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Abstract

Hadrons are particles composed of quarks and gluons interacting through the strong force. Most

hadrons are classified into quark-antiquark pairs called mesons and three-quark states called baryons.

In addition to these ordinary hadrons, states containing more than three quarks are called exotic

hadrons. The number of experimental reports of exotic hadrons has been increasing year by year.

Nevertheless, the proportion of exotic hadrons among all hadrons remains small. The fundamental

theory of the strong interaction (quantum chromodynamics, QCD) does not explain the rarity of exotic

hadrons. Moreover, the internal structure of exotic hadrons is not well established. Thus, the study

of exotic hadrons is regarded as an important subject for understanding the low-energy phenomena in

QCD. In recent hadron physics, exotic hadrons have been actively studied from both theoretical and

experimental perspectives.

Exotic hadrons are mostly observed near the threshold energy above which the scattering of two

hadrons occurs. Therefore, the internal structure of exotic hadrons should be studied with the con-

sideration of the near-threshold nature. As a starting point to investigate the internal structure of

the near-threshold exotic hadrons, an analogy with nuclear physics is useful. In nuclear physics, it is

empirically known that the clustering phenomena emerge near the threshold of alpha particles (4He

nuclei), where nuclei consist of alpha particles as subunits rather than being constructed from pro-

tons and neutrons directly. This fact, known as the threshold rule, is regarded as a consequence of

the low-energy universality which governs the near-threshold phenomena. By applying the threshold

rule to hadron systems, it is naively expected that the near-threshold exotic hadrons have a hadronic

molecular structure which consists of hadrons as subunits rather than directly consists of quarks.

The internal structure of exotic hadrons is expressed as a superposition of various possible compo-

nents. The fraction of the hadronic molecular component is characterized by the quantitative measure

called the compositeness. It is theoretically shown that the compositeness is unity (i.e., the state is a

completely hadronic molecule) when the bound state exists exactly at the threshold, as a consequence

of the low-energy universality. This suggests that the near-threshold states with a finite binding energy

are dominated by the hadronic molecular component, which is in line with the threshold rule. However,

the situation is not so straightforward, because a non-molecular component can always be mixed in,

even for a shallow bound state. Thus, it is not theoretically clear why the threshold rule holds empiri-

cally. In other words, the theoretical basis of the threshold rule is not fully established. Furthermore,

it is not clear how the threshold rule is affected by the decay and coupled channel contributions which

are the peculiar features in hadron systems.

In this thesis, we aim to study the internal structure of the near-threshold states from the perspec-

tive of the low-energy universality. For this purpose, we introduce the effective field theory models

to calculate the compositeness of the near-threshold states. We first examine the foundation of the

threshold rule, by computing the probability of realizing a shallow non-composite bound state. We

then quantitatively study the effect of decay width and channel coupling on the compositeness of

the near-threshold states. We apply the present formulation to the renowned near-threshold exotic

hadrons, Tcc(3875)
+ and X(3872) to investigate their nature.
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Chapter 1

Introduction

In this chapter, we present the background and aim of this thesis as an introduction. We first show

an overview of hadrons and exotic hadrons in Section 1.1. Motivated by the recent observations of

exotic hadrons, the study of the internal structure of exotic hadrons attracts significant interest. To

characterize the internal structure of hadrons, we introduce a useful concept, called the compositeness

(Section 1.2). A lot of exotic hadrons are observed in the near-threshold region, where the composite-

ness is model-independently determined as a consequence of the low-energy universality. We overview

the low-energy universality in Section 1.3. Against this background, we finally describe the aim of this

thesis in Section 1.4. In this thesis, we use the natural unit where ℏ = c = 1.

1.1 Exotic hadrons

Ordinary mesons and baryons

Elementary particles constitute the fundamental building blocks of matter in nature. Among them,

quarks and gluons are governed by the strong interaction. The fundamental theory of the strong

interaction is quantum chromodynamics (QCD). At low-energy scales, there arises difficulty in QCD

because the perturbative methods do not work due to the strong coupling constant. One of the striking

phenomena in low-energy QCD is color confinement. As a consequence of the confinement, the observed

degrees of freedom are hadrons, not quarks and gluons. To elucidate low-energy phenomena in QCD,

we focus on the study of hadrons.

Hadrons consist of quarks q and gluons g, except for top quarks t.1 Specifically, all hadrons can be

described as combinations of up u, down d, charm c, strange s, and bottom b quarks, together with

gluons. In general, hadrons are classified into two categories, mesons and baryons. Mesons (baryons)

typically consist of a pair of a quark and an anti-quark qq̄ (three quarks qqq). For example, the proton

p ∼ uud and neutron n ∼ udd are classified as baryons, while pions (e.g., π+ ∼ ud̄) are categorized as

mesons.

Let us demonstrate how the mesons are described as of qq̄ using the nonrelativistic constituent

quark model. The ground states are considered to have no angular momentum between q and q̄.

Because the spin-parity JP of quarks (anti-quarks) is 1/2+ (1/2−), the ground state mesons have

1Top quark t decays through the weak interaction before the hadronization.
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JP = 0− (pseudoscalar) or 1− (vector). We can classify the combination of the u, d, s quarks by flavor

SU(3) symmetry under the exchange of these quarks. By combining q (3) representation and q̄ (3̄),

we obtain

3⊗ 3 = 1⊕ 8. (1.1)

Thus, the mesons belong to either the singlet 1 or octet 8 representations. The ground state JP = 0−

octet mesons correspond to K0, K+, π−, π0, π+, η8, K
−, and K̄0. On the other hand, K∗0, K∗+, ρ−,

ρ0, ρ+, ω0, ϕ0, K∗−, and K̄∗0 forms the ground state JP = 1− nonet mesons. We note that the mass

difference between s quark and u, d quarks induces SU(3) symmetry breaking. As a consequence, the

mass splitting occurs among the octet mesons. Furthermore, symmetry breaking causes the mixing of

η8 state with the pseudoscalar singlet meson η0, leading to the physical η and η′ mesons. Similarly, in

the vector mesons, physical ϕ and ω mesons are realized by the ideal mixing.

In the same way, the baryons qqq have the spin-parity JP = 1/2+ or JP = 3/2+ in the ground

state. With flavor SU(3) symmetry, baryons are classified into the singlet, octet, and decuplet:

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10. (1.2)

Among all possible combinations of spin parity and flavor, only 1/2+ and 8, or 3/2+ and 10 are allowed

so that the spin-flavor wavefunction is totally symmetric under the exchanges of quarks. Therefore,

the ground state baryons are classified into JP = 1/2+ octet (n, p, Σ−, Σ0, Λ, Σ+, Ξ−, Ξ0) and

JP = 3/2+ decuplet states (∆−, ∆0, ∆+, ∆++, Σ∗−, Σ∗0, Σ∗+, Ξ∗−, Ξ∗0, Ω−).

For later discussion, we introduce the heavy-light mesons in the charm sector which contain one

c quark. As before, the spin-parity of the ground state mesons is 0− and 1−. The u, d quarks and

c quarks belong to the 2 and 1 representations of isospin SU(2) symmetry, respectively. Therefore,

the ground state heavy-light mesons are classified into (JP , flavor) = (0−,2) and (1−,2) states. The

quark contents of the pseudoscalar mesons are:

D0 ∼ cū, (1.3)

D+ ∼ cd̄, (1.4)

and their anti-particles are:

D̄0 ∼ c̄u, (1.5)

D− ∼ c̄d. (1.6)

The vector mesons are denoted with a superscript ∗, with the same quark contents but with spin 1

(e.g. D∗0 ∼ cū).

It is usual to collectively denote the states belonging to the same isospin multiplet. For example,

the proton p and neutron n are collectively expressed by the nucleon N :

N =

(
p

n

)
. (1.7)

In the same way, we use D and D̄ for the heavy-light mesons

D =

(
D+

D0

)
, D̄ =

(
D̄0

D−

)
, (1.8)
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D∗ =

(
D∗+

D∗0

)
, D̄∗ =

(
D̄∗0

D∗−

)
. (1.9)

With the isospin notation, for instance, DD̄ stands for D+D̄0, D+D−, D0D̄0, or D0D−.

In this way, the quark model with qq̄ and qqq predicts the quantum number of the ground state

hadrons. These quantum numbers are consistent with those observed in the hadron spectra [1]. In

addition to the ground states, the excited hadrons are described as the combination of the constituent

quarks with finite angular momenta, which qualitatively reproduces the experimental data of excited

hadrons [2, 3, 4]. Constituent quark models have been successfully applied to a wide range of hadrons,

reproducing their properties in most cases. Therefore, it is broadly accepted that the internal structure

of the ordinary hadrons is qq̄ or qqq.

Classification of exotic hadrons

In QCD, quarks carry the color charge, but hadrons are realized as color singlet states. Color singlet

states are constructed not only with qq̄ or qqq but also with more than three quarks, such as qq̄qq̄,

qqqq̄q, and qqqqqq. States other than mesons (qq̄) and baryons (qqq) are classified as exotic hadrons,

as they differ from ordinary hadrons (mesons and baryons) [5, 6, 7].

In practice, the identification of exotic hadrons is performed by various criteria. Here we consider

three exotics; (i) the quantum-number exotics (genuine exotics), (ii) the quarkonium-associated exotics,

and (iii) the quark-model exotics [8]. In the following, we will show the details of these categories.

If the quantum number of a given hadron cannot be reached by the combination of qq̄ or qqq,

such hadron is identified as (i) the quantum-number exotic. The quantum number exotics are further

categorized into the flavor exotics and the JPC exotics. As an example of flavor exotics, let us show

the case of Tcc(3875)
+, which is observed as the charm C = 2 state (i.e., containing two c quarks).

To realize a color singlet hadron, we need two anti-quarks in this case, and Tcc(3875)
+ should contain

at least four quarks ccq̄q̄ (q is different from c to have C = 2). In other words, Tcc(3875)
+ has two

quark anti-quark pairs different from the mesons with one qq̄ pair. In general, the hadrons with exotic

flavor quantum numbers, such as Tcc(3875)
+ with C = 2, are called the flavor exotics. As of 2024,

only five flavor exotic hadrons have been observed, T ∗
cs0(2870)

0, T ∗
cs1(2900)

0, T ∗
cs̄0(2900), Tcc(3875)

+,

Tbs̄(5568)
+ [1].

In a similar way to the flavor exotics, JPC exotic states are identified based on the combination of

the spin J , parity P , and charge conjugation C. Because of the rotation and parity symmetry of QCD,

the spin J and parity P serve as conserved quantum numbers. The charge conjugation C = ± is also

defined, if the state transforms into itself under the charge conjugation which changes q with q̄. Under

this transformation, only the mesons consisting of the same flavor remain unchanged up to sign, such as

|cc̄⟩ ∼ |c̄c⟩, while that of mesons with a different flavor and that of baryons do not transform into their

antiparticles (e.g., |ud̄⟩ ̸= |ūd⟩ and |qqq⟩ ̸= |q̄q̄q̄⟩). To obtain the relation among charge conjugation C,

spin of the quark pair S, and angular momentum between quarks L, let us consider the replacement

of q with q̄. In this case, the sign of the total wavefunction corresponds to the product of these of

the spatial wavefunction, the spin wavefunction, and the charge conjugate C. The sign of the spatial

wavefunction changes as (−1)L because the wavefunction is antisymmetric for odd numbers of L. The

spin wavefunction also changes as (−1)S+1 by recalling that the spin wavefunction is antisymmetric

with S = 0. Because q and q̄ are fermions, the total wavefunction should be antisymmetric with the
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replacement, namely, the sign of the total wavefunction is −1:

−1 = C × (−1)L × (−1)1+S . (1.10)

From this relation, we find that

C = (−1)L+S . (1.11)

By making a combination of a quark q (JP = 1/2+) and an anti-quark q̄ (JP = 1/2−) with L ≥ 0, the

possible JPC of qq̄ mesons are found to be JPC = 0−+, 1−−, 1+−, 0++, 1++, 2++, 2−+, 1−−, 2−−, 3−−, ....

Thus, the following JPC states cannot be realized by qq̄ but require qq̄qq̄, qq̄qq̄qq̄, etc.:

JPC = 0−−, 0+−, 1−+, ... (1.12)

Only three JPC exotic states are observed so far, π1(1400) (JPC = 1−+), π1(1600) (JPC = 1−+),

and η1(1855) (JPC = 1−+) [1]. We emphasize that the quantum number exotics have more than

four quarks already at the level of their minimal quark content, as shown above. This is a qualitative

difference from other exotic hadrons (ii) and (iii).

On the other hand, some states are considered exotic, even though their minimal quark content

is qq̄ or qqq. These states are identified as exotic based on the hidden heavy quark pairs [(ii) the

quarkonium-associated exotics] and the quark models [(iii) quark-model exotics].

If the state has the heavy cc̄ or bb̄ pairs in addition to the meson qq̄ or baryon qqq structures

with the light quarks, they are regarded as (ii) the quarkonium-associated exotics. At the level of the

minimal quark content, such states have the same structure as the mesons or baryons considering the

annihilation of cc̄ or bb̄. However, it is known that the heavy-quark pair is hardly created in the decay

process from the OZI rule [9, 10, 11, 12]. Thus, if the hadrons observed in the decay process containing

cc̄ or bb̄ pairs in addition to the qq̄ or qqq with light quarks, the heavy-quark pair is intrinsically

contained in the quark content of hadrons. For example, Pcc̄(4312)
+ is observed as the state decaying

into J/ψp whose quark content is cc̄uud [13, 14]. By annihilating the cc̄ pair, the minimal quark

content of Pcc̄(4312)
+ is uud, the same as ordinary baryons. However, from OZI rule, Pcc̄(4312)

+ is

considered as a pentaquark state including cc̄.

In addition to (i) the quantum number and (ii) the presence of cc̄ or bb̄ pair, the constituent

quark models are sometimes used as criteria to identify the exotic hadrons. As discussed above, the

constituent quark models with qq̄ and qqq have largely succeeded in explaining the spectrum of a

majority of hadrons. However, there are several exceptions that do not fit well within the quark-model

framework. These exceptions are expected to have a different internal structure from qq̄ or qqq, and are

considered the exotic hadrons. For example, in the C = 0 sector, a lot of charmonium states including

cc̄ are predicted by the quark-model calculations. However, these predictions agree well only with the

states below the DD̄ threshold (Fig. 1.1) [5]. From this viewpoint, the states above the DD̄ threshold

are considered as candidates of exotic hadrons (XY Z mesons) [15, 5, 7].

The quantum-number exotics (i) are qualitatively different from other categories (ii) and (iii) be-

cause they are defined by the model-independent criterion, conserved quantum numbers. This is why

the quantum-number exotics are also called the “genuine” exotic. Although (ii) and (iii) are not

genuine exotics in this sense, they are regarded to be helpful to understand the nature of genuine ex-

otic hadrons. Thus, quarkonium-associated exotics (ii) and quark model exotics (iii) are also actively

studied in addition to quantum-number exotics (i).

In summary, exotic hadrons are identified by following viewpoints;
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Fig. 1. Charmonium spectrum (black solid bars) with some X , Y , Z states (red solid bars) in comparison with
the results of a conventional quark model for cc̄ states (blue dashed bars) [15].

The situation has changed radically due to the high statistics e+e− collision data accumulated by
B-factory experiments [9]. Originally their data were collected to perform a comprehensive study of
the C P violation in B meson decays. At the same time, the high statistics data with abundant charm
and bottom productions brought an ideal playground for the study of heavy hadron spectroscopy. In
particular, the states called “X , Y , Z” are thought to be candidates for exotic hadrons, and have been
attracting a lot of attention to reveal unvisited areas of QCD.

Such activities were initiated around 2003, which is the year when the first observation of X (3872)

was reported [10]. Interestingly, an observation of another candidate for an exotic state, the pen-
taquark !+ baryon, was also reported in the same period, which together with X (3872) triggered
diverse activities in both theoretical and experimental studies [11,12]. In this review, we describe the
“X , Y , Z” states as best established states discovered by Belle as well as other relevant experiments
and discuss their theoretical interpretations.

Historically, exotic states, in fact multiquark states, had already been pointed out by Gell-Mann in
his original paper of the quark model in 1964 [1]. Before the discovery of the charm (heavy) quark,
the situation for the light quark sector of u, d, s quarks was somewhat complicated, due to their light
masses which are comparable to the QCD scale of several hundred MeV. On the contrary, the masses
of c and b quarks are large, approximately 1.5 GeV/c2 and 5 GeV/c2, respectively. Because of their
large masses well-separated from the QCD scale, their description based on heavy constituent quark
wave functions is well established. The success of the quark model with a static potential for heavy
quarkonium systems may be explained by non-relativistic QCD (NRQCD) [13] or potential non-
relativistic QCD (pNRQCD) [14]. In pNRQCD, the hierarchy of m ≫ mv ≫ mv2 for small velocity
v justifies the use of a potential for non-relativistically slowly moving heavy quarks.

In Fig. 1, a charmonium spectrum is shown with some X , Y , Z particles. The experimentally
observed spectrum is shown by solid bars, and is compared with the predictions of the conventional
c̄c quark model [15]; naive assignment is also shown. Below the open charm threshold of DD̄,
DD̄∗, and D∗ D̄∗ the agreement between experiment and theory is remarkable, as anticipated by

2/64

Figure 1.1: The spectrum of the observed hadrons in the charm sector, adapted from Ref. [5].

(i) quantum-number exotic (genuine exotic): the state whose minimal quark content is not qq̄ or

qqq. These exotic states are further categorized as;

– flavor exotics: the states whose quark contents are not qq̄ or qqq in terms of the flavor [e.g.

