,
|Ps |
R2

, ⋯} .

a0 = R{ 2X
1 + X

+ 𝒪(
Rtyp

R )}

Xl < Xexact < Xu
Xexact

Xexact

Effective range model ( )Rint ≠ 0

Improved weak-binding relation
interaction range:            Rtyp Rint

Redefinition of :Rtyp

It reduces to previous weak-binding relation for .Rtyp = Rint

Numerical calculation

Weak-binding relation works when…

Validity condition 
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Applicable region of weak-binding relations in  -  planeRint /a0 re/a0

Wigner bound

Only improved relation is 
applicable

Both relations are 
applicable 

Range correction enlarge the applicable region (I I+II).→

XexactNumerical calculation
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Application

Bound states other than  and H have larger Ds
3
Λ |re | > Rint

Range correction Rtyp = Reff

14

TABLE II. The summery of the properties of the bound states that we consider in this work. We estimate the compositeness of
the bound states with respect to the two-body channel of particles 1 and 2 with the masses m1 and m2. Shown are the binding
energy B measured form the threshold of the particles 1 and 2, the scattering length a0, the effective range re, the radius of
the bound state R = 1/

p
2µB and the interaction range Rint. u, mK and B.R. stand for the atomic mass unit, millikelvin and

the Bohr radius.

bound state particle 1 particle 2 m1 m2 B a0 re R Rint

d p n 938.3 MeV 939.6 MeV 2.22 MeV 5.42 fm 1.75 fm 4.32 fm 1.43 fm
X(3872) D0 D̄⇤0 1865 MeV 2010 MeV 0.018 MeV 28.5 fm �5.34 fm 33.4 fm 1.43 fm
D⇤

s0(2317) D K 1867 MeV 495.6 MeV 44.8 MeV 1.3 fm �0.1 fm 1.05 fm 0.359 fm
Ds1(2460) D⇤ K 2009 MeV 495.6 MeV 45.1 MeV 1.1 fm �0.2 fm 1.03 fm 0.359 fm

N⌦ dibaryon N ⌦ 955 MeV 1712 MeV 1.54 MeV 5.30 fm 1.26 fm 4.54 fm 0.676 fm
⌦⌦ dibaryon ⌦ ⌦ 1712 MeV 1712 MeV 1.6 MeV 4.6 fm 1.27 fm 3.77 fm 0.949 fm

3
⇤H d ⇤ 1876 MeV 1116 MeV 0.13 MeV 16.8 fm 2.3 fm 14.6 fm 4.32 fm

4
He dimer 4

He
4
He 4.003 u 4.003 u 1.30 mK 189 B.R. 13.8 B.R. 182.2 B.R. 10.2 B.R.

with the lattice QCD potential in Refs. [36, 37]. For 3
⇤H,

a0 and re are obtained in the framework of the effective
field theory in Ref. [43]. For the 4

He-4He interaction, the
realistic potential (LM2M2 potential) is available [44].
Here we use the values of a0 and re calculated with this
potential in Ref. [45].

The interaction range Rint is not an observable and
we determine it with the theoretical consideration of
the microscopic structure of the interaction. The in-
teraction range Rint for d and X(3872) is given by the
Compton wavelength of the pion because the pion ex-
change is possible in the pn and D0D̄⇤0 scatterings.
Similarly, the range of the DK and D⇤K interactions
for D⇤

s0(2317) and Ds1(2460) is estimated by the � me-
son exchange with m� ⇠ 550 MeV. The interaction
range of the N⌦ system is estimated by the longest
length scale Rint ⇠ 1/2mlat

⇡ in the HAL QCD potential
Vfit(r) = b1 exp[�b2r2] + b3(1� exp[�b4r2])n(e�mlat

⇡ r/r)2

with mlat
⇡ = 146 MeV in the lattice QCD calculation [36].

For the ⌦⌦ interaction, we obtain Rint by the largest
length scale Rint ⇠ d3 = 0.949 fm in the lattice QCD po-
tential Vfit(r) =

P
j=1,2,3 cj exp[�(r/dj)2] [37]. Because

of the short range nature of the ⇤N interaction, it is
expected that d interacts with ⇤ when ⇤ overlaps with
the density distribution of d. Therefore, the radius of d
is regarded as Rint of the d-⇤ interaction. The interac-
tion range of 4He dimer is estimated by the van der Waals
length Rint ⇠ lvdW = (mC6/~2)1/4, where C6 is obtained
by the potential at r ! 1 (V (r) ! C6/r6) in Ref. [46].
In Table II, we find that in all cases a0 is much larger
than |re| and Rint. This fact can be clearly seen by the
dimensionless quantities r̃e = re/a0 and R̃int = Rint/a0
whose magnitudes are much smaller than unity in Ta-
ble III. By introducing these dimensionless quantities,
the systems with the different length scales (hadron and
atomic systems) can be treated on the same footing.

