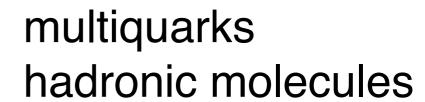
Weak-binding relation in the zero range limit

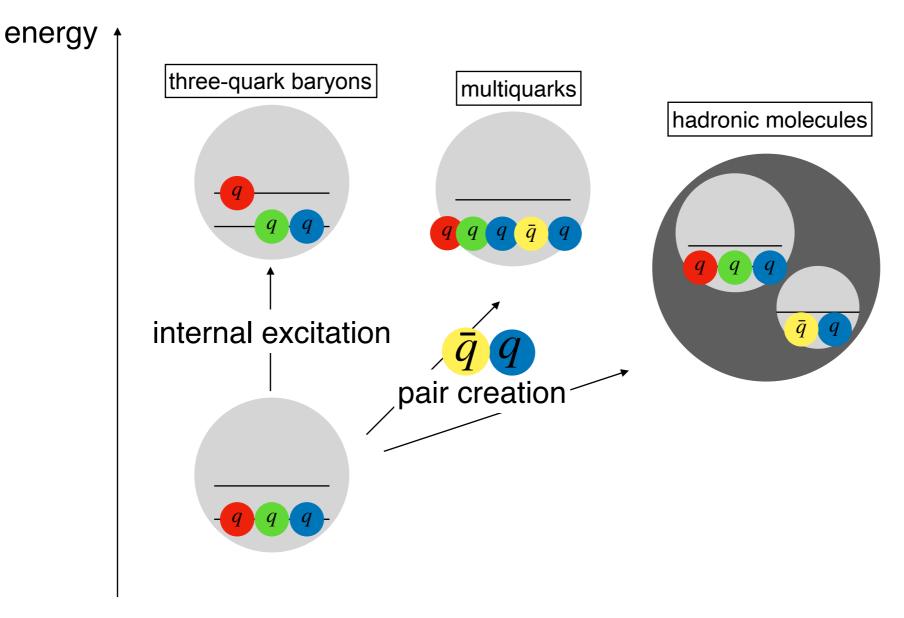
Tomona Kinugawa Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University March 9th 2021 HIN 2020

Background

candidates for exotic hadrons $\Lambda(1405)$, XYZ meson etc...



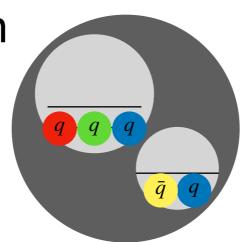


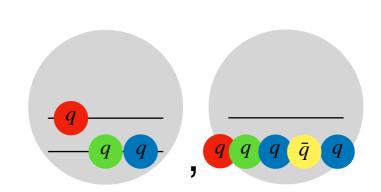
structure of hadrons

observable

Previous work

Hadron wave function





$$|\Psi\rangle = \sqrt{X}|\text{hadronic molecule}\rangle + \sqrt{1-X}|\text{others}\rangle$$

Compositeness (weight of hadronic molecule)

Weak-binding relation

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}$$

 a_0 (scattering length) $a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}$ $R \equiv (2\mu B)^{-1/2}, B \text{ (binding energy)}$ $R_{\text{typ}} = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}$

When $R \gg R_{\text{typ}}$: observable (a_0, B) compositeness(X)

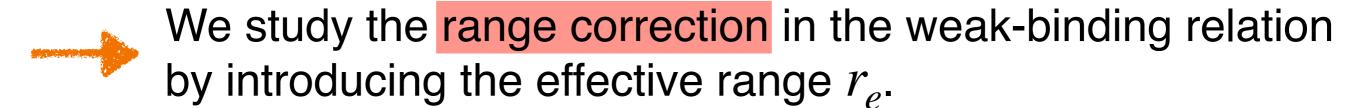
S. Weinberg, Phys. Rev. 137, B672 (1965); Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017).

Motivation

Weak-binding relation
$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}$$

Low-energy universality
$$a_0 = R \ (R \to \infty)$$

- -Deviation by contributions from other channels $-X \neq 1$
- -Deviation by interaction range $-R_{typ} \neq 0$



Effective range model

E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008), 0709.0499.