Tcc(3875)
+]

– JPC exotics: the states whose combination of spin J , parity P , and charge conjugation C

cannot be realized by qq̄ [e.g. π1(1400) [1]],

(ii) quarkonium-associated exotics: the states which are considered to practically include the hidden

cc̄ or bb̄ pairs [e.g. Zc(3900), Pcc̄(4312)
+ [1]];

(iii) quark model exotics: the state with the minimal quark content qq̄ or qqq, but whose nature does

not agree with the results from the qq̄ or qqq picture by the standard quark models [e.g. XY Z

mesons].

We note that these categories are not mutually exclusive. For example, Z mesons are considered as

exotics not only from the viewpoint of (ii) the quarkonium-associated exotics but also (iii) the quark

model exotics.

Internal structure of exotic hadrons

In this way, exotic hadrons contain more quarks than ordinary hadrons. This suggests that exotic

hadrons can have complex internal structures. Let us now consider the possible internal structure of

exotic hadrons composed of qq̄qq̄ or qqqq̄q.

The most straightforward example is the so-called multi-quark states which are compact states of

more than three quarks. In this case, the strong interaction acts to attract all quarks through the

gluons. Therefore, the size of multiquark states is expected to be ∼ 1 fm, which is roughly estimated

from the typical length scale of the strong interaction.
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On the other hand, it is possible to make the combinations of two mesons (qq̄ and qq̄) or one

baryon and one meson (qqq and qq̄) from qq̄qq̄ or qqqqq̄, respectively. In this case, the quarks form

compact mesons or baryons as the subunits at first, and then these subunits interact through the

strong interaction. These states are known as the hadronic molecular state. The typical example is

the deuteron, where the subunits p and n are bound with the nuclear force through the π exchange.

From the analogy of the nuclear force, the attraction between the subunits is considered to occur

through the meson exchange. Therefore, the size of the hadronic molecule is estimated as larger than

the typical length scale of the strong interaction ≳ 1 fm. In fact, the radius of the wavefunction of the

deuteron is 4.32 fm, which is larger than the typical length scale of the strong interaction.2

In actual cases, it is natural that the internal structure of hadrons is described not as a pure

multiquark state or hadronic molecule, but as a superposition of these components. In general, for a

given hadron, all possible components having the same quantum numbers mix in. For example, the

deuteron wavefunction does not purely contain the s-wave pn molecular component, but the small

d-wave component exists (∼ 5 %) [16]. To establish the internal structure of hadrons, we need to

extract the fraction of these components. However, the conserved quantum numbers cannot be used

to distinguish the multiquarks and the hadronic molecules. Therefore, some quantities should be

introduced to classify the hadron structure. This is the motivation to employ the compositeness to

characterize the internal structure of exotic hadrons.

As a characteristic phenomenon in hadron physics, the mixing associated with the qq̄ creation

occurs. Let us consider this mixing from the viewpoint of the baryon number B, defined as the

conservation quantity from U(1) symmetry in QCD [17]. Using the baryon number, the meson (baryon)

is defined as the state with B = 0 (B = 1). Because the baryon number of qq̄ pair is zero, qq̄qq̄ also

has B = 0 and is regarded as a meson. Therefore, wavefunction of a meson is given by |meson⟩ =

|qq̄⟩+ |qq̄qq̄⟩+ .... Similarly, a baryon with B = 1 is expressed by |baryon⟩ = |qqq⟩+ |qqqqq̄⟩+ ....

The picture with the qq̄ creation can reproduce the spectra of excited hadrons, which allows the

hadrons to have an exotic structure with more than four quarks. Furthermore, the spectra can be

described also with the internal excitation of quarks. In this case, the excited hadrons is considered by

the constituent quark models with the finite angular momentum between quarks. In this way, various

possible components can contribute to the internal structure of hadrons (Fig. 1.2).

Because we cannot extract bare quarks due to the quark confinement, the asymptotic degrees of

freedom are hadrons. This means that the internal structure of exotic hadrons cannot be observed

in terms of the degrees of freedom of quarks. This feature of the strong interaction complicates the

investigation of the internal structure of exotic hadrons. In this way, the study of the internal structure

of exotic hadrons is challenging but important for gaining insight into low-energy phenomena in QCD.

Example of exotic hadrons

Before discussing the hadron wavefunction, here we show several examples of the exotic hadrons. The

total number of observed hadrons has been getting larger every year. According to the Particle Data

Group (PDG) [1], 227 kinds of mesons and 188 kinds of baryons have been found so far, and 10 mesons

and 11 baryons have been newly discovered since 2022. In Fig. 1.3 and 1.4, we show the summary

of observed hadrons so far. The shaded hadrons have been newly observed in the past two years,

2In addition to multi-quark and hadronic molecule, the gluonic hybrid state and glueball with the constituent gluon

can be realized as the internal structure of exotic hadrons.
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Figure 1.2: The schematic illustration of the possible internal structure of excited baryons.

and the enclosed hadrons by solid and dotted lines are the quantum-number exotics and JPC exotics,

respectively. As shown in these tables, the number of exotic hadrons is still smaller than that of

ordinary hadrons but also increasing year by year. In the last two years, three kinds of quantum-

number exotics [η1(1855), T
∗
cs0(2870)

+ and Tcc(3875)
+] have been newly discovered in addition to the

five exotic hadrons observed by 2022. In addition to these quantum-number exotic hadrons, there are

various observations of the quarkonium-associated and quark-model exotic hadrons, whose number

also increases every year. It is considered that the study of these hadrons leads to the understanding

of the quantum-number exotic hadrons.

Let us show some examples of exotic hadrons. Even before the establishment of the concept of the

exotic hadrons, the candidate of the exotic hadron Λ(1405) has already been observed [18, 19, 20, 8, 21].

Λ(1405) is not a quantum-number exotic state with the minimal quark content uds. However, it is

regarded as the quark model exotic [category (iii)] due to the following reasons. In Ref. [3], the mass

of Λ(1405) is calculated using the constituent quark model by taking into account the excitations of

quarks.3 That work shows that the calculated spectrum of Λ(1405) does not agree with the experimental

data, while the model works well for other hadrons (Fig. 1.5). Furthermore, it is also shown that

Λ(1405) is lighter than the first excited states of nuclei [N(1535)] which consists only of the light

quarks u and d. These results suggest that the qqq picture is not suitable to reproduce Λ(1405).

Therefore, Λ(1405) is regarded as having an exotic structure.

Not only in the strange sector, the candidates of the exotic hadron have also been discovered in

the charm sector with heavy c quarks, as shown above. As a representative XY Z mesons, we focus on

X(3872).4 X(3872) is the first observed XY Z mesons discovered in 2003 by the Belle experiment [22].

3Λ(1405) cannot be produced only by the ground state three quarks with 1/2+, because of its negative parity

JP = 1/2−.
4In PDG, X(3872) is named as χc1(3872). However, we use X(3872) due to a conventional reason. Similarly, almost

all of the XY Z mesons are nowadays not named as X, Y , or Z in PDG, but we still call them XY Z mesons. Originally,

“X” is assigned to the neutral states, and “Z” to charged states [7]. “Y ” corresponds to the states produced by the
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Figure 1.3: The list of observed mesons and their quantum numbers adapted from PDG [1]. The

shaded mesons are newly discovered states in the past two years. The hadrons enclosed by the solid

(dotted) lines are the quantum-number exotic hadrons (JPC exotic hadrons). The particle with • is

well established by the experiments.
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Figure 1.4: The list of observed baryons and their quantum numbers adapted from PDG [1]. The

shaded baryons are newly discovered states in the past two years. The number of ∗ represents the

degree of the evidence of existence of the particle. ∗ evidence of existence is poor; ∗∗ evidence of

existence is only fair; ∗∗∗ evidence ranges from very likely to certain, but further confirmation is

desirable, and/or some properties are not well determined; ∗∗∗∗ existence is certain and properties are

well known.
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N(1535)

Figure 1.5: The mass of the negative parity baryons obtained from the constituent quark model (shaded

square) and experiment (hatched square). The surrounded region shows the result of Λ(1405). The

original figure is adapted from Ref. [3], but some explanations are added.

The experiment observed the decay process of B± → K±π+π−J/ψ, and found the charmonium-

like state X(3872) which decays to π+π−J/ψ (left panel in Fig. 1.6). Because the quark content of

π+π−J/ψ is ud̄+ ūd+ cc̄, X(3872) is not a quantum-number exotic state. However, it is considered as

quark model exotic due to the lack of the corresponding prediction by the quark model [4]. After the

first observation of X(3872), more detailed features of X(3872) were observed such as the spin parity

JPC = 1++ [23] and isospin I = 1 [24]. In the recent experiments, the mass and width of X(3872)

was precisely observed in the B+ → K+π+π−J/ψ decay process [25]. One of the significant feature of

X(3872) is its small binding energy B = 0.04 MeV with respect to the D0D̄∗0 threshold [1]. Based on

the threshold rule discussed below, X(3872) is considered to be the hadronic molecule-dominant state.

At the same time, the experiment suggests that the cc̄ core plays an important role to the X(3872)

structure [26, 27, 28]. Therefore, the internal structure of X(3872) is now considered as the mixture

of the molecular state and cc̄ state.

In C = 2 sector with two c quarks, the LHCb collaboration has reported the existence of the genuine

tetra-quark exotic state Tcc(3875)
+ in 2021 [30, 29]. They observed the D0D0π+ mass distribution

produced by the pp collision, and found the narrow peak just below the D0D∗+ threshold (right

panel of Fig. 1.6). This means that Tcc(3875)
+ decays into the D0D0π+ ∼ cūcūud̄, and therefore

Tcc(3875)
+ is concluded as the flavor exotic state with the minimal quark contents ccūd̄. Motivated by

the first observation by LHCb, many experimental groups are now performing additional experiments

on Tcc(3875)
+. Before the first experimental report, the existence of the ccūd̄ state has already been

extensively studied [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,

initial state radiation, where the Y mesons have the common quantum number to the photon JPC = 1−− [5].
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and background components. The signal component is described 
by the convolution of the detector resolution with a resonant shape, 
which is modelled by a relativistic P-wave two-body Breit–Wigner 
(BW) function modified by a Blatt–Weisskopf form factor with a 
meson radius parameter of 3.5 GeV−1. The use of a P-wave reso-
nance is motivated by the expected JP = 1+ quantum numbers for 
the T+

cc

 state. A two-body decay structure T+
cc

→ AB is assumed with 
m

A

= 2m

D

0 and m
B

= m

π

+, where m
π

+ stands for the known mass 
of the π+ meson. Several alternative prescriptions are used for the 
evaluation of the systematic uncertainties. Despite its simplicity, the 
model serves well to quantify the existence of the T+

cc

 state and to 
measure its properties, such as the position and the width of the 
resonance. A follow-up study91 investigates the underlying nature 
of the T+

cc

 state, expanding on the modelling of the signal shape and 
the determination of its physical properties. The detector resolution 
is modelled by the sum of two Gaussian functions with a common 
mean, where the additional parameters are taken from simulation 
(Methods) with corrections applied32,92,93. The root mean square of 
the resolution function is around 400 keV c−2. A study of the D0π+ 
mass distribution for D0D0π+ combinations in the region above the 
D*0D+ mass threshold but below 3.9 GeV c−2 shows that approxi-
mately 90% of all random D0D0π+ combinations contain a genuine 
D*+ meson. On the basis of this observation, the background com-
ponent is parameterized by the product of a two-body phase space 
function and a positive second-order polynomial. The resulting 
function is convolved with the detector resolution.

The fit results are shown in Fig. 1, and the parameters of interest, 
namely the signal yield, N, the mass parameter of the BW function rel-
ative to the D*+D0 mass threshold, δm

BW

≡ m

BW

− (m
D

∗+ +m

D

0), 
and the width parameter, ΓBW, are listed in Table 1. The statistical 
significance of the observed T+

cc

D

0

D

0

π

+ signal is estimated using 
Wilks’ theorem to be 22 s.d. The fit suggests that the mass param-
eter of the BW shape is slightly below the D*+D0 mass threshold.  
The statistical significance of the hypothesis δmBW < 0 is estimated 
to be 4.3 s.d.

To validate the presence of the signal component, several addi-
tional cross-checks are performed. The data are categorized accord-
ing to data-taking periods, including the polarity of the LHCb 
dipole magnet and the charge of the T+

cc

 candidates. Instead of 
statistically subtracting the non-D0 background, the mass of each 
D → K−π+ candidate is required to be within a narrow region around 
the known mass of the D0 meson38. The results are found to be con-
sistent among all samples and analysis techniques. Furthermore, 
dedicated studies are performed to ensure that the observed 
signal is not caused by kaon or pion misidentification, doubly 
Cabibbo-suppressed D0 → K+π− decays or D0

D

0 oscillations, decays 
of charm hadrons originating from beauty hadrons or artefacts due 
to the track reconstruction creating duplicate tracks.

Systematic uncertainties for the δmBW and ΓBW parameters are 
summarized in Table 2 and described below. The largest systematic 
uncertainty is related to the fit model and is studied using pseudo-
experiments with alternative parameterizations of the D0D0π+ mass 
shape. Several variations in the fit model are considered: changes 
in the signal model due to the imperfect knowledge of the detector 
resolution, an uncertainty in the correction factor for the resolution 
taken from control channels, parameterization of the background 
component and the additional model parameters of the BW func-
tion. The model uncertainty related to the assumption of JP = 1+ 
quantum numbers of the state is estimated and listed separately. 
The results are affected by the overall detector momentum scale, 
which is known to a relative precision of δα = 3 × 10−4 (ref. 94). The 
corresponding uncertainty is estimated using simulated samples 
where the momentum scale is modified by factors of (1± δα). In 
the reconstruction, the momenta of charged tracks are corrected 
for energy loss in the detector material, the amount of which is 
known with a relative uncertainty of 10%. The resulting uncertainty 
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Fig. 1 | The distribution of the D0D0π+ mass. The distribution of the 
D0D0π+ mass after statistical subtraction of the contribution of the non-D0 
background, with the result of the fit with the two-component function 
described in the text. The horizontal bin width is indicated on the vertical 
axis legend. The inset shows a zoomed signal region with a fine binning 
scheme. Uncertainties on the data points are statistical only and represent 
one standard deviation, calculated as a sum in quadrature of the assigned 
weights from the background subtraction procedure.

Table 1 | Parameters obtained from the fit to the D0D0π+ mass 
spectrum: signal yield, N, BW mass relative to the D*+D0 
mass threshold, δmBW, and width, ΓBW. The uncertainties are 
statistical only

Parameter Value

N 117!±!16
δmBW −273!±!61!keV!c−2

ΓBW 410!±!165!keV

Table 2 | Systematic uncertainties for the δmBW and ΓBW 
parameters. The total uncertainty is calculated as the sum 
in quadrature of all components except for those related to 
the assignment of JP quantum numbers, which are handled 
separately

Source σ

δm

BW

(

keV c

−2

)

σΓ
BW

(keV)

Fit model
Resolution model 2 7
Resolution correction factor 1 30
Background model 3 30
Model parameters <1 <1
Momentum scale 3 —
Energy loss corrections 1 —
D*+!−!D0 mass difference 2 —
Total 5 43

JP quantum numbers +11

−14

+18

−38

NATURE PHYSICS | www.nature.com/naturephysics
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X(3872)

well as the specific ionization in the CDC. This classi-
fication is superseded if the track is identified as a lepton:
electrons are identified by the presence of a matching
ECL cluster with energy and transverse profile consistent
with an electromagnetic shower; muons are identified by
their range and transverse scattering in the KLM.

For the B! K!!!"J= study we use events that have
a pair of well identified oppositely charged electrons or
muons with an invariant mass in the range 3:077<
M‘!‘" < 3:117 GeV, a loosely identified charged kaon,
and a pair of oppositely charged pions. In order to reject
background from " conversion products and curling
tracks, we require the !!!" invariant mass to be greater
than 0.4 GeV. To reduce the level of e!e" ! q !qq (q #
u; d; s, or c quark) continuum events in the sample, we
also require R2 < 0:4, where R2 is the normalized Fox-
Wolfram moment [8], and j cos#Bj< 0:8, where #B is the
polar angle of the B-meson direction in the CM frame.

Candidate B! ! K!!!!"J= mesons are recon-
structed using the energy difference "E $ ECM

B "
ECM
beam and the beam-energy constrained mass
Mbc $

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

%ECM
beam&2 " %pCM

B &2
q

, where ECM
beam is the beam

energy in the CM system, and ECM
B and pCM

B are the
CM energy and momentum of the B candidate. The sig-
nal region is defined as 5:271 GeV<Mbc < 5:289 GeV
and j"Ej< 0:030 GeV.

Figure 1(a) shows the distribution of "M $
M%!!!"‘!‘"& "M%‘!‘"& for events in the "E-Mbc
signal region. Here a large peak corresponding to  0 !
!!!"J= is evident at 0.589 GeV. In addition, there is a
significant spike in the distribution at 0.775 GeV.
Figure 1(b) shows the same distribution for a large sample
of generic B- !BB Monte Carlo (MC) events. Except for the
prominent  0 peak, the distribution is smooth and fea-
tureless. In the rest of this Letter we use M%!!!"J= &
determined from "M!MJ= , whereMJ= is the PDG [9]
value for the J= mass. The spike at "M # 0:775 GeV
corresponds to a mass near 3872 MeV.