TABLE III. The dimensionless effective range r̃e = re/a0 and
the dimensionless interaction range R̃int = Rint/a0 of the two-
body systems coupled with the bound state.

bound state r̃e R̃int

d 0.323 0.264
X(3872) �0.187 0.0501
D⇤

s0(2317) �0.077 0.28
Ds1(2460) �0.18 0.33

N⌦ dibaryon 0.238 0.128
⌦⌦ dibaryon 0.276 0.206

3
⇤H 0.137 0.257

4
He dimer 0.0730 0.0540

B. Comparison with applicable region of effective
range model

Before the estimation of the compositeness, we dis-
cuss the significance of the range correction to the weak-
binding relation by using the actual systems in Ta-
ble II. For this purpose, we use the applicable regions of
the weak-binding relations in the effective range model
(Fig. 3).
In Fig. 10, we compare the parameters listed in Ta-

ble III with the applicable regions in the effective range
model in the R̃int-r̃e plane. The dotted lines stand for
r̃e = ±R̃int. For the previous weak-binding relation (2),
the correction terms O(Rtyp/R) are always estimated
by Rtyp = Rint. On the other hand, for the improved
weak-binding relation with the range correction (27), we
adopt the largest length scale among Rint and Re↵ as
Rtyp. Hence, we find from Fig. 10 that Rtyp = Rint for
D⇤

s0(2317), Ds1(2460) and 3
⇤H but Rtyp = Re↵ for all

other states. This indicates that the range correction
plays an important role for some physical systems. In
fact, X(3872) is in the region where only the improved
weak-binding relation with the range correction is ap-

Low-energy universality holds ( )a0 > Rint

u: atomic mass unit, mK: millikelvin B.R.: Bohr Radius

- , : Compton wavelength of 
- : Compton wavelength of  (  MeV) 
- : lattice QCD [HAL QCD, Phys. Lett. B 792, 284 (2019)]
- : lattice QCD [S. Gongyo et al., Phys. Rev. Lett. 120 212001 (2018)]
- : Radius of  (  interaction range)
-  dimer: van der Waals length [Z.-C. Yan et al., Phys. Rev. A 54, 2824 (1996)]

d X(3872) π
Ds σ mσ ∼ 550
NΩ
ΩΩ
3
ΛH d d − Λ
4He

Determination of Rint
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 is contained 
in applicable region
for improved weak-binding 
relation (region II)

X(3872)

Estimated  by previous 
relation

 dibaryon : 
 

Xl

NΩ
Xl = 1.40 − 0.364 > 1

Range correction is important for  and .X(3872) NΩ
definition of  :X 0 ≤ X ≤ 1

Reff = Rint

Reff Rint

1

X 16

TABLE IV. The uncertainties ⇠e↵ , ⇠int, the estimated com-
positeness X and the length scale Rtyp in the improved weak-
binding relation. X(⇠e↵) (X(⇠int)) stands for X estimated
with ⇠e↵ (⇠int).

bound state ⇠e↵ ⇠int X(⇠e↵) X(⇠int) Rtyp

d 0.405 0.331 1.68+3.18
�0.943 1.68+2.14

�0.824 Re↵

X(3872) 0.160 0.0428 0.743+0.282
�0.213 0.743+0.0675

�0.0626 Re↵

D⇤
s0(2317) 0.0949 0.341 1.61+0.369

�0.288 1.61+2.09
�0.804 Rint

Ds1(2460) 0.192 0.345 1.12+0.540
�0.358 1.12+1.22

�0.566 Rint

N⌦ dibaryon 0.277 0.149 1.40+1.20
�0.600 1.40+0.523

�0.364 Re↵

⌦⌦ dibaryon 0.337 0.252 1.56+1.95
�0.773 1.56+1.22

�0.626 Re↵
3
⇤H 0.157 0.295 1.35+0.532

�0.366 1.35+1.25
�0.605 Rint

4
He dimer 0.0757 0.0560 1.08+0.177

�0.152 1.08+0.128
�0.114 Re↵

TABLE V. The compositeness X consistent with the defini-
tion (36) estimated by the improved weak-binding relation.

bound state compositenessX
d 0.74  X  1

X(3872) 0.53  X  1

D⇤
s0(2317) 0.81  X  1

Ds1(2460) 0.55  X  1

N⌦ dibaryon 0.80  X  1

⌦⌦ dibaryon 0.79  X  1

3
⇤H 0.74  X  1

4
He dimer 0.93  X  1

almost purely composite state with a small fraction of
the other components (. 7 %). On the other hand, the
compositeness of X(3872) and Ds1(2460) can be as low
as ⇠0.5, which is the boundary of the composite domi-
nance. Therefore, it is expected that the other compo-
nents would play a substantial role in these states. We
find that Eq. (36) gives a reasonable estimation of the
compositeness of the deuteron 0.74  X  1, indicat-
ing its composite nature. The compositeness of the N⌦

dibaryon is also meaningfully estimated thanks to the
range correction (28).