Single channel scattering of identical bosons with mass m:

$$\mathcal{H}_{\text{int}} = \frac{1}{4} \lambda_0 (\psi^{\dagger} \psi)^2 + \frac{1}{4} \rho_0 \nabla (\psi^{\dagger} \psi) \cdot \nabla (\psi^{\dagger} \psi)$$

Off-shell T-matrix:

$$T(E, k, k') = T_1(E) + T_2(E)(k^2 + k'^2) + T_3(E)k^2k'^2,$$

$$\begin{pmatrix} T_1 & T_2 \\ T_2 & T_3 \end{pmatrix} = -i \begin{pmatrix} \lambda_0 & \rho_0 \\ \rho_0 & 0 \end{pmatrix} -i \begin{pmatrix} \lambda_0 & \rho_0 \\ \rho_0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \int \frac{d^3q}{(2\pi)^2} \frac{i}{E - q^2/m + i0^+} & \frac{1}{2} \int \frac{d^3q}{(2\pi)^2} \frac{iq^2}{E - q^2/m + i0^+} \\ \frac{1}{2} \int \frac{d^3q}{(2\pi)^2} \frac{iq^2}{E - q^2/m + i0^+} & \frac{1}{2} \int \frac{d^3q}{(2\pi)^2} \frac{iq^4}{E - q^2/m + i0^+} \end{pmatrix} \begin{pmatrix} T_1 & T_2 \\ T_2 & T_3 \end{pmatrix}.$$

cut off at Λ Typical range $R_{\rm typ} \sim 1/\Lambda$

On-shell scattering amplitude:

$$f(k) = \left[-\frac{8\pi}{m} \frac{\left(1 + \frac{m}{12\pi^2} \Lambda^3 \rho_0\right)^2}{N(k)} - \frac{2}{\pi} \Lambda - ik \right]^{-1}, N(k) = \left[\lambda_0 - \frac{m}{20\pi^2} \Lambda^5 \rho_0^2 \right] + 2\rho_0 \left(\frac{m}{24\pi^2} \Lambda^3 \rho_0 + 1 \right) k^2.$$

Effective range model

E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008), 0709.0499.

We obtain the scattering length a_0 and effective range r_e from low-energy behavior of $f(k; \lambda_0, \rho_0, \Lambda)$.

$$a_0 = a_0(\lambda_0, \rho_0, \Lambda), \ r_e = r_e(\lambda_0, \rho_0, \Lambda).$$

 a_0 and r_e are the functions of the bare parameters and Λ .

Renormalization:

the bare parameters λ_0 , ρ_0 are adjusted as functions of Λ so that a_0 and r_e are independent of Λ .

$$f(k) = \left[-\frac{1}{a_0} + \frac{r_e}{2}k^2 + \mathcal{O}\left(\frac{1}{\Lambda}\right) - ik \right]^{-1}$$

$$\rightarrow \left[-\frac{1}{a_0} + \frac{r_e}{2}k^2 - ik \right]^{-1} \quad (\Lambda \to \infty)$$

Zero range limit

Effective range model

Properties of the effective range model:

- -Single channel: | hadronic molecule \rangle only $\Leftrightarrow X = 1$
- -Zero range limit: $\Lambda \to \infty \Leftrightarrow R_{\rm typ} = 1/\Lambda \to 0$

$$\Rightarrow a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\} \to R ?$$

Renormalized scattering amplitude ($\Lambda \to \infty$):

$$1/f(k=i/R)=0$$

$$a_0 = R \frac{2r_e/R}{1 - (r_e/R - 1)^2} = R \left[1 + \mathcal{O}\left(\left| \frac{r_e}{R} \right| \right) \right] \Rightarrow a_0 \neq R$$

range correction in the weak-binding relation form r_e

Improved weak-binding relation

Weak-binding relation
$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}$$

interaction range: $R_{\rm typ} \rightarrow R_{\rm int} \sim 1/\Lambda$

Redefinition of $R_{\rm typ}$:

$$R_{\text{typ}} = \max\left\{R_{\text{int}}, R_{\text{eff}}\right\},$$

$$R_{\text{eff}} = \max\left\{\left|r_e\right|, \frac{\left|P_s\right|}{R^2}, \cdots\right\}.$$

$$f(k) = \left[-\frac{1}{a_0} + \frac{r_e}{2}k^2 - \frac{P_s}{4}k^4 + \cdots - ik\right]^{-1}$$

Length scale in the effective range expansion except for a_0

Weak-binding relation
$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}$$

Estimation with correction terms ($\xi \equiv R_{\rm typ}/R$): Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017).