We make separate fits to the data in the  0

(3580 MeV<M!!!"J= < 3780 MeV) and the M #

3872 MeV (3770 MeV<M!!!"J= < 3970 MeV) re-
gions using a simultaneous unbinned maximum likeli-
hood fit to the Mbc, "E, and M!!!"J= distributions [10].
For the fits, the probability density functions (PDFs) for
the Mbc and M!!!"J= signals are single Gaussians; the
"E signal PDF is a double Gaussian composed of a
narrow ‘‘core’’ and a broad ‘‘tail.’’ The background
PDFs for "E and M!!!"J= are linear functions, and
the Mbc background PDF is the ARGUS threshold func-
tion [11]. For the  0 region fit, the peak positions and
widths of the three signal PDFs, the "E core fraction, as
well as the parameters of the background PDFs, are left as
free parameters. The values of the resolution parameters
that are returned by the fit are consistent with MC-based
expectations. For the fit to theM # 3872 MeV region, the
Mbc peak and width, as well as the "E peak, widths, and
core fraction (96.5%) are fixed at the values determined
from the  0 fit.

The results of the fits are presented in Table I.
Figures 2(a)–2(c) show the Mbc, M!!!"J= , and "E
signal-band projections for the M # 3872 MeV signal
region, respectively. The superimposed curves indicate
the results of the fit. There are clear peaks with consistent
yields in all three quantities. The signal yield of 35:7'
6:8 events has a statistical significance of 10:3$, deter-
mined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

"2 ln%L0=Lmax&
p

, where Lmax and L0 are
the likelihood values for the best-fit and for zero-signal
yield, respectively. In the following we refer to this as the
X%3872&.

We determine the mass of the signal peak relative to
the well measured  0 mass:

MX # Mmeas
X "Mmeas

 0 !MPDG
 0

# 3872:0' 0:6%stat& ' 0:5%syst& MeV:

Since we use the precisely known value of the  0 mass [9]
as a reference, the systematic error is small. The M 0

measurement, which is referenced to the J= mass that
is 589 MeV away, is "0:5' 0:2 MeV from its world-
average value [12]. Variation of the mass scale from M 0

toMX requires an extrapolation of only 186 MeVand, thus,
the systematic shift in MX can safely be expected to be
less than this amount.We assign 0.5 MeVas the systematic
error on the mass.

The measured width of the X%3872& peak is $ # 2:5'
0:5 MeV, which is consistent with the MC-determined
resolution and the value obtained from the fit to the  0
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FIG. 1. Distribution of M%!!!"‘!‘"& "M%‘!‘"& for se-
lected events in the "E-Mbc signal region for (a) Belle data
and (b) generic B- !BB MC events.

TABLE I. Results of the fits to the  0 and M # 3872 MeV
regions. The errors are statistical only.

Quantity  0 region M # 3872 MeV region

Signal events 489' 23 35:7' 6:8
Mmeas
!!!"J= peak 3685:5' 0:2 MeV 3871:5' 0:6 MeV
$M!!!"J= 3:3' 0:2 MeV 2:5' 0:5 MeV
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and background components. The signal component is described 
by the convolution of the detector resolution with a resonant shape, 
which is modelled by a relativistic P-wave two-body Breit–Wigner 
(BW) function modified by a Blatt–Weisskopf form factor with a 
meson radius parameter of 3.5 GeV−1. The use of a P-wave reso-
nance is motivated by the expected JP = 1+ quantum numbers for 
the T+

cc

 state. A two-body decay structure T+
cc

→ AB is assumed with 
m

A

= 2m

D

0 and m
B

= m

π

+, where m
π

+ stands for the known mass 
of the π+ meson. Several alternative prescriptions are used for the 
evaluation of the systematic uncertainties. Despite its simplicity, the 
model serves well to quantify the existence of the T+

cc

 state and to 
measure its properties, such as the position and the width of the 
resonance. A follow-up study91 investigates the underlying nature 
of the T+

cc

 state, expanding on the modelling of the signal shape and 
the determination of its physical properties. The detector resolution 
is modelled by the sum of two Gaussian functions with a common 
mean, where the additional parameters are taken from simulation 
(Methods) with corrections applied32,92,93. The root mean square of 
the resolution function is around 400 keV c−2. A study of the D0π+ 
mass distribution for D0D0π+ combinations in the region above the 
D*0D+ mass threshold but below 3.9 GeV c−2 shows that approxi-
mately 90% of all random D0D0π+ combinations contain a genuine 
D*+ meson. On the basis of this observation, the background com-
ponent is parameterized by the product of a two-body phase space 
function and a positive second-order polynomial. The resulting 
function is convolved with the detector resolution.

The fit results are shown in Fig. 1, and the parameters of interest, 
namely the signal yield, N, the mass parameter of the BW function rel-
ative to the D*+D0 mass threshold, δm

BW

≡ m

BW

− (m
D

∗+ +m

D

0), 
and the width parameter, ΓBW, are listed in Table 1. The statistical 
significance of the observed T+

cc

D

0

D

0

π

+ signal is estimated using 
Wilks’ theorem to be 22 s.d. The fit suggests that the mass param-
eter of the BW shape is slightly below the D*+D0 mass threshold.  
The statistical significance of the hypothesis δmBW < 0 is estimated 
to be 4.3 s.d.

To validate the presence of the signal component, several addi-
tional cross-checks are performed. The data are categorized accord-
ing to data-taking periods, including the polarity of the LHCb 
dipole magnet and the charge of the T+

cc

 candidates. Instead of 
statistically subtracting the non-D0 background, the mass of each 
D → K−π+ candidate is required to be within a narrow region around 
the known mass of the D0 meson38. The results are found to be con-
sistent among all samples and analysis techniques. Furthermore, 
dedicated studies are performed to ensure that the observed 
signal is not caused by kaon or pion misidentification, doubly 
Cabibbo-suppressed D0 → K+π− decays or D0

D

0 oscillations, decays 
of charm hadrons originating from beauty hadrons or artefacts due 
to the track reconstruction creating duplicate tracks.

Systematic uncertainties for the δmBW and ΓBW parameters are 
summarized in Table 2 and described below. The largest systematic 
uncertainty is related to the fit model and is studied using pseudo-
experiments with alternative parameterizations of the D0D0π+ mass 
shape. Several variations in the fit model are considered: changes 
in the signal model due to the imperfect knowledge of the detector 
resolution, an uncertainty in the correction factor for the resolution 
taken from control channels, parameterization of the background 
component and the additional model parameters of the BW func-
tion. The model uncertainty related to the assumption of JP = 1+ 
quantum numbers of the state is estimated and listed separately. 
The results are affected by the overall detector momentum scale, 
which is known to a relative precision of δα = 3 × 10−4 (ref. 94). The 
corresponding uncertainty is estimated using simulated samples 
where the momentum scale is modified by factors of (1± δα). In 
the reconstruction, the momenta of charged tracks are corrected 
for energy loss in the detector material, the amount of which is 
known with a relative uncertainty of 10%. The resulting uncertainty 
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Fig. 1 | The distribution of the D0D0π+ mass. The distribution of the 
D0D0π+ mass after statistical subtraction of the contribution of the non-D0 
background, with the result of the fit with the two-component function 
described in the text. The horizontal bin width is indicated on the vertical 
axis legend. The inset shows a zoomed signal region with a fine binning 
scheme. Uncertainties on the data points are statistical only and represent 
one standard deviation, calculated as a sum in quadrature of the assigned 
weights from the background subtraction procedure.

Table 1 | Parameters obtained from the fit to the D0D0π+ mass 
spectrum: signal yield, N, BW mass relative to the D*+D0 
mass threshold, δmBW, and width, ΓBW. The uncertainties are 
statistical only

Parameter Value

N 117!±!16
δmBW −273!±!61!keV!c−2

ΓBW 410!±!165!keV

Table 2 | Systematic uncertainties for the δmBW and ΓBW 
parameters. The total uncertainty is calculated as the sum 
in quadrature of all components except for those related to 
the assignment of JP quantum numbers, which are handled 
separately

Source σ

δm

BW

(

keV c

−2

)

σΓ
BW

(keV)

Fit model
Resolution model 2 7
Resolution correction factor 1 30
Background model 3 30
Model parameters <1 <1
Momentum scale 3 —
Energy loss corrections 1 —
D*+!−!D0 mass difference 2 —
Total 5 43

JP quantum numbers +11

−14

+18

−38
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X(3872)

well as the specific ionization in the CDC. This classi-
fication is superseded if the track is identified as a lepton:
electrons are identified by the presence of a matching
ECL cluster with energy and transverse profile consistent
with an electromagnetic shower; muons are identified by
their range and transverse scattering in the KLM.

For the B! K!!!"J= study we use events that have
a pair of well identified oppositely charged electrons or
muons with an invariant mass in the range 3:077<
M‘!‘" < 3:117 GeV, a loosely identified charged kaon,
and a pair of oppositely charged pions. In order to reject
background from " conversion products and curling
tracks, we require the !!!" invariant mass to be greater
than 0.4 GeV. To reduce the level of e!e" ! q !qq (q #
u; d; s, or c quark) continuum events in the sample, we
also require R2 < 0:4, where R2 is the normalized Fox-
Wolfram moment [8], and j cos#Bj< 0:8, where #B is the
polar angle of the B-meson direction in the CM frame.

Candidate B! ! K!!!!"J= mesons are recon-
structed using the energy difference "E $ ECM

B "
ECM
beam and the beam-energy constrained mass
Mbc $

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

%ECM
beam&2 " %pCM

B &2
q

, where ECM
beam is the beam

energy in the CM system, and ECM
B and pCM

B are the
CM energy and momentum of the B candidate. The sig-
nal region is defined as 5:271 GeV<Mbc < 5:289 GeV
and j"Ej< 0:030 GeV.

Figure 1(a) shows the distribution of "M $
M%!!!"‘!‘"& "M%‘!‘"& for events in the "E-Mbc
signal region. Here a large peak corresponding to  0 !
!!!"J= is evident at 0.589 GeV. In addition, there is a
significant spike in the distribution at 0.775 GeV.
Figure 1(b) shows the same distribution for a large sample
of generic B- !BB Monte Carlo (MC) events. Except for the
prominent  0 peak, the distribution is smooth and fea-
tureless. In the rest of this Letter we use M%!!!"J= &
determined from "M!MJ= , whereMJ= is the PDG [9]
value for the J= mass. The spike at "M # 0:775 GeV
corresponds to a mass near 3872 MeV.

We make separate fits to the data in the  0

(3580 MeV<M!!!"J= < 3780 MeV) and the M #

3872 MeV (3770 MeV<M!!!"J= < 3970 MeV) re-
gions using a simultaneous unbinned maximum likeli-
hood fit to the Mbc, "E, and M!!!"J= distributions [10].
For the fits, the probability density functions (PDFs) for
the Mbc and M!!!"J= signals are single Gaussians; the
"E signal PDF is a double Gaussian composed of a
narrow ‘‘core’’ and a broad ‘‘tail.’’ The background
PDFs for "E and M!!!"J= are linear functions, and
the Mbc background PDF is the ARGUS threshold func-
tion [11]. For the  0 region fit, the peak positions and
widths of the three signal PDFs, the "E core fraction, as
well as the parameters of the background PDFs, are left as
free parameters. The values of the resolution parameters
that are returned by the fit are consistent with MC-based
expectations. For the fit to theM # 3872 MeV region, the
Mbc peak and width, as well as the "E peak, widths, and
core fraction (96.5%) are fixed at the values determined
from the  0 fit.

The results of the fits are presented in Table I.
Figures 2(a)–2(c) show the Mbc, M!!!"J= , and "E
signal-band projections for the M # 3872 MeV signal
region, respectively. The superimposed curves indicate
the results of the fit. There are clear peaks with consistent
yields in all three quantities. The signal yield of 35:7'
6:8 events has a statistical significance of 10:3$, deter-
mined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

"2 ln%L0=Lmax&
p

, where Lmax and L0 are
the likelihood values for the best-fit and for zero-signal
yield, respectively. In the following we refer to this as the
X%3872&.

We determine the mass of the signal peak relative to
the well measured  0 mass:

MX # Mmeas
X "Mmeas

 0 !MPDG
 0

# 3872:0' 0:6%stat& ' 0:5%syst& MeV:

Since we use the precisely known value of the  0 mass [9]
as a reference, the systematic error is small. The M 0

measurement, which is referenced to the J= mass that
is 589 MeV away, is "0:5' 0:2 MeV from its world-
average value [12]. Variation of the mass scale from M 0

toMX requires an extrapolation of only 186 MeVand, thus,
the systematic shift in MX can safely be expected to be
less than this amount.We assign 0.5 MeVas the systematic
error on the mass.

The measured width of the X%3872& peak is $ # 2:5'
0:5 MeV, which is consistent with the MC-determined
resolution and the value obtained from the fit to the  0

0.40 0.80 1.20

M(π+π-l+l-) - M(l+l-) (GeV)

0

100

200

300

E
ve

nt
s/

0.
01

0 
G

eV

0.40 0.80 1.20

M(π+π-l+l-) - M(l+l-) (GeV)

0

4000

8000

12000

FIG. 1. Distribution of M%!!!"‘!‘"& "M%‘!‘"& for se-
lected events in the "E-Mbc signal region for (a) Belle data
and (b) generic B- !BB MC events.

TABLE I. Results of the fits to the  0 and M # 3872 MeV
regions. The errors are statistical only.

Quantity  0 region M # 3872 MeV region

Signal events 489' 23 35:7' 6:8
Mmeas
!!!"J= peak 3685:5' 0:2 MeV 3871:5' 0:6 MeV
$M!!!"J= 3:3' 0:2 MeV 2:5' 0:5 MeV
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Figure 1.6: (Left) The spectrum of X(3872) in π+π−J/ψ mass distribution. The peak near the 0.80

GeV corresponds to the signal of X(3872) (another large peak corresponds to ψ′). The original result

is adopted from Ref. [22], but some explanations are added. (Right) The spectrum of Tcc(3875)
+ in

the D0D0π+ mass distribution, adapted from Ref. [29]. The peak below the D0D∗+ threshold (green

dashed line) corresponds to the signal of Tcc(3875)
+.

53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]. After the observation, a lot of studies of Tcc(3875)
+ has

been continued not only as the multiquark states but also as the viewpoint of the hadronic molecular

picture [64, 65, 66, 67, 68, 69, 70].

In the last part of this thesis, we focus on the internal structure of X(3872) and Tcc(3875)
+, by

focusing on their similarities and differences. Both Tcc(3875)
+ andX(3872) are the near-threshold state

of DD∗, and their binding energies are prominently small among the near-threshold exotic hadrons.5

Furthermore, as seen above, both of them have the decay width and coupling to the isospin partner

channel. It is also interesting to note that the X(3872) is the oldest exotic hadrons in the charm

sector, in contrast to the very newly observed Tcc(3875)
+. In addition to these similarities, we also

find some differences between the two systems by comparing both systems. We see the decay width

of Tcc(3875)
+ is relatively smaller than that of X(3872), and the threshold energy difference ∆ω of

X(3872) is relatively larger than that of Tcc(3875)
+. We summarize the system in Fig. 1.7.

1.2 Compositeness

In the above discussion, we see that the internal structure of exotic hadrons is written as a superposition

of the various possible components, such as the hadronic molecule and the multiquark. Because these

components cannot be distinguished using quantum numbers, as mentioned above, we need another

5In fact, the binding energy of Λ(1405) is of the order of 10 MeV, which is considered as the usual energy scale of the

near-threshold hadrons.
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Figure 1.7: The schematic illustration of the system of Tcc(3875)
+ (left) and X(8372) (right). The B

is the binding energy, Γ is the decay width, and ∆ω is the threshold energy difference between the

threshold channel and the nearest coupled channel. This figure is adapted from Ref. [71].

quantity to characterize the internal structure of exotic hadrons. In this thesis, we introduce the

measure called the compositeness, to study the fraction of the hadronic molecular component [72, 17,

73, 74].

While the formal definition of the compositeness will be given in Chapter 5, here let us briefly

introduce the notion of the compositeness. The compositeness X is schematically represented as the

square of the coefficient of the molecular component |molecular⟩ in the bound state |B⟩:

|B⟩ =
√
X |molecular⟩+

√
Z |non molecular⟩ . (1.13)

Here we denote the components other than molecular as |non molecular⟩. For example, a multi-quark

component is included in the non-molecular components. The fraction Z = 1 − X is called the

elementarity or elementariness. From Eq. (1.13), we see the compositeness is the probability of finding

the molecular component |molecular⟩ in the bound state |B⟩:

X = | ⟨B|molecular⟩ |2. (1.14)

By calculating the compositeness, we can quantitatively investigate the internal structure of bound

states, determining whether they are molecule-dominant states with X > 50% or non-molecule-

dominant states with X < 50%.

Historically, the compositeness has been introduced in the works by S. Weinberg [75, 76, 72]. By

estimating the compositeness model independently, he shows the deuteron is a composite state of p

and n. After four decades, the notion of the compositeness has been applied to consider the internal

structure of exotic hadrons (see also Sections 5.1 and 5.8).
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The compositeness of the weakly bound states can be estimated only from the observables. In

principle, the compositeness is a model-dependent quantity. However, when the binding energy is much

smaller than the typical energy scale of the system, the compositeness X is model-independently related

to the observables. This relation is called the weak-binding relation [72]. This model-independent

nature of the weak-binding relation is associated with the low-energy universality discussed below.

1.3 Low-energy universality

As discussed above, many exotic hadrons are observed near the threshold, such as Tcc(3875)
+ and

X(3872). Therefore, to understand the nature of exotic hadrons, it is necessary to focus on the near-

threshold states. In the near-threshold energy region, it is known that the low-energy universality

holds [77, 78, 79, 80, 81, 82, 83], and phenomena follow the common laws irrespective of the micro-

scopic details of the system. The mechanism of the universality is associated with the divergence of

the scattering length. The scattering length is the physical observable characterizing the low-energy

scatterings in the system (see Section 2.3.3). If the binding energy B decreases, the scattering length

becomes larger. In the s-wave scattering, the scattering length diverges, and other scales become

negligible in the B = 0 limit. In this case, all physical quantities are scale invariant.

