Weak-binding relation in the zero range limit

Department of Physics, Tokyo Metropolitan University

School for "Clustering as a window on the hierarchical structure of quantum systems" March 24th 2021

Previous work

Hadron wave function

 $|\Psi\rangle = \sqrt{X} |\text{hadronic molecule}\rangle + \sqrt{1 - X} |\text{others}\rangle$ Compositeness (weight of hadronic molecule)

Weak-binding relation

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}$$

 a_0 (scattering length) $R \equiv (2\mu B)^{-1/2}$, *B* (binding energy) R_{typ} (interaction range)

When $R \gg R_{typ}$: observable (a_0, B) compositeness(X)

S. Weinberg, Phys. Rev. 137, B672 (1965); Y. Kamiya and T. Hyodo, PTEP 2017, 023D02 (2017).

Motivation

Weak-binding relation
$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{typ}}{R}\right)\right\}$$

Low-energy universality
$$\rightarrow a_0 = R \ (R \rightarrow \infty)$$

-Deviation by contributions from other channels $4 - X \neq 1$ -Deviation by interaction range $4 - R_{typ} \neq 0$

We study the range correction in the weak-binding relation by introducing the effective range r_e .

Effective range model

E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008), 0709.0499.

Single channel scattering of identical bosons with mass m:

$$\mathcal{H}_{\text{int}} = \frac{1}{4} \lambda_0 (\psi^{\dagger} \psi)^2 + \frac{1}{4} \rho_0 \nabla(\psi^{\dagger} \psi) \cdot \nabla(\psi^{\dagger} \psi)$$

Off-shell T-matrix:

 $T(E, k, k') = T_1(E) + T_2(E)(k^2 + k'^2) + T_3(E)k^2k'^2,$

$$\begin{pmatrix} T_{1} & T_{2} \\ T_{2} & T_{3} \end{pmatrix} = -i \begin{pmatrix} \lambda_{0} & \rho_{0} \\ \rho_{0} & 0 \end{pmatrix} - i \begin{pmatrix} \lambda_{0} & \rho_{0} \\ \rho_{0} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \int \frac{d^{3}q}{(2\pi)^{2}} \frac{i}{E - q^{2}/m + i0^{+}} & \frac{1}{2} \int \frac{d^{3}q}{(2\pi)^{2}} \frac{iq^{2}}{E - q^{2}/m + i0^{+}} \\ \frac{1}{2} \int \frac{d^{3}q}{(2\pi)^{2}} \frac{iq^{2}}{E - q^{2}/m + i0^{+}} & \frac{1}{2} \int \frac{d^{3}q}{(2\pi)^{2}} \frac{iq^{4}}{E - q^{2}/m + i0^{+}} \end{pmatrix} \begin{pmatrix} T_{1} & T_{2} \\ T_{2} & T_{3} \end{pmatrix}$$

$$\begin{array}{c} \text{cut off at } \Lambda \\ \text{Typical range } R_{\text{typ}} \sim 1/\Lambda \end{array}$$

On-shell scattering amplitude:

$$f(k) = \left[-\frac{8\pi}{m} \frac{\left(1 + \frac{m}{12\pi^2} \Lambda^3 \rho_0\right)^2}{N(k)} - \frac{2}{\pi} \Lambda - ik \right]^{-1}, N(k) = \left[\lambda_0 - \frac{m}{20\pi^2} \Lambda^5 \rho_0^2 \right] + 2\rho_0 \left(\frac{m}{24\pi^2} \Lambda^3 \rho_0 + 1 \right) k^2$$

Effective range model

E. Braaten, M. Kusunoki, and D. Zhang, Annals Phys. 323, 1770 (2008), 0709.0499.

We obtain the scattering length a_0 and effective range r_e from low-energy behavior of $f(k; \lambda_0, \rho_0, \Lambda)$.

$$b \quad a_0 = a_0(\lambda_0, \rho_0, \Lambda), \ r_e = r_e(\lambda_0, \rho_0, \Lambda).$$

 a_0 and r_e are the functions of the bare parameters and Λ .

Renormalization:

the bare parameters λ_0 , ρ_0 are adjusted as functions of Λ so that a_0 and r_e are independent of Λ .

$$f(k) = \left[-\frac{1}{a_0} + \frac{r_e}{2}k^2 + \mathcal{O}\left(\frac{1}{\Lambda}\right) - ik \right]^{-1}$$
$$\rightarrow \left[-\frac{1}{a_0} + \frac{r_e}{2}k^2 - ik \right]^{-1} \quad (\Lambda \to \infty)$$
$$\text{Zero range limit}$$

Effective range model

Properties of the effective range model:

- -Single channel: | hadronic molecule \rangle only $\Leftrightarrow X = 1$
- -Zero range limit: $\Lambda \to \infty \Leftrightarrow R_{\text{typ}} = 1/\Lambda \to 0$ $\Rightarrow a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\} \to R$?