We compare our results with that of the previous
works focusing on the deuteron d, X(3872), D⇤

s0(2317)

and Ds1(2460). The pioneering work for d by Wein-
berg [9] concluded that d was the composite state while
the quantitative determination of the compositeness was
not given. In Ref. [47], the compositeness of d was quan-
titatively calculated as 1.68+2.15

�0.83 with the uncertainty es-
timation from the correction terms in the previous weak-
binding relation. This result corresponds to X(⇠int) in
Table IV. By taking the range correction into account ap-
propriately, we find the uncertainty band of the compos-
iteness of d, shown as X(⇠e↵) in Table IV, is larger than
that of Ref. [47]. In recent works [27–29], deuteron was
found to be composite dominant. In particular, Ref. [29]
concluded that values of X smaller than ⇠ 0.7 were very

implausible. Those results are qualitatively consistent
with our estimation 0.74  X  1.
The compositeness of D⇤

s0(2317) and Ds1(2460) are
discussed in Refs. [28, 29, 42]. For D⇤

s0(2317), Ref. [28],
Ref. [29] and Ref. [42] found that X > 0.6, X > 0.5
and X ⇠ 0.72, respectively. For Ds1(2460), Ref. [28] and
Ref. [42] found that 0.4 < X < 0.7 and X ⇠ 0.57, re-
spectively. Our results (0.81  X  1 for D⇤

s0(2317) and
0.55  X  1 for Ds1(2460)) are similar to the previous
works; D⇤

s0(2317) is relatively composite dominant, and
Ds1(2460) can contain appreciable amount of the non-
composite components. The quantitative difference of
the results of Ds1(2460) may be attributed to the large
uncertainty ⇠int = 0.345 which indicates that the bind-
ing energy of Ds1(2460) is not sufficiently small. We note
that the inputs a0 and re for the charmed-strange mesons
still have a large uncertainty, for instance a0(KD) =

+1.3±0.5±0.1 fm and re(KD) = �0.1±0.3±0.1 fm [42].
The structure of X(3872) was studied in the hybrid

model of cc̄ and hadronic molecules [48]. Assuming the
wavefunction of X(3872) as

|X(3872)i = c1 |cc̄i+ c2 |D0D̄⇤0i+ c3 |D+D⇤�i , (72)

they determined the coefficients ci from the compari-
son with the experiments which lead to �0.947  c2 
�0.871. Because the D0D̄⇤0 compositeness of X(3872)

corresponds to X = |c2|2, this result is interpreted as
0.759  X  0.897. Our model independent result
0.53  X  1 contains that of the model calculation [48],
as expected.

VI. SUMMARY

In this work, we have discussed the range correction
to the weak-binding relation for the systems with a large
effective range. We introduce an effective field theory to
deal with the bound states in various models. Based on
the effective range model in the zero range limit, we show
the necessity of the range correction in the weak-binding
relation. A prescription of the range correction is pre-
sented as the redefinition of Rtyp in the correction terms
as the maximum length scale among the interaction range
Rint and the length scale in the effective range expansion
Re↵ . This range correction results in the modification of
the uncertainty estimation of the compositeness, which
should be performed in conjunction with the definition
of the compositeness.
The applicability of the weak-binding relations has

been studied numerically with the effective range model
(X = 1) and the resonance model (X < 1). In both
cases, we show that the range correction improves the
weak-binding relation with the larger applicable region
than the previous one. We have also studied the preci-
sion of the estimation of X to calculate the magnitude of
the uncertainty Ē.
Finally, we study the compositeness of the actual

hadrons, nuclei and atomic states by the weak-binding

I
II
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- composite dominant : 0.5 < X

Uncertainty band of X

-  model calculationX(3872)
M. Takizawa and S. Takeuchi, PTEP 2013, 093D01 (2013), arXiv:1206.4877. 

|c2 |2 = X, 0.759 ≤ X ≤ 0.897

Consistent with the model calculation

1
X

0

は複合的な成分が支配的であるといえる。特に 4He dimerは、X の下限も他の系に比べ
て 1に近く、ほぼ複合的な成分であるといえる。一方 X(3872)は、X の下限が複合的か
そうでないかの分かれ目である 0.5 に近く、どちらかというと複合的な成分の方が多い
が、それ以外の成分もある程度混合しているといえる。
重陽子 dに対するWeinbergの研究 [18]では、定量的なX の評価は行わず、a0, Rint, R