Let us consider the realization of the universality with the following example. By comparing

hadron and atomic systems, they have different typical energy scales, which can be estimated from

the interaction in the system. For instance, the typical scale of hadrons (atoms) is estimated by the

strong interaction ∼ 1 fm = 10−15 m (the Coulomb interaction ∼ 1 Å= 10−10 m). Even with this

difference, however, the physical quantities in both systems can be estimated by the same equation as

shown in the following. Here we consider the deuteron and 4He dimer as the shallow bound states near

the threshold.6 As a consequence of the low-energy universality, the binding energy B of the shallow

bound state is written only by the scattering length a0:

B ∼ 1

2µa20
. (1.15)

By substituting the scattering length of the deuteron (a0 = 1.75 fm) [84] and that of 4He dimer

[a0 = 189 Bohr radius (B.R.)] [85] to Eq. (1.15), the binding energy is estimated as [80, 77]

Bestimated
d = 1.41 [MeV] (deuteron), (1.16)

Bestimated
4He = 1.21 [mK] (4He dimer). (1.17)

where unit mK means the millikelvin. For comparison, we also show the observed binding energy:

Bobserved
d = 2.22 [MeV] (deuteron), (1.18)

Bobserved
4He = 1.30 [mK] (4He dimer), (1.19)

The ratios RB of the estimated binding energies Bestimated to the observed ones Bobserved are obtained

as follows

RB =
|Bobserved −Bestimated|

Bobserved
, (1.20)

64He dimer is the shallow bound state of the two-body 4He atom by the van der Waals force.
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RB,d = 0.36 (deuteron), (1.21)

RB,4He = 0.07 (4He dimer), (1.22)

Equations (1.21) and (1.22) show that the deviation between the observed and estimated binding

energies is small. This indicates that the binding energy of shallow bound states can be roughly

estimated using Eq. (1.15), while the deuteron and 4He dimer have very different scales such as ∼
MeV and ∼ mK. In this way, the realization of the universality is demonstrated. We note that Bratio

of the deuteron is not negligible when compared to that of 4He dimer case. As shown below, this

suggests the necessity of the range correction to the deuteron, where the contribution of higher-order

terms is important.

We then apply the idea of the low-energy universality to discuss the nature of near-threshold

hadrons by focusing on the radius of the wavefunction. When a bound state exists near the threshold

to the extent that universality holds, the radius of the wavefunction R also becomes large with the

scattering length a0:

R =
1√
2µB

∼ a0. (1.23)

In this sense, the size of the shallow bound state is naively expected to be large. Intuitively, this fact

seems to suggest that the shallow bound state is the hadronic molecular state, whose size is larger

than the typical scale of hadrons.

In fact, this expectation is empirically supported by the α-clustering phenomena in nuclear physics.

It is known that in the energy region near the threshold of α particles (the 4He nuclei), the molecular-

like structure of α particles is observed as the clustering phenomenon. In the clustering phenomena,

the nucleons first form α particle as a subunit, and then these subunits compose the molecular-like

nuclei, in contrast to the ordinary nuclei directly composed of nucleons. For example, the 8Be nucleus

exists near the two-α threshold, and it is known as the tw0-α composite state [86, 87]. Another well-

known example is the excited state of the 12C nucleus near the three-α threshold, called the Hoyle

state. The Hoyle state is the weakly bound state of three α particles, while the 12C ground state is

the tightly bound state of twelve nucleons [88]. Based on the various observations of the clustering

phenomena, it is expected that

molecular-like structure is formed in a near-threshold state as a consequence of the clus-

tering phenomena.

This idea is called the threshold rule [89, 90], and empirically confirmed by the above examples in

nuclear physics. As an analogy to the clustering phenomena in nuclear physics, the hadronic molecules

can be formed by the clustering of quarks. It is known that the clustering phenomena are widely

observed across the hierarchy of matters, from hadrons to molecules (Fig. 1.8).

1.4 Aim of this thesis

As outlined so far, the establishment of the internal structure of the exotic hadrons such as Tcc(3875)
+

and X(3872) attracts much interest. The structure of exotic hadrons can be characterized using the

compositeness, the fraction of the hadronic molecular component in the wavefunction. Because most
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Figure 1.8: The illustration of the hierarchical structure of the matter in nature and the clustering

phenomena.

of the exotic hadrons are observed in the near-threshold energy region, the low-energy universality is

helpful in understanding the nature of exotic hadrons.

Against this background, we will discuss the universal nature of the near-threshold bound states

using the compositeness. To study the internal structure of shallow bound states, let us start by

recalling the threshold rule in nuclear physics, which states that the molecular-like structure appears

in the near-threshold energy region. By applying the threshold rule to hadron systems, the near-

threshold exotic hadrons are naively expected to have a hadronic molecular structure. In the context

of the compositeness X, shallow bound states are expected to have X ∼ 1. However, the threshold rule

is empirical and not established in a theoretical manner. In fact, Refs. [91, 92] show that in the energy

region other than on the threshold, it is possible to have the arbitrary value of the compositeness

within 0 < X < 1, even if the binding energy is small. In other words, the non-composite shallow

bound states can always be realized, contrary to the expectation from the threshold rule. There arises

a question: why does the threshold rule appear to align with the observations in nuclear physics?

In this context, we aim to establish the theoretical foundation of the threshold rule and provide a

theoretical justification for considering shallow bound states as having a molecular-like structure, in

analogy with nuclear physics.

As an initial step, we consider the compositeness of shallow bound states in the simplest case,

the single-channel system, from the viewpoint of the low-energy universality. We then move on to

more realistic situations, by recalling that exotic hadrons have the decay and couplings to other
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channels. References [93, 94] indicate that the compositeness of the shallow bound states is affected

by contributions of decay and higher coupled channels. In light of this, we qualitatively investigate the

contributions of decay and channel couplings to the compositeness of near-threshold states. Finally,

we apply this framework to the representative near-threshold exotic hadrons, Tcc(3875)
+ and X(3872).

We calculate the compositeness of these exotic hadrons and discuss the internal structure. In summary,

the following four topics are discussed in this thesis;

(a) the universal nature of shallow bound states in a single-channel system using the compositeness;

(b) how the compositeness is affected by the presence of the decay;

(c) how the compositeness is affected by the presence of the channel coupling; and

(d) the internal structure of Tcc(3875)
+ and X(3872).

This thesis is organized as follows. In the next Chapter 2, we introduce the scattering theory and

the definition of resonances. We then present the Feshbach method to describe coupled channel systems

in Chapter 3 [74]. To discuss the universal nature of near-threshold states, we introduce the effective

field theory models (Chapter 4) [95, 71, 74]. In Chapter 5, using the above formulations, we define the

compositeness of bound states and resonances together with the useful expressions [95, 96, 74]. The

evaluations of the compositeness of hadrons in previous works are summarized [74].

As the main topic of this thesis, we study the internal structure of the near-threshold states in

Chapter 6 [71]. In the first Section 6.1, we discuss the threshold rule from the viewpoint of the low-

energy universality in relation to the problem (a) discussed above. Here we employ the effecrive field

theory model in Section 4.1 and the expression of the compositeness of bound states in Section 5.3. In

the next Sections 6.3 and 6.4, we examine the contributions of the decay and channel coupling to the

compositeness of shallow bound states to address the issues (b) and (c) using the model developed in

Section 4.2. As an application of these formulations, in Section 6.5, we discuss the internal structure of

the exotic hadrons Tcc(3875)
+ and X(3872) [topic (d)] [96]. The last chapter is devoted to a summary.
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Chapter 2

Scattering theory and resonances

Here we introduce the basic concepts to consider exotic hadron systems. Historically, hadron in-

teractions have been studied through scattering experiments. Therefore, the scattering theory has

been used to extract hadron interaction from the experimental observables. Here we formulate the

non-relativistic two-body scattering theory. In Section 2.1, we first summarize the eigenstates of the

Hamiltonian. The t-matrix and scattering amplitude are used to describe the scattering process. The

definition and useful expressions of the t-matrix and scattering amplitude are given in Section 2.2

and Section 2.3. Furthermore, most exotic hadrons are unstable states which decay into the ground

state hadrons through　 the strong interaction, as mentioned in the introduction. Unstable states are

called resonances in the scattering theory. In the Schrödinger equation, resonances are described as

the generalized discrete eigenstates of the Hamiltonian. Through the classification of the eigenstates

of the Hamiltonian, we summarize the properties of resonances in Section 2.4. The unstable nature

of resonances prevents us from normalizing their wavefunctions. Thus, we introduce the generalized

eigenvector (the Gamow vector) to define meaningful expectation values in Section 2.5.

2.1 Hamiltonian and eigenstates

We discuss the non-relativistic, two-body, and single-channel s-wave scatterings with short-range po-

tential. In this formulation, we consider the particles without the internal degrees of freedom such

as the spin and isospin. We introduce the stationary scattering states (Section 2.1.1) and eigenstates

of the free Hamiltonian (Section 2.1.2), which are used to define the compositeness in later sections.

The relation between the scattering eigenstates is shown as the Lippmann-Schwinger equation in Sec-

tion 2.1.3.

2.1.1 Asymptotic eigenstates

We formulate the non-relativistic two-body scatterings based on the Hamiltonian which satisfies the

following time-dependent Schrödinger equation:

i
∂

∂t
ψ(t, r) = Ĥψ(t, r). (2.1)
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If the Hamiltonian does not explicitly depend on time, the system can be described by the time-

independent scattering problem. In this case, the wavefunction can be factorized as

ψ(t, r) = ϕ(t)Ψ(r). (2.2)

The time-dependent part ϕ(t) is obtained from Eq. (2.1) as

ϕ(t) = Ce−iEht, (2.3)

with a constant C and the eigenenergy Eh which is given by the time-independent Schrödinger equation:

ĤΨ(r) = EhΨ(r). (2.4)

In the following, we focus on the coordinate space wavefunction Ψ(r).

We denote the state vector as |Ψ⟩ such that ⟨r|Ψ⟩ = Ψ(r). Using the state vector, the Schrödinger

equation is written as

Ĥ |Ψ⟩ = Eh |Ψ⟩ . (2.5)

For a short-range potential, the asymptotic (stationary) scattering states |p,±⟩ exist in the Hilbert

space, with the eigenmomentum p being a continuous valiable1. Here we assume that the system also

has one bound state |B⟩. In this setup, Eq. (2.5) reads

Ĥ |p,±⟩ = Ep |p,±⟩ , Ep =
p2

2µ
, (2.6)

Ĥ |B⟩ = −B |B⟩ , (2.7)

where µ is the reduced mass of the system and B > 0 is the binding energy of |B⟩.
The bound state can be normalized as

⟨B|B⟩ = 1, (2.8)

because its wavefunction ⟨r|B⟩ vanishes at large distance r → ∞. For the normalization of the

interacting scattering states, we use the following condition2

⟨p′,±|p,±⟩ = δ(p′ − p). (2.9)

Because |p,±⟩ and |B⟩ are the eigenstates of the same Hamiltonian Ĥ with different eigenvalues, they

are orthogonal:

⟨B|p,±⟩ = 0. (2.10)

We assume the validity of the following completeness relation [97]:

1 =

∫
dp |p,±⟩ ⟨p,±|+ |B⟩ ⟨B| . (2.11)

1The interacting scattering state asymptotically behaves as the free scattering state at the large distance [97].
2We use this normalization in quantum mechanics in Chapters 2 and 3, while we adopt a different normalization in

the field theory framework in Chapter 4. See Section 2.3.2 for the summary of differences.
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2.1.2 Free eigenstates

For later discussions, we decompose the full Hamiltonian Ĥ intro the free Hamiltonian Ĥ0 and inter-

action V̂ :

Ĥ = Ĥ0 + V̂ . (2.12)

The explicit forms of Ĥ0 and V̂ can be chosen depending on the specific context under consideration.

As a simple example, we consider the following free Hamiltonian:

Ĥ0 |p⟩ = −∇2

2µ
|p⟩ = Ep |p⟩ (2.13)

Here |p⟩ are the free scattering states with the eigenenergy Ep, which are normalized as

⟨p′|p⟩ = δ(p′ − p). (2.14)

The completeness relation in this case is given only with the free scattering states:

1 =

∫
dp |p⟩ ⟨p| . (2.15)

The solution of Eq. (2.13) in the coordinate space ⟨r|p⟩ is the plane wave

⟨r|p⟩ ∼ eip·r. (2.16)

While the free scattering states ⟨r|p⟩ have the same eigenenergy Ep with interacting scattering states

⟨r|p,±⟩, their wavefunctions are different from each other because the latter contains the effect of the

interaction.

Here we emphasize that the decomposition of the full Hamiltonian into Ĥ0 and V̂ is not unique.

As a decomposition suitable for introducing the compositeness, we consider a different case where free

Hamiltonian Ĥ0 has not only the scattering eigenstates |p⟩ but also a discrete eigenstate |ϕ⟩ with the

eigenenergy ν0. Namely, this Hamiltonian leads to the Schrödinger equations

Ĥ0 |p⟩ = Ep |p⟩ , (2.17)

Ĥ0 |ϕ⟩ = ν0 |ϕ⟩ . (2.18)

The discrete state |ϕ⟩ is sometimes called the bare state, in analogy with the quantum field theory.

This setup essentially corresponds to the coupled-channel system, as shown in the Feshbach method

in Chapter 3. The completeness relation in this case is given by

1 =

∫
d3p |p⟩ ⟨p|+ |ϕ⟩ ⟨ϕ| . (2.19)

The free scattering states and the discrete bare state are also orthogonal with each other and normalized

as

⟨ϕ|p⟩ = 0, (2.20)

⟨p′|p⟩ = δ(p′ − p), (2.21)

⟨ϕ|ϕ⟩ = 1. (2.22)

In general, Ĥ0 and V̂ can be chosen arbitrarily without modifying the full Hamiltonian Ĥ [98, 75]. It

is shown that the formulation with Ĥ0 in Eq. (2.13) can be converted to another formulation with Ĥ0

in Eqs. (2.17) and (2.18) by adjusting the interaction V̂ appropriately.
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2.1.3 Lippmann-Schwinger equation for eigenstates

Let us consider the relation between the scattering eigenstates of the full Hamiltonian |p,±⟩ and those

of the free Hamiltonian |p⟩. This relation called the Lippmann-Schwinger equation (L-S equation),

can be derived from the Schrödinger equation (2.6). Using Eq. (2.12), the Schrödinger equation (2.6)

can be written by Ĥ0 and V̂ :

V̂ |p,±⟩ = (Ep − Ĥ0) |p,±⟩ . (2.23)

The Schrödinger equation for the free Hamiltonian Ĥ0 (2.13) leads

−(Ep − Ĥ0) |p⟩ = 0. (2.24)

Combining these two, we then obtain

V̂ |p,±⟩ = (Ep − Ĥ0)(|p,±⟩ − |p⟩). (2.25)

Here we define the free Green’s operator as

Ĝ0(z) = (z − Ĥ0)
−1, (2.26)

which satisfies

Ĝ0(z) |p⟩ =
1

z − Ep
|p⟩ . (2.27)

Using Ĝ0, Eq. (2.25) can be written as

|p,±⟩ = |p⟩+ Ĝ0(Ep)V̂ |p,±⟩ . (2.28)

This is called the L-S equation for the wavefunction. We note that Eq. (2.28) with operators does not

depend on the explicit form of Ĥ0, while its coordinate representation can be different depending on

the completeness relation.

2.2 Expressions of t-matrix

The stationary scatterings are formulated using the T -operator and Green’s operator, which will be

introduced in this section. Here we present the definition of T -operator and t-matrix, the matrix

element of the T -operator (Section 2.2.1). Then we show several equations for the t-matrix with free

and full Hamiltonians (Section 2.2.2 and 2.2.3).

2.2.1 T -operator and t-matrix

The T -operator is defined for an arbitrary energy z as [97]

T̂ (z) = V̂ + V̂ Ĝ(z)V̂ . (2.29)

Here V̂ is the interaction defined in Eq. (2.12). Ĝ(z) is the full Green’s operator:

Ĝ(z) = (z − Ĥ)−1, (2.30)
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which corresponds to the propagator with the full Hamiltonian. This definition shows that when Ĝ(z)

diverges, T̂ (z) also diverges. Namely, Ĝ(z) and T̂ (z) have poles at the same energy z. Here we define

the free Green’s operator Ĝ0(z) [97]

Ĝ0(z) = (z − Ĥ0)
−1, (2.31)

which is the propagator with the free Hamiltonian. It is shown that these operators are related to each

other as follows [97]:

Ĝ(z)V̂ = Ĝ0(z)T̂ (z). (2.32)

Substituting Eq. (2.32) into the definition (2.29), T -operator is shown to satisfy the relation with

G0

T̂ (z) = V̂ + V̂ Ĝ0(z)T̂ (z). (2.33)

This is called the L-S equation for the T -operator. By substituting T̂ (z) in the left-hand side into that

in the right-hand side iteratively, we find the T -operator is expressed by an infinite sum of V̂ and Ĝ0

T̂ = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ Ĝ0V̂ + ... (2.34)

This expansion shows that the T -operator represents the sum of the multiple scatterings (the Born

series).