Renormalized scattering amplitude ($\Lambda \rightarrow \infty$): 1/f(k = i/R) = 0

$$a_0 = R \frac{2r_e/R}{1 - (r_e/R - 1)^2} = R \left[1 + \mathcal{O}\left(\left| \frac{r_e}{R} \right| \right) \right] \Rightarrow a_0 \neq R$$

 \sim range correction in the weak-binding relation form r_e

Improved weak-binding relation

Weak-binding relation
$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}$$

interaction range:
$$R_{typ} \rightarrow R_{int} \sim 1/\Lambda$$

Redefinition of
$$R_{\text{typ}}$$
:
 $R_{\text{typ}} = \max\left\{R_{\text{int}}, R_{\text{eff}}\right\},$
 $R_{\text{eff}} = \max\left\{|r_e|, \frac{|P_s|}{R^2}, \cdots\right\}.$
 $f(k) = \left[-\frac{1}{a_0} + \frac{r_e}{2}k^2 - \frac{P_s}{4}k^4 + \cdots - ik\right]^{-1}$

Length scale in the effective range expansion except for a_0

Weak-binding relation
$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{typ}}{R}\right)\right\}$$

Estimation with correction terms ($\xi \equiv R_{typ}/R$): ^{Y. Kamiya and T. Hyodo, PTEP} 2017, 023D02 (2017).

Central value:
$$X_c = \frac{a_0/R}{2 - a_0/R}$$

 $X_{upper}(\xi) = \frac{a_0/R + \xi}{2 - a_0/R - \xi}, X_{lower}(\xi) = \frac{a_0/R - \xi}{2 - a_0/R + \xi}$

Weak-binding relation works when...

$$\begin{array}{l} X_{\text{lower}} < X_{\text{exact}} < X_{\text{upper}} \\ \hline \end{array} \\ Validity condition \\ (X_{\text{upper}} - X_c)/X_c < 0.1 \text{ and } (X_c - X_{\text{lower}})/X_c < 0.1 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} Precision \text{ condition} \end{array}$$

Effective range model ($\Lambda < \infty$)

$$f(k;\lambda_0,\rho_0,\Lambda) = \left[-\frac{1}{a_0} + \frac{r_e}{2}k^2 + \mathcal{O}(R_{\text{int}}) - ik\right]^{-1} \text{(two length scales } r_e \text{ and } R_{\text{int}}\text{)}$$
$$1/f(k = i/R) = 0$$

-
$$R_{int} = 1/\Lambda \neq 0$$
: $\xi_{int} = R_{int}/R$. — Discontrainty from R_{int}
- $X_{exact} = 1$

We search for the regions of r_e and R_{int} in which validity and precision conditions are satisfied.

Estimated X_c and uncertainty from r_e ($R_{int} = a_0/1000$)

 $-X_{\text{exact}} = 1$ is always contained.

The validity condition is always satisfied.

-The uncertainty is smaller than 10 % when $|r_e| \leq 0.049a_0$. The precision condition is satisfied in this region.

Estimated X_c and uncertainty from R_{int} ($R_{int} = a_0/1000$)

- $-X_{\text{exact}} = 1$ is contained in $|r_e| \leq 0.002a_0$. The validity condition is satisfied in this region.
- Uncertainty from R_{int} is not sensitive to $|r_e/a_0|$.

Validity and precision conditions in R_{int}/a_0 - $|r_e/a_0|$ plane

Only the improved weak-binding relation can be applied.

Conclusion and future prospect

- Weak-binding relation : observable \clubsuit compositeness (X) $a_0 = R\left\{\frac{2X}{1+X} + O\left(\frac{R_{\text{typ}}}{R}\right)\right\}$
- We study the range correction in weak-binding relation from r_e .
- Improved weak-binding relation by redefinition of R_{typ} : $R_{typ} = \max\left\{R_{int}, R_{eff}\right\}, \quad R_{eff} = \max\left\{|r_e|, \cdots\right\}$
- Numerical calculations : effective range model ($\Lambda < \infty$)
 - There is the region where only the improved weak-binding relation can be applied.
- Apply the improved relation to hadron systems.