の値から定性的に X ∼ 1と結論づけられていた。定量的な評価として、dの複合性は先
行研究 [55]において従来の弱束縛関係式を用いて 1.68+2.15

−0.83 と見積もられた。この結果と
X の定義を合わせると、0.85 ≤ X ≤ 1となる。本研究の結果 0.738 ≤ X ≤ 1と比較す
ると、どちらの結果も定性的に dが複合的であることを示している。dの系の有効レンジ
が相互作用距離より大きいことから、本研究の X の不定性は、レンジ補正により定量的
に先行研究のものより大きくなっている。このことから、レンジ補正を考慮しない先行研
究の結果は誤差を過小評価している可能性があるといえる。
　 X(3872)の内部構造に関するモデル計算 [56]では、X(3872)の波動関数を

|X(3872)〉 = c1 |cc̄〉+ c2 |D0D̄∗0〉+ c3 |D+D∗−〉 (5.5)

と仮定したときの c2 の範囲が −0.947 から −0.871 と得られた。c2 は |D0D̄∗0〉 の重
みなので、複合性 X は |c2|2 = X に対応する。文献 [56] のモデル計算の結果は、
0.759 ≤ X ≤ 0.897と解釈できるので、表 5.5の弱束縛関係式での見積もりと矛盾がない
結果といえる。

80

Application

16

TABLE IV. The uncertainties ⇠e↵ , ⇠int, the estimated com-
positeness X and the length scale Rtyp in the improved weak-
binding relation. X(⇠e↵) (X(⇠int)) stands for X estimated
with ⇠e↵ (⇠int).

bound state ⇠e↵ ⇠int X(⇠e↵) X(⇠int) Rtyp

d 0.405 0.331 1.68+3.18
�0.943 1.68+2.14

�0.824 Re↵

X(3872) 0.160 0.0428 0.743+0.282
�0.213 0.743+0.0675

�0.0626 Re↵

D⇤
s0(2317) 0.0949 0.341 1.61+0.369

�0.288 1.61+2.09
�0.804 Rint

Ds1(2460) 0.192 0.345 1.12+0.540
�0.358 1.12+1.22

�0.566 Rint

N⌦ dibaryon 0.277 0.149 1.40+1.20
�0.600 1.40+0.523

�0.364 Re↵

⌦⌦ dibaryon 0.337 0.252 1.56+1.95
�0.773 1.56+1.22

�0.626 Re↵
3
⇤H 0.157 0.295 1.35+0.532

�0.366 1.35+1.25
�0.605 Rint

4
He dimer 0.0757 0.0560 1.08+0.177

�0.152 1.08+0.128
�0.114 Re↵

TABLE V. The compositeness X consistent with the defini-
tion (36) estimated by the improved weak-binding relation.

bound state compositenessX
d 0.74  X  1

X(3872) 0.53  X  1

D⇤
s0(2317) 0.81  X  1

Ds1(2460) 0.55  X  1

N⌦ dibaryon 0.80  X  1

⌦⌦ dibaryon 0.79  X  1

3
⇤H 0.74  X  1

4
He dimer 0.93  X  1

almost purely composite state with a small fraction of
the other components (. 7 %). On the other hand, the
compositeness of X(3872) and Ds1(2460) can be as low
as ⇠0.5, which is the boundary of the composite domi-
nance. Therefore, it is expected that the other compo-
nents would play a substantial role in these states. We
find that Eq. (36) gives a reasonable estimation of the
compositeness of the deuteron 0.74  X  1, indicat-
ing its composite nature. The compositeness of the N⌦

dibaryon is also meaningfully estimated thanks to the
range correction (28).

We compare our results with that of the previous
works focusing on the deuteron d, X(3872), D⇤

s0(2317)

and Ds1(2460). The pioneering work for d by Wein-
berg [9] concluded that d was the composite state while
the quantitative determination of the compositeness was
not given. In Ref. [47], the compositeness of d was quan-
titatively calculated as 1.68+2.15