To discuss the scattering problem, it is convenient to consider the t-matrix. The off-shell t-matrix

is defined as the matrix element of T̂ (z) with the initial momentum p and final momentum p′:

t(z;p,p′) = ⟨p′|T̂ (z)|p⟩ , (2.35)

where the matrix element is taken by the free scattering states in Eq. (2.17). The energy z and

momenta p, p′ can be chosen arbitrary in the off-shell t-matrix. On the other hand, to describe

physical scatterings, the energy should be conserved |p| = |p′|, and the magnitude of momentum

should satisfy |p| =
√
2µz (the on-shell condition) with a real and positive energy z = Ep. By

imposing these conditions, we obtain the on-shell t-matrix t(Ep):

t(Ep) = ⟨p′|T̂ (Ep + i0+)|p⟩
∣∣∣
Ep=E′

p

. (2.36)

Note that the on-shell t-matrix does not depend on the scattering angle cos θ = p′ ·p/|p|2 in the s-wave

case that we consider in this thesis.

In the following, we derive the two expressions of the on-shell t-matrix for later discussion;

• the L-S equation for t-matrix which is derived from Eq. (2.33) using the completeness relation

of the eigenstates of the free Hamiltonian (2.15); and

• the Low-equation which is derived from Eq. (2.29) using the completeness relation of the eigen-

states of the full Hamiltonian (2.11).
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2.2.2 Lippmann-Schwinger equation for t-matrix

Here we derive the L-S equation for the on-shell t-matrix. By calculating the matrix element of the

L-S equation for the T -operator (2.33), the equation for the off-shell t-matrix is obtained as

t(z;p,p′) = ⟨p|V̂ |p′⟩+
∫
dq

⟨p|V̂ |q⟩
z − Eq

t(z; q,p′), (2.37)

where we use the completeness relation (2.15). In general, the L-S equation is an integral equation for

t(Z;p,p′) due to the second term. When the free Hamiltonian Ĥ0 and the interaction V̂ are given, we

can calculate the t-matrix using Eq. (2.37).

It is known that when the interaction is separable, the L-S equation can be reduced to the algebraic

equation, which is tractable to solve. If the matrix element of V̂ can be factorized as the product of

functions of p and p′, the interaction is called separable:

⟨p|V̂ |p′⟩ = V F (p)F (p′), (2.38)

where F (p) is the form factor normalized at the on-shell momentum as

F (p)|
p=

√
2µEp

= 1. (2.39)

When the interaction V is separable, it is shown from Eq. (2.29) that the t-matrix becomes also

separable with the same form factors:

t(z;p,p′) = τ(z)F (p)F (p′), (2.40)

where we denote the energy-dependent part as τ(z). By substituting this expression into the L-S

equation (2.37), we find that τ(z) satisfies the following algebraic equation:

τ(z) = V + V G0(z)τ(z), (2.41)

with the Green’s function G0(z) defined as

G0(z) =

∫
dq

|F (q)|2

z − Eq + i0+
. (2.42)

In this way, we obtain the explicit form of the off-shell t-matrix for the separable potential. Imposing

the on-shell condition, we obtain

t(Ep) = τ(Ep)|F (p)|2 = τ(Ep). (2.43)

Therefore, the L-S equation for the on-shell t-matrix with the separable potential is derived as

t(Ep) = V + V G0(Ep)t(Ep). (2.44)

This leads to the on-shell t-matrix t(Ep) as the following closesd form:

t(Ep) = [V −1 −G0(Ep)]
−1. (2.45)

The L-S equation (2.45) cannot be directly applied to the system with a discrete bare state |ϕ⟩ (2.19)
introduced in Sec. 2.1, because Eq. (2.45) is derived based on the completeness relation (2.15). The
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systems with |ϕ⟩ can be reduced to the systems only with |p⟩ where the L-S equation is applicable, by

embedding the contribution of |ϕ⟩ into the interaction V (the channel elimination). In this case, the

interaction V is replaced by the effective interaction Veff(Ep) with the implicit contribution from |ϕ⟩,
and the L-S equation becomes:

t(Ep) = [V −1
eff (Ep)−G0(Ep)]

−1, (2.46)

if the effective interaction is separable. In general, Veff has an energy dependence due to the channel

elimination. The detailed derivation of Veff is shown in Chapters 3 and 4.

With the L-S equation, we obtain the on-shell t-matrix from the free Hamiltonian Ĥ0 and interaction

V̂ . The eigenenergy of the full Hamiltonian is extracted from the pole of the on-shell t-matrix in this

case. In the later discussion, we will mainly use the L-S equation (2.46) to calculate the scattering

amplitude and compositeness.

2.2.3 Low equation

We also derive the integral equation for t-matrix, called the Low equation [99], by using the complete-

ness relation (2.11). By calculating the matrix element of T̂ (z) (2.29) in terms of |p⟩, we obtain the

following relation

t(z;p,p′) = ⟨p′|V̂ |p⟩+ ⟨p′|V̂ Ĝ(z)V̂ |p⟩

= ⟨p′|V̂ |p⟩+ ⟨p′| V̂ |B⟩ ⟨B| 1

z − Ĥ
V̂ |p⟩+

∫
dq ⟨p′| V̂ |q,±⟩ ⟨q,±| 1

z − Ĥ
V̂ |p⟩

= ⟨p′|V̂ |p⟩+ ⟨p′| V̂ |B⟩ ⟨B| V̂ |p⟩
z +B

+

∫
dq

⟨p′| V̂ |q,±⟩ ⟨q,±| V̂ |p⟩
z − Eq

. (2.47)

From this equation, the integral equation for the t-matrix is obtained by rewriting the third term:

t(z;p,p′) = ⟨p′|V̂ |p⟩+ ⟨p′| V̂ |B⟩ ⟨B| V̂ |p⟩
z +B

+

∫
dq

⟨p′| T̂ (Eq ± i0+) |q⟩ ⟨q| T̂ (Eq ∓ i0−) |p⟩
z − Eq

(2.48)

= ⟨p′|V̂ |p⟩+ ⟨p′| V̂ |B⟩ ⟨B| V̂ |p⟩
z +B

+

∫
dq

t(Eq ± i0+;p′, q)t(Eq ∓ i0+; q,p)

z − Eq
, (2.49)

where we use the relation between the asymptotic and free scattering states [97]:

V̂ |p,±⟩ = T̂ (Ep ± i0+) |p⟩ . (2.50)

The sign is determined to be + when the initial state is the interacting scattering states:

⟨p′|T̂ (Ep + i0+)|p⟩ = ⟨p′|V̂ |p,+⟩ , ⟨p′|T̂ (Ep + i0+)|p⟩ = ⟨p′,−|V̂ |p⟩ . (2.51)

One of the solutions of Eq. (2.49) is obtained as the on-shell t-matrix which satisfies the following

equation [72, 17]:

t(Ep) = ⟨p| V̂ |p⟩+ | ⟨p| V̂ |B⟩ |2

Ep +B
+ 4π

√
2µ3

∫ ∞

0

dEq

√
E′|t(Eq)|2

Ep − Eq + i0+
. (2.52)

This is called the Low equation.
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The Low equation is utilized to derive the weak-binding relation for the compositeness in Weinberg’s

pioneering work [72] and related papers such as Refs. [17, 100]. In the s-wave scatterings, the transition

from the bound state to the scattering states ⟨p| V̂ |B⟩ is written as

⟨p| V̂ |B⟩ = gthF (Ep), (2.53)

where F (Ep) is the form factor which is normalized as F (0) = 1 and gth is the coupling constant of

the bound state pole at the threshold Ep = 0. The form factor should vanish at large Ep for the

finite-range interaction. The Low-equation is then given by

t(Ep) = ⟨p| V̂ |p⟩+ g2th|F (Ep)|2

Ep +B
+ 4π

√
2µ3

∫ ∞

0

dEq

√
Eq|t(Eq)|2

Ep − Eq + i0+
. (2.54)

Note that the Low equation explicitly contains the binding energy B, in contrast to the L-S equation.

Therefore, the Low equation is useful when the binding energy is given. For example, the residue of

the t-matrix at the bound state pole g2 can be calculated from Eq. (2.54):

g2 = lim
E→−B

(E +B)t(E) (2.55)

= g2th|F (−B)|2. (2.56)

We will use these relations to derive the expressions of the compositeness in Chapter 5.

2.3 Scattering amplitude

In this section, we first define the scattering amplitude (Section 2.3.1) and show the relation between

the on-shell t-matrix and the scattering amplitude (Section 2.3.2). In Section 2.3.3, we then introduce

the effective range expansion and the optical theorem.

2.3.1 Definition of scattering ampllitude

In general, the scattering amplitude f(Ep, θ) depends on the energy Ep and scattering angle θ. The

scattering amplitude can be extracted from the asymptotic scattering wavefunction at large distance

r → ∞ [97]:

⟨r|p,+⟩ → (2π)−3/2

[
eip·r + f(Ep, θ)

eipr

r

]
(r → ∞). (2.57)

The first (second) term represents the incoming plane wave (outgoing spherical wave), and f(Ep, θ)

controls Ep and θ dependence of the outgoing waves. Therefore, the information of the scattering is

contained in the scattering amplitude.

The scattering amplitude is expanded using the Legendre polynomial Pl (partial-wave expan-

sion) [97]

f(E, θ) =

∞∑
l=0

(2l + 1)fl(E)Pl(cos θ), (2.58)

where l is the angular momentum. In this expansion, fl(E) is called the partial-wave amplitude. In

this thesis, we focus on the s-wave scattering near the threshold, where the contribution from higher

partial waves can be neglected. We simply denote the s-wave amplitude f0(E) as f(E) in the following.
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2.3.2 Relation between on-shell t-matrix and scattering amplitude

It is known that the on-shell t-matrix t(k) is related to the scattering amplitude f(E) by the following

relation [97]:

f(E) = −µ(2π)2t(E) (quantum mechanics). (2.59)

The coefficient −µ(2π)2 is chosen to be consistent with the convention of the normalization of the

continuum states (2.21). We may adopt a different convention, for example, the normalization which

is often used in the non-relativistic quantum field theory

⟨p′|p⟩|FT = (2π)3(p′ − p) (field theory). (2.60)

The continuum states in Eq. (2.60) (|p⟩ |FT) is related with those in Eq. (2.21) (|p⟩ |QM) as

|p⟩|FT = (2π)3/2 |p⟩|QM . (2.61)

Because the t-matrix (2.36) is defined by the matrix element with |p⟩, the relation between f(E) and

t(E) in this convention becomes different from Eq. (2.59) by a (2π)3 factor:

f(E) = − µ

2π
t(E) (field theory). (2.62)

In the same way, the Green’s function G0(z) is given by

G0(z) =

∫
dq

(2π)3
|F (q)|2

z − Eq + i0+
(field theory). (2.63)

We use Eq. (2.21) in this chapter and Chapter 3 where we work in the framework of the quantum

mechanics, and Eqs. (2.60) and (2.62) in Chapter 4 and 6 where the effective field theory is utilized.

We note that while the choice of the convention modifies the relations containing |p⟩ such as the

completeness relation (2.15), the observables and compositeness remain unchanged [74].

2.3.3 Effective range expansion and optical theorem

In general, the denominator of the s-wave scattering amplitude can be expressed by the phase shift δ:

f(p) =
1

p cot δ − ip
. (2.64)

It is known that p cot δ can be expanded in powers of p2:

f(p) =

[
− 1

a0
+
re
2
p2 +O(p4)− ip

]−1

. (2.65)

This expansion of the denominator of f(p) is called the effective range expansion (ERE).3 Here the

coefficients a0 and re are called the scattering length and effective range, respectively. The ERE (2.65)

3The expansion (2.65) is the expression for the s-wave with the angular momentum l = 0. For arbitrary l, the effective

range expansion is given by

fl(p) =
p2l

− 1
al

+ rl
2
p2 +O(p4)− ip2l+1

.
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provides the general form of the scattering amplitude in the low-energy region, and a0 and re charac-

terize that behavior. We note that the sign convention of a0 can be different from that in Eq. (2.65).

For example, in hadron physics, a definition with the opposite sign a0 = f(0) is also used. In this

thesis, we adopt the definition in Eq. (2.65), namely, a0 = −f(0).
It is known that the imaginary part of the scattering amplitude f(E) is related to the s-wave cross

section σ(E) (the optical theorem for partial waves) [97]:

Im f(E) =
p

4π
σ(E), (2.66)

σ(E) = 4π|f(E)|2, (2.67)

which is derived from the unitarity of the s-matrix. By writing Eqs. (2.66) and (2.67) with f(E) and

f∗(E), it is shown that

Im
1

f(E)
= −p. (2.68)

Thus, the −ip term in the denominator of the scattering amplitude (2.64) is required by the unitarity

through Eq (2.68).

2.4 Discrete eigenstates of Hamiltonian

From now on, we discuss the eigenstates of the Hamiltonian. In Section 2.1, only the bound state

is considered as the discrete eigenstate of the Hamiltonian, for simplicity. However, in addition to

the bound states, there are also eigenstates classified into the virtual states and resonances, according

to their eigenenergy. As a preparation to show the properties of these eigenstates, we first consider

how to obtain the bound state solution from the asymptotic wavefunction in Section 2.4.1. We then

summarize the classification of the eigenstates in Section 2.4.2. We finally present the typical behavior

of wavefunctions of different eigenstates and discuss their properties in Section 2.4.3.

2.4.1 outgoing boundary condition

For the classification of the eigenstates, let us first consider the boundary condition for the bound

states using the general solution of the Schrödinger equation. In the r → ∞ limit, the potential is

assumed to vanish, and the solution corresponds to the superposition of plane waves. Because the

eigenenergy of the scattering states is real and positive E > 0, the eigenmomentum of the scattering

states p =
√
2µE is also real and positive. Using the eigenmomentum, the asymptotic behavior of the

scattering state is written as

u(r) → A−(p)e−ipr +A+(p)e+ipr, (r → ∞), (2.69)

where u(r) is defined as the s-wave component of the radial wavefunction ul(r) with l = 0:

⟨r|Ψ⟩ = ul(r)

r
Y lm(θ, ϕ). (2.70)

As seen in Eq. (2.69), the wavefunction of the scattering states is written as a linear combination of

the incoming wave e−ipr and outgoing wave e+ipr.
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We then consider expressing a bound state wavefunction by starting from the general solution (2.69).

As is known, bound states have a negative binding energy E = −B < 0. If we define real and positive

κ =
√
2µB, the asymptotic behavior of u(r) is written as

u(r) → A−(iκ)e+κr +A+(iκ)e−κr (r → ∞). (2.71)

To obtain the bound state solution, we impose the boundary condition A−(iκ) = 0 so that the diverging

component e+κr vanishes.

By comparing Eqs. (2.69) and (2.71), we find that Eq. (2.71) corresponds to Eq. (2.69) with the

complex eigenmomentum p = iκ. This indicates that Eq. (2.71) can also be regarded as Eq. (2.69) with

the analytic continuation of the momentum p in the complex plane p ∈ C which is originally defined

as a real quantity. Here we focus on the discrete eigenstates obtained by imposing the condition

A−(p) = 0, (2.72)

to Eq. (2.69) with a complex p as in the bound state cases [101]. This condition is called the outgo-

ing boundary condition, with which only the outgoing wave e+ipr remains. The outgoing boundary

condition is equivalently expressed by the Siegert boundary condition [102, 103, 101]:

du(r)

dr
= ipu(r). (r → ∞). (2.73)

The coefficient of the incoming wave A−(p) is proportional to the Jost function [97]. It can be shown

that the scattering amplitude f(p) is related to A−(p) as

f(p) ∝ 1

A−(p)
. (2.74)

From this relation, we find that the pole position of the scattering amplitude in the complex momentum

plane corresponds to the eigenmomentum of the Hamiltonian.

2.4.2 Classification of eigenstates

Let us classify generalized eigenstates of Hamiltonian obtained from the outgoing boundary condition.

In the discussion above, we see that bound states have pure imaginary eigenmomenta p = iκ in

the complex momentum plane. Discrete eigenstates with a general eigenmomentum p = |p|eiθp are

classified into

• bound states: positive-pure-imaginary eigenmomentum p = iκ (θp = π/2);

• virtual (anti-bound) states: negative-pure-imaginary eigenmomentum p = −iκV with κV > 0

(θp = 3π/2);

• resonances: complex eigenmomentum in the 7π/4 < θp < 2π region; and

• anti-resonances: complex eigenmomentum in the π < θp < 5π/4 region.

In Fig 2.1, we show the classification of the eigenstates in the complex momentum plane. The states

in 3π/2 < θp < 7π/4 are called virtual states with width or resonance below the threshold, and

5π/4 < θp < 3π/2 are the conjugate states of them.
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Figure 2.1: The classification of their eigenstates by the eigenmomentum (poles of the scattering

amplitude) in the complex momentum p plane.

The eigenstates are also classified by the eigenenergy E = p2/(2µ). The eigenmomentum p = |p|eiθp
is related to the eigenenergy E = |E|eiθE as

|E|eiθE =
|p|2e2iθp

2µ
. (2.75)

From this relation, we find 2θp = θE . Therefore, the argument of the momentum in the 0 ≤ θp < 2π

region corresponds to that of the energy in the 0 ≤ θE < 4π region. This means that to express the

whole complex momentum plane, we need two Riemann sheets for the complex energy plane. The

energy plane with 0 ≤ θE < 2π (2π ≤ θE < 4π) is called the first (second) Riemann sheet, which

corresponds to the upper (lower) half of the momentum p plane. From this relation, we now show the

classification of the eigenstates in terms of the complex eigenenergy E = |E|eiθE . Here we denote the

argument of the first and second Riemann sheets θIE = θE and θIIE = θE − 2π, respectively.