Central value:
$$X_c = \frac{a_0/R}{2 - a_0/R}$$

$$X_{\text{upper}}(\xi) = \frac{a_0/R + \xi}{2 - a_0/R - \xi}, X_{\text{lower}}(\xi) = \frac{a_0/R - \xi}{2 - a_0/R + \xi}.$$

Weak-binding relation works when...

$$\begin{cases} X_{\rm lower} < X_{\rm exact} < X_{\rm upper} \\ & \quad \text{Validity condition} \\ (X_{\rm upper} - X_c)/X_c < 0.1 \text{ and } (X_c - X_{\rm lower})/X_c < 0.1 \\ & \quad \text{Precision condition} \end{cases}$$

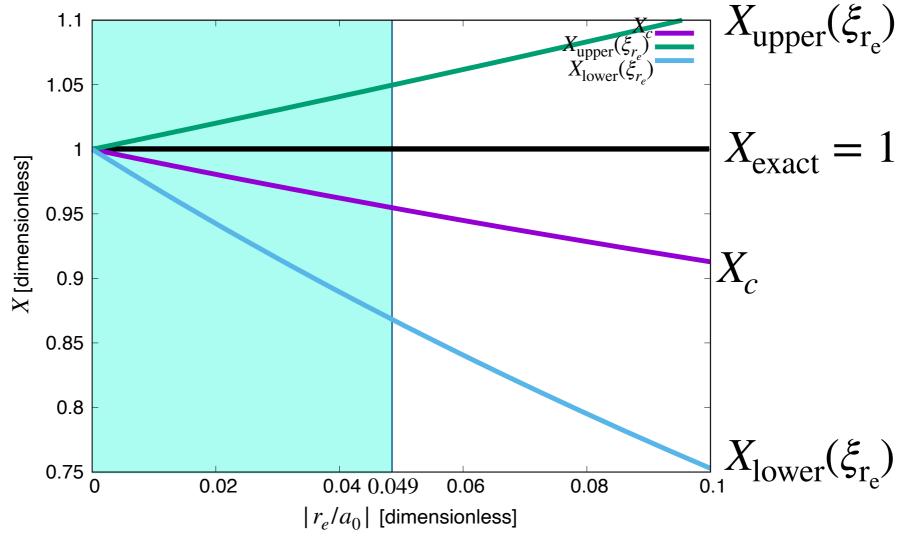
Effective range model ($\Lambda < \infty$)

$$f(k;\lambda_0,\rho_0,\Lambda) = \left[-\frac{1}{a_0} + \frac{r_e}{2}k^2 + \mathcal{O}\Big(R_{\rm int}\Big) - ik\right]^{-1} \text{(two length scales } r_e \text{ and } R_{\rm int}\text{)}$$

$$1/f(k=i/R) = 0$$

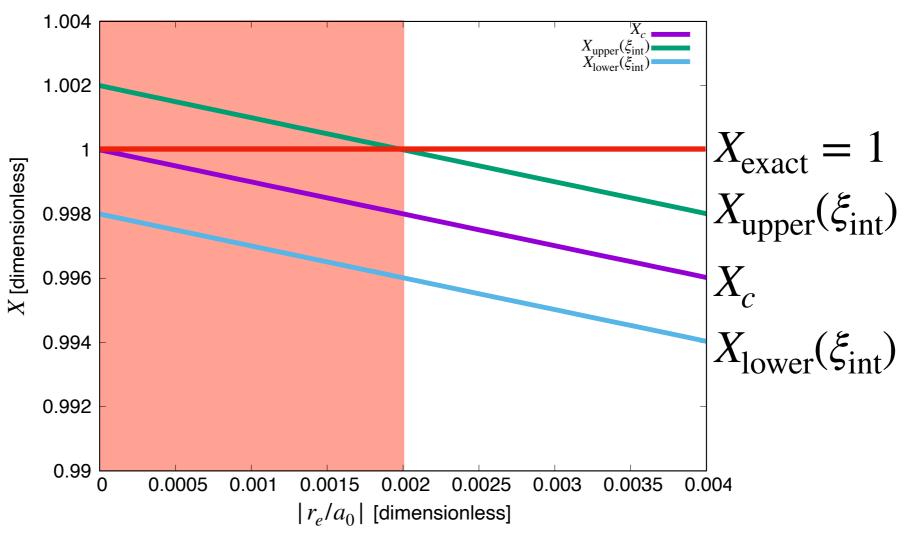
- $r_e \neq 0$ (range correction): $\xi_{r_e} = |r_e/R|$ Uncertainty from r_e $r_e < 0$ (effective range model)
- $R_{\rm int} = 1/\Lambda \neq 0$: $\xi_{\rm int} = R_{\rm int}/R$. Uncertainty from $R_{\rm int}$
- $-X_{\text{exact}} = 1$
- We search for the regions of r_e and $R_{\rm int}$ in which validity and precision conditions are satisfied.