�0.83 with the uncertainty es-
timation from the correction terms in the previous weak-
binding relation. This result corresponds to X(⇠int) in
Table IV. By taking the range correction into account ap-
propriately, we find the uncertainty band of the compos-
iteness of d, shown as X(⇠e↵) in Table IV, is larger than
that of Ref. [47]. In recent works [27–29], deuteron was
found to be composite dominant. In particular, Ref. [29]
concluded that values of X smaller than ⇠ 0.7 were very

implausible. Those results are qualitatively consistent
with our estimation 0.74  X  1.
The compositeness of D⇤

s0(2317) and Ds1(2460) are
discussed in Refs. [28, 29, 42]. For D⇤

s0(2317), Ref. [28],
Ref. [29] and Ref. [42] found that X > 0.6, X > 0.5
and X ⇠ 0.72, respectively. For Ds1(2460), Ref. [28] and
Ref. [42] found that 0.4 < X < 0.7 and X ⇠ 0.57, re-
spectively. Our results (0.81  X  1 for D⇤

s0(2317) and
0.55  X  1 for Ds1(2460)) are similar to the previous
works; D⇤

s0(2317) is relatively composite dominant, and
Ds1(2460) can contain appreciable amount of the non-
composite components. The quantitative difference of
the results of Ds1(2460) may be attributed to the large
uncertainty ⇠int = 0.345 which indicates that the bind-
ing energy of Ds1(2460) is not sufficiently small. We note
that the inputs a0 and re for the charmed-strange mesons
still have a large uncertainty, for instance a0(KD) =

+1.3±0.5±0.1 fm and re(KD) = �0.1±0.3±0.1 fm [42].
The structure of X(3872) was studied in the hybrid

model of cc̄ and hadronic molecules [48]. Assuming the
wavefunction of X(3872) as

|X(3872)i = c1 |cc̄i+ c2 |D0D̄⇤0i+ c3 |D+D⇤�i , (72)

they determined the coefficients ci from the compari-
son with the experiments which lead to �0.947  c2 
�0.871. Because the D0D̄⇤0 compositeness of X(3872)

corresponds to X = |c2|2, this result is interpreted as
0.759  X  0.897. Our model independent result
0.53  X  1 contains that of the model calculation [48],
as expected.

VI. SUMMARY

In this work, we have discussed the range correction
to the weak-binding relation for the systems with a large
effective range. We introduce an effective field theory to
deal with the bound states in various models. Based on
the effective range model in the zero range limit, we show
the necessity of the range correction in the weak-binding
relation. A prescription of the range correction is pre-
sented as the redefinition of Rtyp in the correction terms
as the maximum length scale among the interaction range
Rint and the length scale in the effective range expansion
Re↵ . This range correction results in the modification of
the uncertainty estimation of the compositeness, which
should be performed in conjunction with the definition
of the compositeness.
The applicability of the weak-binding relations has

been studied numerically with the effective range model
(X = 1) and the resonance model (X < 1). In both
cases, we show that the range correction improves the
weak-binding relation with the larger applicable region
than the previous one. We have also studied the preci-
sion of the estimation of X to calculate the magnitude of
the uncertainty Ē.
Finally, we study the compositeness of the actual

hadrons, nuclei and atomic states by the weak-binding
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TABLE IV. The uncertainties ⇠e↵ , ⇠int, the estimated com-
positeness X and the length scale Rtyp in the improved weak-
binding relation. X(⇠e↵) (X(⇠int)) stands for X estimated
with ⇠e↵ (⇠int).

bound state ⇠e↵ ⇠int X(⇠e↵) X(⇠int) Rtyp

d 0.405 0.331 1.68+3.18
�0.943 1.68+2.14

�0.824 Re↵

X(3872) 0.160 0.0428 0.743+0.282
�0.213 0.743+0.0675

�0.0626 Re↵

D⇤
s0(2317) 0.0949 0.341 1.61+0.369

�0.288 1.61+2.09
�0.804 Rint

Ds1(2460) 0.192 0.345 1.12+0.540
�0.358 1.12+1.22

�0.566 Rint

N⌦ dibaryon 0.277 0.149 1.40+1.20
�0.600 1.40+0.523

�0.364 Re↵

⌦⌦ dibaryon 0.337 0.252 1.56+1.95
�0.773 1.56+1.22

�0.626 Re↵
3
⇤H 0.157 0.295 1.35+0.532

�0.366 1.35+1.25
�0.605 Rint

4
He dimer 0.0757 0.0560 1.08+0.177

�0.152 1.08+0.128
�0.114 Re↵

TABLE V. The compositeness X consistent with the defini-
tion (36) estimated by the improved weak-binding relation.

bound state compositenessX
d 0.74  X  1

X(3872) 0.53  X  1

D⇤
s0(2317) 0.81  X  1

Ds1(2460) 0.55  X  1

N⌦ dibaryon 0.80  X  1

⌦⌦ dibaryon 0.79  X  1

3
⇤H 0.74  X  1

4
He dimer 0.93  X  1

almost purely composite state with a small fraction of
the other components (. 7 %). On the other hand, the
compositeness of X(3872) and Ds1(2460) can be as low
as ⇠0.5, which is the boundary of the composite domi-
nance. Therefore, it is expected that the other compo-
nents would play a substantial role in these states. We
find that Eq. (36) gives a reasonable estimation of the
compositeness of the deuteron 0.74  X  1, indicat-
ing its composite nature. The compositeness of the N⌦

dibaryon is also meaningfully estimated thanks to the
range correction (28).