• Bound states: real and negative eigenenergy E = −B = −κ2/(2µ) < 0 (θIE = π) in the first

Riemann sheet;

• virtual (anti-bound) states: real and negative eigenenergy E = −EV = −κ2V /(2µ) < 0 (θIIE = π)

in the second Riemann sheet;

• resonances: complex eigenenergy in the 3π/2 < θIIE < 2π region of the second Riemann sheet;

• anti-resonances: complex eigenenergy in the 0 < θIIE < π/2 region of the second Riemann sheet;

In this way, only the bound states exist in the first Riemann sheet. We show the classification of the

eigenstates in Fig. 2.2. We note that on the positive real axis Re E > 0, A−(p) is discontinuous.

The branch cut associated with this discontinuity is called the unitary cut. Because the t-matrix and

scattering amplitude have the same analytic properties with A−(p) as shown in Eq. (2.74), they also

have the unitarity cut on the positive real axis.

Here we emphasize that the position of the eigenmoomentum is restricted to the region on the

imaginary axis or the lower half of the momentum plane. This region corresponds to the negative

real axis in the first Riemann sheet or the second Riemann sheet in the energy plane. This relation

is understood by the square integrability of the wavefunction. By imposing the outgoing boundary
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Figure 2.2: The classification of the eigenstates by their eigenenergy (poles of the scattering amplitude)

in the complex energy E plane. The left (right) panel shows the first (second) Riemann sheet which

corresponds to the upper (lower) half of the p plane. The wiggly lines stand for the unitarity cut.

condition to Eq. (2.69), we see the wavefunction u(r) behaves at large distance as

u(r) → A+(p)ei(Re p+i Im p)r = A+(p)eiRe p·r−Im p·r (r → ∞). (2.76)

In the upper half of the momentum plane Im p > 0, the r integration of |u(r)|2 converges thanks to

the dumping term e− Im p·r. This means that the wavefunction is square integrable in the upper half

of the momentum plane (first Riemann sheet of the energy plane). The Hamiltonian is Hermitian

with the square-integrable functions, and the eigenvalue, in this case, must be real. Therefore, the

eigenstates are not allowed to exist in the upper half of the momentum plane, except for the imaginary

axis. On the other hand, in the lower half of the momentum plane with Im p < 0 (second Riemann

sheet of the energy plane), the integration of |u(r)|2 diverges due to the factor e− Im p·r = e+| Im p|r.

Therefore, the Hamiltonian becomes non-Hermitian with non-integrable functions, and it is possible

to have a complex eigenvalue. Because unstable resonances have a complex eigenenergy as shown

below, we classify the poles in the lower half of the momentum plane into resonances. At the same

time, this non-Hermitian nature of Hamiltonian induces some difficulties; Eq. (2.76) indicates that the

wavefunction of the states in the lower half of the momentum plane diverges at a large distance, which

is explicitly demonstrated in the next subsection. In this sense, the virtual states, resonances, and

anti-resonances should be regarded as the generalized discrete eigenstates of the Hamiltonian, because

they have a qualitatively different nature from bound states.

2.4.3 Wavefunction of discrete eigenstates

Here we show the difference among bound states, virtual states, and resonances from the viewpoint of

the wavefunction. For demonstration, we adopt the rectangular potential to calculate the wavefuction

setting µ = 1, all the quantities are measured in powers of length.

Bound states

When two particles are bound together to form a stable composite state by the attractive interaction,

such state is called the bound state |B⟩. From Eq. (2.69), the asymptotic behavior of the wavefunction

of discrete eigenstates is proportional to e+ipr under the outgoing boundary condition (2.72). Because

the eigenmomentum of the bound state is p = iκ with κ > 0, the asymptotic form of the wavefunction
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Figure 2.3: The wavefunction of the bound state with the binding energy B = 6.8 [length−2] in the

attractive square well potential. The width of the well is 1 [length], and the depth is 10 [length−2].

of the bound state is written as

⟨r|B⟩ = 1√
4π

u(r)

r
→ 1√

4π

e−κr

r
(r → ∞), (2.77)

where κ =
√
2µB with the binding energy B. As seen in Eq. (2.77), the bound state wavefunction

decreases exponentially at large distance (r → ∞). We plot the absolute value square of the bound

state wavefunction |u(r)|2 in Fig. 2.3. In fact, we see that |u(r)|2 ∼ 0 at large r. Thanks to this

property, the wavefunction of the bound state is square integrable:

⟨B|B⟩ =
∫
dr | ⟨r|B⟩ |2 =

∫
dr |u(r)|2 <∞. (2.78)

Therefore, the bound state wavefunction can be normalized as ⟨B|B⟩ = 1. We note that |u(r)|2 is

localized in the interaction region (r < 1).

Virtual states

An attractive interaction does not always generate bound states. For example, if the attraction of the

square-well potential is not strong enough, we obtain a virtual state rather than a bound state. As

in the bound state case, the asymptotic form of the wavefunction of the virtual state at E = −EV is

governed by the virtual state eigenmomentum p = −iκV :

⟨r|V ⟩ ∼ e+κV r

r
(r → ∞), (2.79)

where κV =
√
2µEV > 0. From this equation, |u(r)|2 exponentially diverges at infinity. In Fig. 2.4,

we show the absolute value square of the virtual state wavefunction |u(r)|2. In fact, |u(r)|2 increases
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Figure 2.4: The wavefunction of the virtual state with the eigenenergy EV = 6.4 [length−2] in the

attractive square well potential. The width of the well is 1 [length], and the depth is 0.02 [length−2].

with r. In contrast to the bound states, the virtual states are not localized in the interaction region.

Instead, the virtual states can be regarded as the states localized at infinity, and they are also called

the anti-bound states. From Eq. (2.79), the norm of the virtual state diverges:

⟨V |V ⟩ =
∫
dr | ⟨r|V ⟩ |2 → ∞. (2.80)

Therefore, the wavefunction of the virtual state cannot be normalized.

Furthermore, it is known that the metric of the virtual states is negative [104]. For example, the

completeness relation of the system with only one virtual eigenstate is written as

1 =

∫
d3p |p,±⟩ ⟨p,±| − |V ⟩ ⟨V | . (2.81)

In the scattering amplitude, this nature is reflected as the negative residue of the virtual state pole.

The divergence of the virtual state norm (2.80) indicates that the expectation value of an operator

with the virtual states cannot be calculated. In this sense, the virtual states have a different nature

from the bound states and are regarded as generalized eigenstates.

When a virtual state exists near the threshold, it can affect the observables above the threshold.

For example, the attraction in the two-neutron system does not produce a bound state but a virtual

state near the threshold as indicated by the nn scattering length. This fact is important to understand

the nature of the nuclear force. Furthermore, the existence of the near-threshold virtual states in

coupled-channel scatterings is considered to affect the spectrum as the enhancement of the threshold

cusp [105].
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Resonances

A resonance is an unstable composite state of two particles while the bound state is stable. Unstable

resonances eventually decay into lower-energy scattering channels as time passes. Resonances appear

as the discrete eigenstates |R⟩ in the same way with bound and virtual states but with a complex

eigenenergy ER:

Ĥ |R⟩ = ER |R⟩ . (2.82)

The real part of ER is regarded as the mass of the resonance M , and the imaginary part is related to

the decay width of the resonance Γ > 0 as:

ER =M − Γ

2
i. (2.83)

Note that the imaginary part of ER is negative as shown in Fig. 2.2.

While the norm of stable bound states is constant in time, that of resonances depends on time t.

From Eq. (2.83), the time-dependent part of the resonance wavefunction (2.3) is written as

ϕ(t) ∼ e−iERt = e−iMt−(Γ/2)t. (2.84)

In this case, the square of the wavefunction decreases with Γ:

|ϕ(t)|2 ∝ e−Γt. (2.85)

This represents the exponential decay of unstable resonances and justifies the identification of Γ as

the decay width. As seen in Eq. (2.76), the resonance wavefunction is not square integrable in r due

to the growing component with Im pR < 0. We visualize this property by showing the square of the

wavefunction of a resonance in the repulsive square well potential [106, 107] (Fig. 2.5). We see that the

resonance wavefunction increases with r at a large distance, similar to virtual states. As a consequence,

the norm of the resonance diverges:

⟨R|R⟩ =
∫
dr | ⟨r|R⟩ |2 → ∞. (2.86)

Because of this non-square integrable nature, the wavefunction of the resonance cannot be normalized

in the standard nammer. However, there is a prescription to normalize the resonance wavefunction

by introducing the Gamow vector, as discussed in the next section. In the interaction region (r < 1),

|u(r)|2 is found to be localized in Fig. 2.5. The localization of the resonance wavefunction shows

similarity with the bound state wavefunction.

The states with ER =M+Γ/2 (Re pR < 0) are called the anti-resonances. In contrast to resonances

with decay, the square of the wavefunction of the anti-resonance increases with time:

|ϕ(t)|2 ∝ e+Γt. (2.87)

In this thesis, we do not consider anti-resonances.

2.5 Non-Hermitian Hamiltonian and Gamow vector

In this section, we introduce the Gamow vector to consider the expectation value of the resonances

|R⟩ which is the eigenstate of a non-Hermitian Hamiltonian. When the Hamiltonian is non-Hermitian
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Figure 2.5: The wavefunction of the resonance with the eigenenergy ER = 14− 1.9i [length−2] in the

square well potential with the repulsive square well potential. The width of the well is 1 [length], and

the height is 10 [length−2].

Ĥ† ̸= Ĥ, it is shown that the Hermite conjugate state ⟨R| = |R⟩†4 is not a left eigenstate of Ĥ but

that of Ĥ†:

(Ĥ |R⟩)† = ⟨R| Ĥ† = ⟨R|E∗
R. (2.88)

Let us turn to the expectation value of resonances. It is clear that the standard expectation value

⟨R|Ĥ|R⟩ / ⟨R|R⟩ has some problems because the inner product ⟨R|R⟩ should be finite and both ⟨R|
and |R⟩ should be the eigenstates of Ĥ to give a sensible expectation value. These are not satisfied by

the resonances |R⟩ as shown in Eqs. (2.86) and (2.88).

To solve this problem, we define the Gamow vector ⟨R̃| as the left eigenstate of Ĥ having the same

eigenvalue ER of |R⟩ [108, 109, 103, 110, 111, 106, 17, 112, 113]:

⟨R̃| Ĥ = ⟨R̃|ER. (2.89)

By introducing the Gamow vector ⟨R̃|, a sensible normalization and expectation value can be defined.

As shown in Eq. (2.86), the standard norm of resonances ⟨R|R⟩ diverges. However, if we define the

inner product of resonances as ⟨R̃|R⟩, it is normalizable using the regularization procedure (Zel’dovich’

s method) [108]:

⟨R̃|R⟩ =
∫
dr ⟨R̃|r⟩ ⟨r|R⟩ , (2.90)

| ⟨R̃|R⟩ | =
∫
dr| ⟨R̃|r⟩ ⟨r|R⟩ | <∞. (2.91)

4For an infinite-dimensional space, dagger † represents the generalization of the Hermite conjugate in finite-

dimensional vector space.
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Let us show that the inner product with the Gamow vector is obtained by the complex square of the

wavefunction:

⟨R̃|R⟩ =
∫
dr[ΨR(r)]

2. (2.92)

From Eq. (2.82), the Schrödinger equation for |R⟩ in the coordinate space is written as

ĤrΨR(r) = ERΨR(r), ⟨r|R⟩ = ΨR(r), (2.93)

where Ĥr is the space coordinate representation of the Hamiltonian operator. In the same way, the

Schrödinger equation for |R̃⟩ is derived from Eq. (2.89)

ĤrΨ
∗
R̃
(r) = ERΨ

∗
R(r), ⟨R̃|r⟩ = Ψ∗

R̃
(r). (2.94)

By comparing Eqs. (2.93) with (2.94), the wavefunction of the left eigenstate Ψ∗
R̃
(r) is equivalent to

that of ΨR̃(r) up to a constant C:

⟨R̃|r⟩ = C ⟨r|R⟩ = CΨR(r). (2.95)

By absorbing the constant C by the normalization, Eq. (2.90) can be rewritten as Eq. (2.92). It

should be noted that by normalizing ⟨R̃|R⟩ = 1, the phase of the wavefunction is uniquely determined

in contrast to the standard normalization. With this normalization, the expectation value can be

consistently defined:

⟨R̃|Ĥ|R⟩ = ER ∈ C. (2.96)

At the same time, the expectation value of any operator using the Gamow vector ⟨R̃| becomes, in

general, complex for resonances. This feature induces the complex compositeness of resonances as

shown in Chapter 5.

For bound states, the Gamow vector |B̃⟩ is equivalent to |B⟩ up to a constant. In this case, the

Schrödinger equation with the left eigenstate ⟨B̃| is written with M = −B and Γ = 0 in Eq. (2.89):

⟨B̃| Ĥ = −B ⟨B̃| . (2.97)

Taking Hermite conjugate to both sides of this equation, we obtain

Ĥ† |B̃⟩ = −B∗ |B̃⟩ . (2.98)

Because the Hamiltonian is Hermitian for bound states and B is real, this reduces to

Ĥ |B̃⟩ = −B |B̃⟩ . (2.99)

Comparing with the Schrödinger equation of |B⟩ (2.7), we find that the relation between |B⟩ and |B̃⟩
is

|B̃⟩ = C |B⟩ , (2.100)

with a constant C. Therefore, normalization with ⟨B̃| provides the same expectation value with the

standard one with ⟨B|:

⟨B̃|Ĥ|B⟩
⟨B̃|B⟩

=
C∗ ⟨B|Ĥ|B⟩
C∗ ⟨B|B⟩

=
⟨B|Ĥ|B⟩
⟨B|B⟩

. (2.101)
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By focusing on the wavefunction, we find a difference in the remaining degrees of freedom with the

normalization conditions. From Eq. (2.92), the normalization with the Gamow vector ⟨B̃| is

⟨B̃|B⟩ = 1 =

∫
dr[Ψ(r)]2, (2.102)

which indicates that Ψ(r) has to be real. On the other hand, the standard renormalization is defined

as

⟨B|B⟩ = 1 =

∫
dr|Ψ(r)|2, (2.103)

where the wavefunction can have an arbitrary phase. Thus, the normalization with the Gamow vector

imposes a stronger condition. In this way, the use of the Gamow vector provides the same expectation

value as the standard one for bound states, and it can be applied also to resonances. Therefore, the

expectation value with the Gamow vector can be regarded as a natural extension of the standard one.
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Chapter 3

Feshbach method

In this chapter, we consider one of the useful formulations to introduce the compositeness in quantum

mechanics. It is the Feshbach method [114, 115] that describes bound states in two-channel systems

with P and Q channels. In this framework, a bound state wavefunction is composed of the components

of P and Q channels. By performing the channel elimination, the two-channel problem can be reduced

to the single-channel problem with an effective Hamiltonian. With the Feshbach method, we can

describe the system introduced in Section 2.1.

The Feshbach method was originally introduced by H. Feshbach to discuss nuclear reactions around

1960 [114, 115]. Not only in nuclear physics but the same formulation has been widely applied also

in high-energy physics, atomic physics, solid-state physics and so on [116, 117, 118, 119, 120, 121].

In particular, in cold atom physics, the idea of the Feshbach method serves as the foundation of the

experiments to vary the strength of the interaction between two atoms through the adjustment of the

external magnetic field (the Feshbach resonance) [122, 118, 120, 80].

We start with the general formulation with the two-channel Hamiltonian and calculate the useful

relations of operators in Section 3.1. We then focus on the single resonance approach which describes

the couplings of the single discrete state coupled to the free scattering states in Section 3.2. This

approach is useful to introduce the compositeness in later chapters.

3.1 Formulation

In this section, the formulation of the Feshbach method is presented. We first introduce the coupled-

channel Hamiltonian and eigenstates in the first Section 3.1.1. Then the effective Hamiltonian is

derived by eliminating the Q channel in Section 3.1.2. In Section 3.1.3, we calculate the T -operators

for later discussion.

3.1.1 Hamiltonian with channel coupling

Here we consider the Schrödinger equation in a general two-channel problem with the Feshbach method.