Estimated X_c and uncertainty from r_e ($R_{\rm int} = a_0/1000$)



- $-X_{\rm exact} = 1$ is always contained.
- The validity condition is always satisfied.
- -The uncertainty is smaller than 10 % when $|r_e| \lesssim 0.049a_0$.
- The precision condition is satisfied in this region.

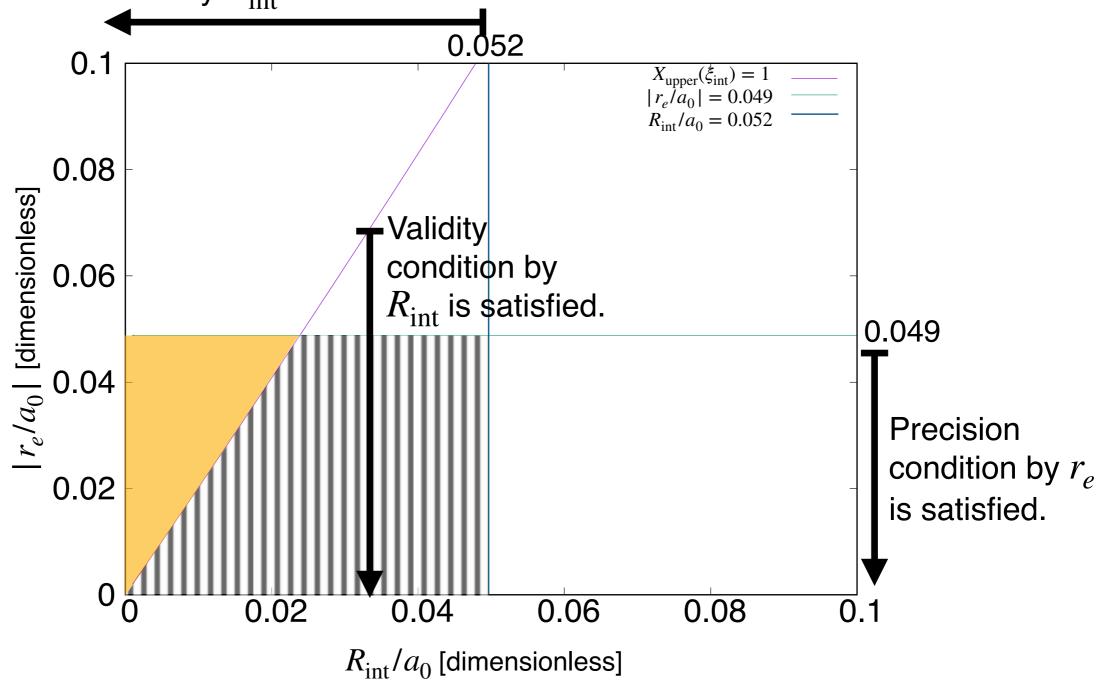
Estimated X_c and uncertainty from $R_{\rm int}$ ($R_{\rm int} = a_0/1000$)



- $-X_{\rm exact}=1$ is contained in $|r_e|\lesssim 0.002a_0$. The validity condition is satisfied in this region.
- Uncertainty from R_{int} is not sensitive to $\lceil r_e/a_0 \rceil$.

Validity and precision conditions in $R_{\rm int}/a_0$ - $|r_e/a_0|$ plane

Precision condition by $R_{\rm int}$ is satisfied.



Only the improved weak-binding relation can be applied.

Conclusion and future prospect

- Weak-binding relation : observable — compositeness (X)

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}$$

- We study the range correction in weak-binding relation from r_e .
- Improved weak-binding relation by redefinition of $R_{
 m typ}$:

$$R_{\text{typ}} = \max\left\{R_{\text{int}}, R_{\text{eff}}\right\}, \quad R_{\text{eff}} = \max\left\{|r_e|, \cdots\right\}$$

- Numerical calculations : effective range model ($\Lambda < \infty$)
 - There is the region where only the improved weak-binding relation can be applied.
- Apply the improved relation to hadron systems.