We compare our results with that of the previous
works focusing on the deuteron d, X(3872), D⇤

s0(2317)

and Ds1(2460). The pioneering work for d by Wein-
berg [9] concluded that d was the composite state while
the quantitative determination of the compositeness was
not given. In Ref. [47], the compositeness of d was quan-
titatively calculated as 1.68+2.15

�0.83 with the uncertainty es-
timation from the correction terms in the previous weak-
binding relation. This result corresponds to X(⇠int) in
Table IV. By taking the range correction into account ap-
propriately, we find the uncertainty band of the compos-
iteness of d, shown as X(⇠e↵) in Table IV, is larger than
that of Ref. [47]. In recent works [27–29], deuteron was
found to be composite dominant. In particular, Ref. [29]
concluded that values of X smaller than ⇠ 0.7 were very

implausible. Those results are qualitatively consistent
with our estimation 0.74  X  1.
The compositeness of D⇤

s0(2317) and Ds1(2460) are
discussed in Refs. [28, 29, 42]. For D⇤

s0(2317), Ref. [28],
Ref. [29] and Ref. [42] found that X > 0.6, X > 0.5
and X ⇠ 0.72, respectively. For Ds1(2460), Ref. [28] and
Ref. [42] found that 0.4 < X < 0.7 and X ⇠ 0.57, re-
spectively. Our results (0.81  X  1 for D⇤

s0(2317) and
0.55  X  1 for Ds1(2460)) are similar to the previous
works; D⇤

s0(2317) is relatively composite dominant, and
Ds1(2460) can contain appreciable amount of the non-
composite components. The quantitative difference of
the results of Ds1(2460) may be attributed to the large
uncertainty ⇠int = 0.345 which indicates that the bind-
ing energy of Ds1(2460) is not sufficiently small. We note
that the inputs a0 and re for the charmed-strange mesons
still have a large uncertainty, for instance a0(KD) =

+1.3±0.5±0.1 fm and re(KD) = �0.1±0.3±0.1 fm [42].
The structure of X(3872) was studied in the hybrid

model of cc̄ and hadronic molecules [48]. Assuming the
wavefunction of X(3872) as

|X(3872)i = c1 |cc̄i+ c2 |D0D̄⇤0i+ c3 |D+D⇤�i , (72)

they determined the coefficients ci from the compari-
son with the experiments which lead to �0.947  c2 
�0.871. Because the D0D̄⇤0 compositeness of X(3872)

corresponds to X = |c2|2, this result is interpreted as
0.759  X  0.897. Our model independent result
0.53  X  1 contains that of the model calculation [48],
as expected.

VI. SUMMARY

In this work, we have discussed the range correction
to the weak-binding relation for the systems with a large
effective range. We introduce an effective field theory to
deal with the bound states in various models. Based on
the effective range model in the zero range limit, we show
the necessity of the range correction in the weak-binding
relation. A prescription of the range correction is pre-
sented as the redefinition of Rtyp in the correction terms
as the maximum length scale among the interaction range
Rint and the length scale in the effective range expansion
Re↵ . This range correction results in the modification of
the uncertainty estimation of the compositeness, which
should be performed in conjunction with the definition
of the compositeness.
The applicability of the weak-binding relations has

been studied numerically with the effective range model
(X = 1) and the resonance model (X < 1). In both
cases, we show that the range correction improves the
weak-binding relation with the larger applicable region
than the previous one. We have also studied the preci-
sion of the estimation of X to calculate the magnitude of
the uncertainty Ē.
Finally, we study the compositeness of the actual

hadrons, nuclei and atomic states by the weak-binding

X̄u(ξ) = min{Xu(ξ),1},

X̄l(ξ) ≤ X ≤ X̄u(ξ)

X̄l(ξ) = max{Xl(ξ),0} .

Uncertainty band

estimated X



Conclusion

a0 = R{ 2X
1 + X

+ 𝒪(
Rtyp

R )}

- Improved weak-binding relation by redefinition of  :Rtyp

Rtyp = max{Rint, |re | , ⋯}

- Weak-binding relation : observable  compositeness (X)

- We study the range correction to weak-binding relation.

10

- We find the region where only the improved weak-binding 
relation can be applied.

- The range correction is important for the reasonable estimation 
of .X

T. Kinugawa, T. Hyodo, arXiv:2205.08470[hep-ph] 
accepted in Phys. Rev. C
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Numerical calculation a0 = R{ 2X
1 + X

+ 𝒪(
Rtyp

R )}
When dose the weak-binding relation work?