Let us start with considering the Hamiltonian Ĥ and its eigenstate |Ψ⟩ which follow the Schrödinger

equation:

Ĥ |Ψ⟩ = E |Ψ⟩ , (3.1)
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where E is the eigenenergy. The explicit form of the Hamiltonian and eigenvector will be given in later

sections, by specifying the model. We consider two spaces P and Q, and schematically denote their

basis as |Pbase⟩ and |Qbase⟩. For example, if P (Q) space contains NP
c (NQ

c ) continuum channels and

NP
d (NQ

d ) discrete states the basis vectors are collectively represented as

|Pbase⟩ = {|pj⟩ , |ϕi⟩ |1 ≤ j ≤ NP
c , 1 ≤ i ≤ NP

d }, (3.2)

|Qbase⟩ = {|pj⟩ , |ϕi⟩ |NP
c + 1 ≤ j ≤ NP

c +NQ
c , N

P
d + 1 ≤ i ≤ NP

d +NQ
d } (3.3)

P and Q basis are normalized and orthogonal with each other:

⟨Pbase|Pbase⟩ = 1, (3.4)

⟨Qbase|Qbase⟩ = 1, (3.5)

⟨Pbase|Qbase⟩ = ⟨Qbase|Pbase⟩ = 0. (3.6)

We define P̂ and Q̂ as the projection operators to the P and Q spaces, respectively:

P̂ = |Pbase⟩ ⟨Pbase| , (3.7)

Q̂ = |Qbase⟩ ⟨Qbase| . (3.8)

With the example of Eqs. (3.2) and (3.3), the projection operators are given by

P̂ =

NP
c∑

j=1

∫
dpj |pj⟩ ⟨pj |+

NP
d∑

i=1

|ϕi⟩ ⟨ϕi| , (3.9)

Q̂ =

NP
c +NQ

c∑
j=NP

c +1

∫
dp′

j |p′
j⟩ ⟨p′

j |+
NP

d +NQ
d∑

i=NP
d +1

|ϕi⟩ ⟨ϕi| . (3.10)

It is clear that P̂ and Q̂ satisfy the properities of the projection operators:

P̂ 2 = P̂ , (3.11)

Q̂2 = Q̂, (3.12)

P̂ Q̂ = Q̂P̂ = 0. (3.13)

Using these operators, the completeness relation of the whole Hilbert space is also written as

1 = P̂ + Q̂ = |Pbase⟩ ⟨Pbase|+ |Qbase⟩ ⟨Qbase| . (3.14)

With this setup, a state vector |B⟩ can be expanded with the bases in P and Q spaces:

|Ψ⟩ = ⟨Pbase|Ψ⟩ |Pbase⟩+ ⟨Qbase|Ψ⟩ |Qbase⟩ . (3.15)

We now consider the expression of the Hamiltonian Ĥ in terms of the P and Q spaces given in

Eq. (3.15). Acting P̂ from left-hand-side to the Schrödinger equation (3.1) and using the completeness

relation (3.14), we obtain

P̂ Ĥ(P̂ + Q̂) |Ψ⟩ = P̂E |Ψ⟩

P̂ Ĥ(P̂ 2 + Q̂2) |Ψ⟩ = EP̂ |Ψ⟩
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P̂ ĤP̂ (P̂ |Ψ⟩) + P̂ ĤQ̂(Q̂ |Ψ⟩) = EP̂ |Ψ⟩ (3.16)

A similar equation is also obtained by acting Q̂:

Q̂ĤP̂ (P̂ |Ψ⟩) + Q̂ĤQ̂(Q̂ |Ψ⟩) = EQ̂ |Ψ⟩ (3.17)

Equations (3.16) and (3.17) can be summarized in the matrix form:(
ĤPP ĤPQ

ĤQP ĤQQ

)(
|P ⟩
|Q⟩

)
= E

(
|P ⟩
|Q⟩

)
, ĤXY = X̂ĤŶ , (3.18)

where |P ⟩ and |Q⟩ are the state vector projected onto the P and Q spaces defined as

|P ⟩ = P̂ |Ψ⟩ = ⟨Pbase|Ψ⟩ |Pbase⟩ , (3.19)

|Q⟩ = Q̂ |Ψ⟩ = ⟨Qbase|Ψ⟩ |Qbase⟩ . (3.20)

In this way, the Schrödinger equation is regarded as the two-channel problem based on P and Q

spaces. For later discussion, we decompose each element into the free Hamiltonian and the interaction

as follows

ĤPP = Ĥ0
PP + V̂PP , (3.21)

ĤPQ = V̂PQ, (3.22)

ĤQP = V̂QP , (3.23)

ĤQQ = Ĥ0
QQ + V̂QQ. (3.24)

Usually, the off-diagonal components do not contain the free part. The explicit form of the free

Hamiltonians and the interactions are chosen depending on the system considered. As an example, we

will present the case in the single resonance approach in Section 3.2.

3.1.2 Effective Hamiltonian

To solve the two-component Schrödinger equation (3.18), we employ the prescription called the channel

elimination. From the two-component Hamiltonian (3.18), the matrix Schrödinger equation leads to

the set of equations for |P ⟩ and |Q⟩:

ĤPP |P ⟩+ ĤPQ |Q⟩ = E |P ⟩ , (3.25)

ĤQP |P ⟩+ ĤQQ |Q⟩ = E |Q⟩ . (3.26)

Equation. (3.26) can be schematically solved for |Q⟩ as

|Q⟩ = (E − ĤQQ)
−1ĤQP |P ⟩ . (3.27)

By substituting this into Eq. (3.25), we then obtain the Schrödinger equation only for the P channel:

[ĤPP + ĤPQ(E − ĤQQ)
−1ĤQP ] |P ⟩ = E |P ⟩ , (3.28)

where the contribution of the Q channel is not explicitly present. In this way, the Schrödinger equation

for the single P channel can be derived by the Q channel elimination. The operator in the left-hand

side of Eq. (3.28) is called the effective Hamiltonian of the P channel [Ĥeff(E)]:

Ĥeff(E) = ĤPP + ĤPQ(E − ĤQQ)
−1ĤQP . (3.29)
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Because no approximations were made in the derivation, the Schrödinger equation with Ĥeff(E) pro-

vides the equivalent result with that of two-component Hamiltonian (3.18) as long as the P space is

concerned:

Ĥeff(E) |P ⟩ = E |P ⟩ . (3.30)

Because Ĥeff depends on the energy E, the eigenenergy of |P ⟩ should be obtained by self-consistently

solving this equation. As shown in the expression of the effective Hamiltonian (3.29), Ĥeff(E) has

the energy dependence even though the original Hamiltonian in Eq. (3.1). This energy dependence

originates from the second term in Eq. (3.29), which is induced by the channel elimination. With

the channel elimination, the contribution of the Q channel is effectively included in the second term,

where the Q space contribution in the matrix Hamiltonian in Eq. (3.18). When the Q space contains

a lower energy channel than the P space, this term causes the non-Hermitian nature of the effective

Hamiltonian [123, 101].

3.1.3 T -operator

From now on, we assume that the P space consists of a single scattering channel in the Feshbach

method, while the Q channel remains unspecified. We recall that in Chapter 2, the scattering problem

in the single-channel system can be solved by decomposing the Hamiltonian into the free and interaction

parts. In the previous subsection, we showed that the coupled-channel problem can be reduced to

the single-channel problem with the effective Hamiltonian Ĥeff by the channel elimination. In this

subsection, we introduce the T -operator as in Chapter 2, by decomposing Ĥeff into free and interaction

parts. We also derive the expression of the T -operator by the self-energy operator.

Effective interaction V̂eff

To calculate the T -operator of P channel scatterings, we first decompose the effective Hamiltonian

Ĥeff (3.29) into free and interaction parts. Because ĤPP in the effective Hamiltonian contains the free

part Ĥ0
PP as shown in Eq. (3.21), the remaining part of Ĥeff is regarded as the effective interaction

V̂eff(E):

Ĥeff(E) = Ĥ0
PP + V̂eff(E), (3.31)

V̂eff(E) = V̂PP + V̂PQ(E − ĤQQ)
−1V̂QP . (3.32)

We find that the interaction part depends on the energy, which is different from the single-channel

problem with Eq. (2.12). This energy dependence arises in the effective Hamiltonian, as a consequence

of the channel elimination, as discussed above. Furthermore, we see that the Q channel contribution is

contained only in the second term of V̂eff(E), while the first term corresponds to the original interaction

in the P channel. In this sense, the effective interaction is further decomposed into the interaction

within the P channel and that induced by the P and Q channel contributions denoted as V̂PQP (E):

V̂eff(E) = V̂PP + V̂PQP (E), (3.33)

V̂PQP (E) = ĤPQ(E − ĤQQ)
−1ĤQP . (3.34)

This decomposition is useful to define the self-energy operator, which will be shown below.
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L-S equation with effective interaction V̂eff(Ep)

The Lippmann-Schwinger (L-S) equation for operators (see Section 2.2.2) can be used to calculate

the T -operator using the effective interaction V̂eff(E). By substituting Veff(E) (3.33) into the L-S

equation (2.46), the T -operator is written as

T̂ (E) = {[V̂PP + V̂PQP (E)]−1 − Ĝ0
P (E)}−1. (3.35)

Here we denote the free Green’s operator in the P channel as Ĝ0
P (z):

Ĝ0
P (z) = (z − Ĥ0

PP )
−1. (3.36)

As shown in later sections, this expression of the T -operator is useful for a separable interaction,

because the t-matrix from Eq. (3.35) reduces to the algebraic equation.

T -operators with decomposition TP + TPQP

Here we show an alternative expression of the T -operator which was used in the original work by

H. Feshbach [114, 115]. In Eq. (3.33), the effective interaction can be decomposed into two parts,

V̂PP without the Q channel contribution and V̂PQP with the Q channel contribution. Based on this

viewpoint, we consider decomposing the T -operator into two parts, T̂P and T̂PQP :

T̂ (E) = T̂P (E) + T̂PQP (E), (3.37)

where T̂P (E) corresponds to the T -operator only with the P channel contribution, and T̂PQP (E)

expresses all the remaning contributions. It is shown that these operators are given by [115, 114, 116]

T̂P (E) = [V̂ −1
PP − Ĝ0

P (E)]−1, (3.38)

T̂PQP (E) = T̂P V̂
−1
PP [V̂

−1
PQP (E)− ĜP (E)]−1V̂ −1

PP T̂P . (3.39)

Here ĜP represents the full Green’s operator in the P space:

ĜP (z) = (z − ĤPP )
−1. (3.40)

Note that T̂PQP is not simply given by the V̂PQP contribution [V̂ −1
PQP (E)−ĜP (E)]−1, but also contains

the effect of V̂PP . As shown below, the T -operator in Eq. (3.37) is used to derive the useful relation

to obtain the binding energy from the self energy.

Self-energy operator

When the system has a bound state, the binding energy is obtained as the pole of the on-shell t-

matrix as mentioned in Section 2.4. To calculate the binding energy in the later discussion, here we

derive the bound state condition (pole condition) in terms of the self-energy operator. It is shown

that the pole of T̂PQP (3.39) corresponds to the pole of the whole T -operator, while that of T̂P (3.38)

does not [115, 114, 116]. Therefore, the bound state condition is given by the pole condition of

[V̂ −1
PQP (E)− ĜP (E)]−1 operator:

0 = V̂ −1
PQP (E)− ĜP (E) = [ĤPQ(E − ĤQQ)

−1ĤQP ]
−1 − ĜP (E)

= Ĥ−1
QP (E − ĤQQ)Ĥ

−1
PQ − ĜP (E)
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= Ĥ−1
QP [E − ĤQQ − ĤQP ĜP (E)ĤPQ]Ĥ

−1
PQ

= Ĥ−1
QP [E − ĤQQ − Σ̂(E)]Ĥ−1

PQ. (3.41)

In the last line, we define the self-energy operator Σ̂:

Σ̂(E) = ĤQP ĜP (E)ĤPQ. (3.42)

Because the transition components ĤQP and ĤPQ do not give a pole, the bound state condition for

operators is given by

E − ĤQQ − Σ̂(E) = 0. (3.43)

The expectation value of Eq. (3.43) in terms of the Q channel state corresponds to the bound state

condition as shown in the later discussion.

3.2 Single resonance approach

In this section, we consider the system introduced in Section 2.1 with the Feshbach method. Such a

system is described by the model called the single resonance approach, where P space (Q space) is given

by the set of the free scattering states (as only one discrete bare state). We first introduce the Hamilto-

nian and eigenstates of the single resonance approach (Section 3.2.1). In the next Section 3.2.2, we then

calculate the on-shell t-matrix using the relation for operators derived in the previous Section 3.1.3,

and show that the single resonance approach is equivalent to the formulation in Section 2.1.

3.2.1 Hamiltonian and eigenstates

We start with defining the eigenstates of the free Hamiltonian in the P and Q spaces such that they

satisfy the following Schrödinger equations:

Ĥ0
PP |p⟩ = Ep |p⟩ , Ep =

p2

2µ
, (3.44)

Ĥ0
QQ |ϕ⟩ = ν0 |ϕ⟩ . (3.45)

Here Ep is the eigenenergy written by the momentum p of the free scattering states |p⟩ (P space)

and ν0 is the energy of the discrete bare state |ϕ⟩ (Q space). Namely, we consider NP
c = 1, NP

d = 0,

NQ
c = 0, and NP

d = 1 in Eqs. (3.2) and (3.3). This means that the single resonance approach is

equivalent to the formulation in Section 2.1 [see Eqs. (2.17) and (2.18)]. Using the following matrix

form of the free Hamiltonian Ĥ0,

Ĥ0 =

(
Ĥ0
PP 0

0 Ĥ0
QQ

)
, (3.46)

the Schrödinger equations (3.44) and (3.45) are summarized as

Ĥ0

(
|p⟩
|ϕ⟩

)
=

(
Ep 0

0 ν0

)(
|p⟩
|ϕ⟩

)
. (3.47)
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In this case, the full Hamiltonian Ĥ is given as

Ĥ = Ĥ0 + V̂ , (3.48)

with the matrix form of the interaction V̂

V̂ =

(
V̂PP V̂PQ

V̂QP 0

)
. (3.49)

Here we set V̂QQ = 0 because the matrix element of V̂QQ, ⟨ϕ|V̂QQ|ϕ⟩ = c can be absorbed by the

redefinition of the bare energy ν′0 = ν0 + c. The Schödinger equation of the full Hamiltonian is given

by (
Ĥ0
PP + V̂PP V̂PQ

V̂QP Ĥ0
QQ

)
|Ψ⟩ = Eh |Ψ⟩ , (3.50)

with the two-component eigenstates:

|Ψ⟩ =

(∫
dp ⟨p|Ψ⟩ |p⟩
⟨ϕ|Ψ⟩ |ϕ⟩

)
. (3.51)

In the formulation in Section 2.1, the Hamiltonian (3.48) can also be written as the following form:

Ĥ0 =

∫
dp |p⟩ p

2

2µ
⟨p|+ |ϕ⟩ ν0 ⟨ϕ| , (3.52)

V̂ =

∫
dpdp′ |p⟩ ⟨p|V̂ |p′⟩ ⟨p′|+

∫
dp |ϕ⟩ ⟨ϕ|V̂ |p⟩ ⟨p|+

∫
dp |p⟩ ⟨p|V̂ |ϕ⟩ ⟨ϕ| . (3.53)

In the single resonance approach, the projection operators P̂ and Q̂ are written by

P̂ =

∫
dp |p⟩ ⟨p| , (3.54)

Q̂ = |ϕ⟩ ⟨ϕ| . (3.55)

From Eq. (??), the completeness relation is written as

1 = P̂ + Q̂ =

∫
dp |p⟩ ⟨p|+ |ϕ⟩ ⟨ϕ| . (3.56)

Comparing Eq. (3.56) with the completeness relations in the previous formulation (2.19), we see that

the model space of the single resonance approach is equivalent to that in the system introduced in

Section 2.1. As shown in the completeness relation (3.56), only one discrete eigenstate is introduced

in the model space. This is why this model is called the single resonance approach. The system of

the single resonance approach is realized if ĤPP has only one scattering channel, and ĤQQ is the

confinement potential generating only one discrete state. In other words, the single resonance model is

an approximation for the system having more scattering or discrete channels, but the approximation

is justified if the additional channels exist sufficiently far away from the energy region considered.

By comparing the eigenstates in the single resonance approach (3.51) with the general ones (3.19),

and (3.20), we find that |Pbase⟩ and |Qbase⟩ in the single resonance approach can be schematically

expressed as follows:

|Pbase⟩ =


|p1⟩
|p2⟩
...

 , (3.57)
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|Qbase⟩ = |ϕ⟩ . (3.58)

Here Eq. (3.57) represents the set of the infinite number of continuum eigenstates. In this case, the

eigenstate |Ψ⟩ is regarded as the superposition of the continuum scattering states and the discrete

state:

|Ψ⟩ = (⟨p1|Ψ⟩ |p1⟩+ ⟨p2|Ψ⟩ |p2⟩+ · · · ) + ⟨ϕ|Ψ⟩ |ϕ⟩

=

∫
dp ⟨p|Ψ⟩ |p⟩+ ⟨ϕ|Ψ⟩ |ϕ⟩ . (3.59)

As shown in Chapter 5, the single resonance approach is useful for introducing the compositeness of

the bound state in quantum mechanics.

3.2.2 On-shell t-matrix

t-matrix from L-S equation

Finally, we derive the on-shell t-matrix and self energy. When the effective interaction Veff is sep-

arable, the on-shell t-matrix is easily obtained from the expression of the T -operator from the L-S

equation (3.35) [see also the discussion around Eq. (2.41)]:

t(Ep) = {[VPP + VPQP (Ep)]
−1 −G0

P (Ep)}−1, (3.60)

with the matrix elements of the interactions

VPP = ⟨p′|V̂PP |p⟩ |Ep=Ep′ , (3.61)

VPQP (Ep) = ⟨p′|V̂PQP (Ep)|p⟩ |Ep=Ep′ =
⟨p′|V̂PQ|ϕ⟩ ⟨ϕ|V̂QP |p⟩

Ep − ν0
, (3.62)

and the regularized Green’s function in the momentum expression:

G0
P (z) =

∫
dq

|F (q)|2

z − Eq + i0+
, (3.63)

with the form factor F (q). Equation (3.62) indecates that VPQP (Ep) is always separable, while the

separability of VPP depends on the interaction considered.

t-matrix from decomposed T -operator

Here we also show the expression of the on-shell t-matrix using Eq. (3.37). By definition of the

t-operator (2.36), the on-shell t-matrix within the P channel tP is obtained from Eq. (3.38) as

tP (Ep) = ⟨p′|[V̂ −1
PP − Ĝ0

P (Ep)]
−1|p⟩

∣∣∣
Ep=Ep′

. (3.64)

If the interaction V̂PP is separable, tP is obtained as the algebraic form:

tP (Ep) =
1

V −1
PP −G0

P (Ep)
, (3.65)

The matrix element of T̂PQP (E) (3.39) [tPQP (Ep)] is also defined as

tPQP (Ep) = ⟨p′|T̂P V̂ −1
PP (V̂

−1
PQP − ĜP )

−1V̂ −1
PP T̂P |p⟩

∣∣∣
Ep=Ep′

. (3.66)
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Using the relation between interacting (|p,±⟩) and free (|p⟩) scattering states (2.50), we find that

tPQP (Ep) (3.66) is also expressed as a similar form with tP (Ep) but with the full scattering states

|p,±⟩ [116]:

tPQP (z;p
′,p) = ⟨p′,−|[V̂ −1

PQP (z)− ĜP (z)]
−1|p,+⟩ . (3.67)

If the interaction VPP is separable, tPQP (Ep) in this complicated form reduces to an algebraic form:

tPQP (Ep) = tP (Ep)V
−1
PP

1

V −1
PQP (Ep)−GP (Ep)

V −1
PP tP (Ep)

=
V −2
PP [V

−1
PP −G0

P (E)]2

V −1
PQP (Ep)−GP (Ep)

, (3.68)

where we use the completeness relation (3.56). In the second line, we use the expression of tP (Ep) in

Eq. (3.65).