Xupper(ξ) =
a0/R

2 − a0/R
+ ξ, Xlower(ξ) =

a0/R
2 − a0/R

− ξ .

Xc =
a0/R

2 − a0/R

Estimation with correction terms :(ξ ≡ Rtyp/R) Y. Kamiya and T. Hyodo, PTEP 
2017, 023D02 (2017).

Central value:

Weak-binding relation works when…
Xlower < Xexact < Xupper

Validity condition

Xexact
Xexact
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Numerical calculation

-  (range correction):re ≠ 0

1/f(k = i/R) = 0

Effective range model ( )Rint ≠ 0

 (two length scales  and )f(k; λ0, ρ0, Λ) = [−
1
a0

+
re

2
k2 + 𝒪( Rint

R ) − ik]
−1

re Rint

- :Rint ≠ 0  . ξint = Rint /R

 (effective range model)re < 0
 ξre

= |re/R |

We search for the region of  and  
in which validity condition are satisfied.

re Rint

- Xexact = 1

Uncertainty from re

Uncertainty from Rint
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Uncertainty band  in  -  planeĒ Rint /a0 re/a0

Precision of X

Ē = X̄u − X̄l, X̄u = min{Xu,1}, X̄l = max{Xl,0},

Precision of  estimated by the weak-binding relations ?X

Uncertainty band Ē

We require  for meaningful estimationĒ ≲ 0.5

9
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FIG. 4. The magnitude of the uncertainty Ē by ⇠e↵ (panel (a)) and by ⇠int (panel (b)) in the R̃int-r̃e plane. The solid lines
express the Wigner bound, and the dashed lines express the boundary of the applicable region of the previous weak-binding
relation.
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FIG. 5. The magnitude of the uncertainty for the weak-
binding relation (Ē by ⇠e↵ in the |r̃e| > R̃int region, and
by ⇠int in the |r̃e| < R̃int region) in the R̃int-r̃e plane. The
solid lines express the Wigner bound, and the dashed lines
express the boundary of the applicable region of the previous
weak-binding relation. The dotted lines stand for r̃e = ±R̃int.

0.25 . R̃int . 0.4 region, the boundary for the mean-
ingful estimation is contained in the �R̃int < r̃e < R̃int

region and depends on both r̃e and R̃int. The reason for
this behavior was discussed above for Ē estimated by ⇠int.
In the R̃int & 0.4 region, Ē is always larger than 0.5 and
we cannot estimate X meaningfully because the interac-
tion range is not negligible in comparison with the scat-
tering length. We conclude that the internal structure
can safely be determined by the weak-binding relation in
the �0.25 . r̃e . 0.25 and R̃int . 0.25 region.

C. Resonance model

In the previous section, we consider the applicable re-
gion of the weak-binding relations in the effective range
model (⇢0 6= 0 and g0 = 0) as a representative example
with the exact value of the compositeness Xexact = 1. In
this section, we also discuss the case with Xexact < 1,
the resonance model (⇢0 = 0 and g0 6= 0) with the finite
cutoff ⇤, introduced in Sec. II. As in Sec. IVB two kinds

of the uncertainties (⇠e↵ and ⇠int) are considered in this
model because of the finite effective range (12).
The physical quantities are determined from the cutoff

⇤ and three bare parameters g0,�0 and ⌫0 in this model.
To reduce the number of the independent parameters, as
in the effective range model, we introduce the dimension-
less parameters in the units of the scattering length a0
and the boson mass m:

g̃20 = m2a0g
2
0 , (48)

�̃0 =
�0a0
m

, (49)

⌫̃0 = ma20⌫0, (50)

R̃ =
R

a0
, (51)

⇤̃ = a0⇤, (52)

where R̃ is determined by the pole condition of the scat-
tering amplitude
 ✓

1� 2

⇡
⇤̃

◆�1

+
1

8⇡

g̃20
⌫̃0

+
1

8⇡

g̃20
�R̃�2 � ⌫̃0

!�1

+
2

⇡
⇤̃� 1

R̃
= 0. (53)

We rewrite Eqs. (11) and (12) with the dimensionless
parameters:

1 =

"
8⇡

✓
�̃0 �

g̃20
⌫̃0

◆�1

+
2

⇡
⇤̃

#�1

, (54)

r̃e = �16⇡g̃20
⌫̃20

✓
�̃0 �

g̃20
⌫̃0

◆�2

. (55)

By eliminating �̃0 with using Eq. (54), the dimensionless
effective range r̃e becomes:

r̃e = � 1

4⇡

g̃20
⌫̃20

✓
1� 2

⇡
⇤̃

◆2

. (56)
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FIG. 10. Comparison of the bound states with the applicable
regions in the effective range model in the R̃int-r̃e plane. The
legends are the same as Fig. 3.
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FIG. 11. Comparison of the bound states with the distribu-
tion of the magnitude of the uncertainty Ē in the effective
range model in the R̃int-r̃e plane. The legends are the same
as Fig. 5.

plicable. Therefore, the previous relation may fail to
estimate the compositeness of X(3872), and we should
use the improved relation for the reasonable estimation.
In addition, because N⌦ dibaryon and 4He dimer lie
close to the applicable boundary of the previous weak-
binding relation, it is also expected that the range cor-
rection is quantitatively important for these states. We
should however keep in mind that the applicable region
in Fig. 10 is the result of the specific model (the effective
range model) and the applicable boundaries are model
dependent.

For the discussion of the meaningful estimation, we
plot the parameters in Table III in comparison with
the magnitude of the uncertainty Ē in R̃int-r̃e plane in
Fig. 11. Because all the states are contained in the region
Ē . 0.5, we expect that meaningful estimations of the
compositeness is possible for these states.

C. Estimation of compositeness

We now estimate the compositeness X of the bound
states listed in Table II. We summarize the estimated
uncertainties ⇠e↵ = |re|/R and ⇠int = Rint/R in Table IV.
Here, we set Re↵ = |re| assuming that the coefficients of
the higher order terms in the effective range expansion
are of natural size. We then show the estimated compos-
iteness with the uncertainty band with ⇠e↵ (X(⇠e↵)) and
⇠int (X(⇠int)) in Table IV. In the last column we also
show Rtyp in the improved weak-binding relation (28).
We can see that the central values of the compositeness

Xc are larger than unity except for X(3872) in Table IV.
This is because the radius R is smaller than the scattering
length a0 in these states. As we discussed in Sec. III A,
Xc is larger than unity for a0 > R. The relation between
a0 and R is also approximately determined by the sign
of re. Neglecting the O(k4) terms in the effective range
expansion, we obtain Eq. (22):

a0 = R
1

�re/(2R) + 1
. (71)

Because R > 0, we obtain a0 > R for positive re > 0,
and a0 < R for negative re < 0 from this equation. In
fact, in Table II, these relations are satisfied except for
D⇤

s0(2317) and Ds1(2460) with the small effective range.
In summary, the central value of the compositeness is
larger than unity for a0 > R, which is expected to be
realized with positive re > 0 when the relation (71) ap-
proximately holds.
One may wonder that the central value Xc > 1 contra-

dicts with the definition of the compositeness 0  X  1.
In fact, this problem for the deuteron partly motivates
the works in Refs. [27–29]. From our viewpoint, this
problem can be avoided by considering the uncertainty ⇠
as in Eq. (36) as discussed below.
Focusing on the N⌦ dibaryon, we find that the lower

limit of the compositeness estimated by ⇠int is lager than
unity (Xl(⇠int) = 1.04) from Table IV. Hence, the exact
value of the compositeness of theN⌦ dibaryon is not con-
tained in the uncertainty band of X(⇠int), and we cannot
perform the meaningful estimation of the compositeness
of the N⌦ dibaryon with the previous weak-binding re-
lation (Rtyp = Rint). In fact, we have seen that the N⌦

dibaryon exists near the boundary of the applicable re-
gion of the previous weak-binding relation in the effective
range model as shown in Fig. 10.
In the improved weak-binding relation with Eq. (27),

we calculate compositeness with the uncertainty band as
X(⇠e↵) (X(⇠int)) for Rtyp = Re↵ (Rtyp = Rint). From
the last column, we see that X(⇠int) is adopted for the
states D⇤

s0(2317), Ds1(2460) and 3
⇤H, and X(⇠e↵) for

other states. By taking the region consistent with the
definition 0  X  1 in Eq. (36), we finally determine
the compositeness X as shown in Table V.
These results (0.5  X  1) indicate that the com-

posite component gives the largest fraction in the wave-
function for all states. In particular, 4

He dimer is an



Another numerical calculation
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X<1_regions_-0p5.pdfApplicable region of the weak-binding relations 
( )ma2

0ν0 = − 0.5

Resonance model ( )Xexact ≤ 1

X−1
exact = 1 + 16πκ

g2
0

{(−κ2 − ν0)( 8π
1 − 2

π Λ
+

g2
0

ν0 ) − g2
0}

2 ,

15

f(k)−1 = −
8π
m (λ0 +

g2
0

E − ν0 )
−1

−
2
π

Λ − ik,

re = −
16πg2

0

m2ν2
0 (−

g2
0

ν0
+ λ0)

−2

< 0 (Wigner bound)