If the interaction VPP is separable, the whole on-shell t-matrix t(Ep) is obtained by summing up

tP (Ep) (3.65) and tPQP (Ep) (3.68):

t(Ep) =
1

V −1
PP −G0

P (Ep)
+
V −2
PP [V

−1
PP −G0

P (Ep)]
2

V −1
PQP (Ep)−GP (Ep)

. (3.69)

This form of t(Ep) is shown to be equivalent to t(Ep) obtained from L-S equation (3.60):

t = tP + tPV
−1
PP

1

V −1
PQP − V −1

PP tPG
0
P

(1 + tPG
0
P )

= tP

(
1 +

V −1
PP (1 + tPG

0
P )

V −1
PQP − V −1

PP tPG
0
P

)

= tP
V −1
PQP + V −1

PP

V −1
PQP − V −1

PP tPG
0
P

= tP
(V −1
PQP + V −1

PP )VPPVPQP

(V −1
PQP − V −1

PP tPG
0
P )VPPVPQP

=
VPP + VPQP

VPP t
−1
P − VPQPG0

P

=
VPP + VPQP

VPP (V
−1
PP −G0

P )− VPQPG0
P

=
VPP + VPQP

1− (VPP + VPQP )G0
P

=
1

(VPP + VPQP )−1 −G0
P

. (3.70)

In the first line, we use the relation (2.32) for the P channel:

VPPGP = tPG
0
P . (3.71)

This explains that the T -operator (3.37) is consistent with the expression in Eq. (3.34) by the L-S

equation are consistent with each other.
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Bound state condition with self energy

The bound state condition is obtained by taking the matrix element of Eq. (3.43) as

⟨ϕ|E − ĤQQ − Σ̂(E)|ϕ⟩ = E − ν0 − Σ(E) = 0. (3.72)

Here Σ(E) = ⟨ϕ|Σ̂(E)|ϕ⟩ is called the self energy calculated as

Σ(E) =

∫
dqdq′ VQP (q

′) ⟨q′|ĜP (E)|q⟩VPQ(q), (3.73)

where we denote the transition form factors as VQP (p) = ⟨p|V̂QP |ϕ⟩ and VPQ(p) = ⟨ϕ|V̂PQ|p⟩. It is

worth mentioning that the bound state condition (3.73) holds even if the interaction V̂PP is not sepa-

rable. The bound state condition (3.72) shows that the eigenenergy E is obtained as the modification

of the bear state energy ν0 by the contribution of the self energy Σ with the finite couplings V̂PQ and

V̂QP . This form of the bound state condition is useful to obtain the eignenergy without calculating

the whole part of the on-shell t-matrix.
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Chapter 4

Effective field theory

In this chapter, we introduce a model (the resonance model) based on the non-relativistic effective

field theory (EFT) which effectively describes phenomena in the sufficiently low-energy region. Here

we regard the energy as small when the momentum p is much smaller than the applicable scale of the

model, the cutoff Λ. The EFT has been successful in explaining low-energy phenomena in p ≪ Λ,

for instance, the Euler-Heisenberg theory for the quantum electro dynamics [124], and the chiral

perturbation theory for the quantum chromodynamics [125]. Furthermore, the EFT has been widely

applied to study the low-energy universality, not only to the two-body systems but also to the three-

body systems such as hypertriton [126], the Efimov effect and halo nuclei (the halo EFT) [127, 128,

129, 130].

The resonance model is one of the EFTs for a two-body scattering system [104]. In this model,

we consider the couplings between the bare state to the s-wave scattering states with arbitrary inner

degrees of freedom. This picture is equivalent to the model introduced in Chapter 2 and the single

resonance approach in the Feshbach method in Chapter 3, and therefore, the resonance model is

suitable to introduce the compositeness in the EFT framework [93, 94, 95].

We introduce the single-channel resonance model in Section 4.1. We first define the Hamiltonian

and its eigenstates and derive the effective Hamiltonian by the channel elimination. The loop function

is calculated by considering the regularization of the momentum integration. From the L-S equation,

the on-shell t-matrix and scattering amplitude are obtained. We show the equivalence of the resonance

model in the EFT and the single resonance approach in the Feshbach method (Section 3.2). In the

next Section 4.2, we extend the resonance model to the system with decay and coupled channels to

discuss the physical hadron systems.

4.1 Resonance model

As one of the models in the EFT, here we introduce the resonance model [104, 94] which corresponds

to the single resonance approach in the Feshbach method. In the resonance model, the eigenstates

of the full Hamiltonian are described by the couplings of the single channel scattering to one discrete

bare state. The Hamiltonian and its eigenstates are presented in Section 4.1.1. Then the effective

interaction is derived by the channel elimination in Section 4.1.2. To deal with the divergence of the

momentum integration, we discuss the regularization of the loop function in Section 4.1.3, and then
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Figure 4.1: The diagrams of the interaction Hamiltonian Hint (4.3).

the on-shell t-matrix and scattering amplitude are obtained in Section 4.1.4. In Section 4.1.5, we

also discuss the renormalization to understand the resonance model with the finite interaction range.

Finally, we show the correspondence of the resonance model to the single resonance approach in the

Feshbach method (section 4.1.6). In Sections 4.1.1 and 4.1.2, we follow the formulation Ref. [94].

4.1.1 Hamiltonian and eigenstates

Let us start with introducing the Hamiltonian of the single channel scattering where the two scattering

fields ψ1,2 couple to the single bare field ϕ [104, 94, 71]:

Ĥ = Ĥfree + Ĥint =

∫
dr(Hfree +Hint), (4.1)

Hfree =
1

2m1
∇ψ†

1 · ∇ψ1 +
1

2m2
∇ψ†

2 · ∇ψ2 +
1

2M
∇ϕ† · ∇ϕ+ ν0ϕ

†ϕ, (4.2)

Hint = λ0(ψ
†
1ψ

†
2ψ1ψ2) + g0(ϕ

†ψ1ψ2 + ψ†
1ψ

†
2ϕ). (4.3)

Here m1,2, M correspond to the mass of ψ1,2 and ϕ, respectively. ν0 is the energy of ϕ measured

from the threshold of ψ1,2 scattering. λ0 and g0 are the coupling constants of the four-point contact

interaction and three-point contact interactions. In non-relativistic EFTs, the ϕ exchange only occurs

through the s-channel interaction. However, the contribution of the t-channel interaction in relativistic

EFTs is also introduced as the four-point contact interaction of ψ1,2 corresponds. We show the vertexes

in the interaction Hamiltonian Ĥint (4.3) in Fig. 4.1.

In field theory, eigenstates can be constructed from the vacuum |0⟩ defined as

ψ̃1(p) |0⟩ = ψ̃2(p) |0⟩ = ϕ̃(p) |0⟩ = 0, (4.4)

⟨0|0⟩ = 0, (4.5)

where α̃(p) is the annihilation operator, and α̃(p) stands for the momentum representation of Fourier

transformation:

α̃(p) =

∫
dr e−ip·rα(r). (4.6)

By operating the creation operators to vacuum, we can construct the eigenstates of Hamiltonian (4.1)

under the following particle number conservation [94]:

Nψ1 +Nϕ = constant, Nψ2 +Nϕ = constant, (4.7)

where Nα corresponds to the particle number of α:

Nα =

∫
drα(r)†α(r). (4.8)
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To consider the ψ1,2 scattering, here we focus on the sector where Nψ1
= 1, Nψ2

= 1, Nϕ = 0 or

Nψ1
= 0, Nψ2

= 0, Nϕ = 1. Furthermore, we use the barycentric coordinate system. In this case, the

eigenstates of the free Hamiltonian are constructed from the vacuum |0⟩ using the creation operators:

|p⟩ = 1√
Vvol

ψ̃†
1(−p)ψ̃†

2(p) |0⟩ , (4.9)

|ϕ⟩ = 1√
Vvol

ϕ̃†(0) |0⟩ . (4.10)

Here the phase space of the system Vvol are defined as

α̃(p) =

∫
dr e−ip·rα(r), (4.11)

Vvol = (2π)3δ(0). (4.12)

We use the convention widely used in field theory, where the commutation relations for operators

α are written as

[α(r), α†(r′)] = δ(r′ − r), (4.13)

[α̃(p), α̃†(p′)] = (2π)3δ(p′ − p). (4.14)

Using these relations, we can confirm that these eigenstates satisfy the following Schrödinger equation

Ĥfree |p⟩ = Ep |p⟩ , Ep =
p2

2µ
, (4.15)

Ĥfree |ϕ⟩ = ν0 |ϕ⟩ , (4.16)

where µ = (1/m1 + 1/m2)
−1 is the reduced mass of ψ1,2. From these equations, we see that the

resonance model describes the same system introduced in Chapter 2 [see Eqs. (2.17) and (2.18)] and

single resonance approach in Section 3.2 [see Eqs. (3.44) and (3.45)].

From the particle-number conservation (4.7), the completeness relation in this model is written

as [94]

1 =

∫
dp

(2π)3
|p⟩ ⟨p|+ |ϕ⟩ ⟨ϕ| . (4.17)

The normalization and orthogonalization of states are given as

⟨p′|p⟩ = (2π)3δ(p′ − p), (4.18)

⟨ϕ|ϕ⟩ = 1, (4.19)

⟨ϕ|p⟩ = ⟨p|ϕ⟩ = 0. (4.20)

We note that the normalization (4.18) is different from that in the previous sections in quantum

mechanics because we adopt another convention.

The matrix elements of the interaction Hamiltonian are calculated as

⟨p′|Ĥint|p⟩ = λ0, (4.21)

⟨p|Ĥint|ϕ⟩ = ⟨ϕ|Ĥint|p⟩ = g0. (4.22)

From Eq. (4.21), ⟨p′|Hint|p⟩ is separable since it does not depend on the momentum. This shows that

these interactions are constant in the momentum space, namely, point-like in the coordinate space.
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4.1.2 Effective interaction

To focus on the ψ1,2 scatterings, here we perform the ϕ channel elimination. Let us start from

considering the Schrödinger equation of the full Hamiltonian Ĥ =
∫
dr(Hfree +Hint):

H |Ψ⟩ = E |Ψ⟩ . (4.23)

Using the completeness relation (4.17), |Ψ⟩ is written by the linear combination of the free scattering

and discrete states:

|Ψ⟩ =
∫

dp

(2π)3
χ(p) |p⟩+ c |ϕ⟩ , (4.24)

where we denote the momentum space wavefunction χ(p) and overlap constant c as

χ(p) = ⟨p|Ψ⟩ , (4.25)

c = ⟨ϕ|Ψ⟩ . (4.26)

By substituting Eq. (4.24) into the Schrödinger equation (4.23) and multiplying ⟨p| and ⟨ϕ| from the

left, we obtain

⟨p|H|Ψ⟩ = χ(p)E =
p2

2µ
χ(p) + λ0

∫
dq

(2π)3
χ(q) + cg0, (4.27)

⟨ϕ|H|Ψ⟩ = cE = g0

∫
dq

(2π)3
χ(q) + cν0. (4.28)

By eliminating c from Eq. (4.27) using Eq. (4.28), we obtain the following equation with χ(p):

Eχ(p) =
p2

2µ
χ(p) +

(
λ0 +

g20
E − ν0

)∫
dq

(2π)3
χ(q) (4.29)

This equation can be rewritten as the following Schrödinger equation [94][
p2

2µ
+ V̂eff(E)

]
|Ψ⟩ = E |Ψ⟩ , (4.30)

with the effective interaction V̂eff whose matrix element is

⟨p|V̂eff(E)|q⟩ = Veff(E) = λ0 +
g20

E − ν0
. (4.31)

By multiplying ⟨p| from the left-hand side and using the completeness relation (4.17), Eq. (4.30)

can be transformed into Eq. (4.29). This corresponds to the channel elimination of the ϕ degree of

freedom, which is equivalent to the Q channel elimination in the single resonance approach in the

Feshbach method (see Chapter 3). As mentioned in Section 2.2.2, the effective interaction depends on

the energy E. Furthermore, Veff(E) is separable because it only depends on E = p2/(2µ), and we can

use the algebraic L-S equation (2.46).

4.1.3 Regularization of the loop function

In the field theory, the two-body scattering amplitude is obtained from the four-point function. In the

non-relativistic field theory, this is equivalent to calculating the t-matrix from the L-S equation [104].
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To obtain t-matrix from the L-S equation (2.46), we also calculate the loop function G0(E). In field

theory, G0(E) is equivalent to the Green’s function up to (2π)3 factor (2.42), but called the loop

function. This difference arises from the convention of the state normalization (4.18). The loop

function on the first Riemann sheet G0(E) is written as the momentum integral of the propagator of

the full Hamiltonian1:

G0(E) =

∫
dΩ

∫ ∞

0

dq

(2π)3
q2

1

E − Eq + i0+
. (4.33)

In the energy region below the threshold E < 0, the poles of the integrand exist on the imaginary

axis of the complex momentum plane. In this case, we can straightforwardly perform the integration

without i0+ term, and G0(E) has only a real part. On the other hand, in the region above the

threshold E > 0, G0(E) has real poles, and we need the i0+ term for the integration. Therefore, the

loop function becomes a complex function in the E > 0 region. When the Hamiltonian is Hermitian,

the imaginary part of the loop function is determined by the optical theorem [74].

Because the integrand in Eq. (4.33) is proportional to q0 in the q → ∞ limit, the integral G0(E)

linearly diverges. To avoid this problem, we introduce the form factor F (p,Λ):

G0(E,Λ) =

∫
dΩ

∫ ∞

0

dq

(2π)3
q2

|F (p,Λ)|2

E − Eq + i0+
. (4.34)

The form factor F (p,Λ) is a function of momentum p and cutoff Λ, where Λ is regarded as the applicable

momentum limit of the EFT. In other words, microscopic phenomena in the momentum scale above Λ

cannot be described with the EFT. In this way, the cutoff Λ serves as the typical momentum scale in the

model, and other characteristic scales are estimated by the cutoff. For example, the inverse of the cutoff

is regarded as the interaction range Rint ∼ 1/Λ in the model. We can choose an arbitrary function as

the form factor such that F (p,Λ) → 0 at large p. This prescription is called the regularization.

Let us consider some examples of the form factor F (p,Λ) with which the interaction becomes

separable. Here we present the step function:

F (p,Λ) = Θ(Λ− p), (4.35)

which is consistent with introducing the sharp cutoff. In this case, the cutoff Λ corresponds to the

upper limit of the momentum integral. The loop function (4.34) is analytically calculated as

G0(E,Λ) =

∫
dq

(2π)3
Θ(Λ− q)

E − Eq + i0+

=
µ

π2

[
Λ + i

√
2µE + i0+ arctan

(
− Λ

i
√
2µE + i0+

)]
. (4.36)

The sharp cutoff is utilized because of its simplicity [93, 94, 95, 71]. In this work, we employ the sharp

cutoff to calculate the loop function.

1The loop function on the second Riemann sheet G0
II(E) is written as

G0
II(E) =

∫
dΩ

∫ ∞

0

dq

(2π)3
q2

1

E − Eq − i0+
, (4.32)

where the sign of the i0+ term is opposite to the loop function of the first Riemann sheet. Due to this difference, the

imaginary part of G0
II(E) is positive while that of G0(E) is negative. This induces the difference of the property between

bound state poles in the first Riemann sheet and virtual state poles in the second Riemann sheet.
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As another example of the form factor, we also show the monopole (Yamaguchi type) form fac-

tor [131, 132]2:

F (p,Λ) =
Λ2

p2 + Λ2
. (4.37)

By introducing this form factor (4.37), the loop function G(E) becomes finite

G0(E,Λ) =

∫
dΩ

∫ ∞

0

dq

(2π)3
q2
(

Λ2

p2 + Λ2

)2
1

E − Eq + i0+
,

=
µΛ

4π

−8µ2E2 + 10Λ2µE − 2iΛ3
√
2µE + i0+ − Λ4

(Λ2 − 2µE)2
. (4.38)

In this way, the loop function G(E) with the monopole form factor can be analytically calculated. It is

shown that the Fourier transformation of monopole form factor F̃ (r,Λ) is the Yukawa type potential

regarded as a typical short-range interaction:

F̃ (r,Λ) ∼ e−rΛ

r
. (4.39)

From these natures, the dipole form factor is adopted to study hadrons for example in Ref. [133, 134,

135].

4.1.4 On-shell t-matrix and scattering amplitude

Thanks to the separable nature of the effective interaction (4.31), we can obtain the on-shell t-matrix

from the algebraic L-S equation (2.46). By substituting the effective interaction (4.31) and loop

function (4.36) into the L-S equation (2.46), the on-shell t-matrix is derived as

t(E) =

[(
λ0 +

g20
E − ν0

)−1

+
µ

π2

{
Λ + i

√
2µE + 0+ arctan

(
− Λ

i
√

2µE + 0+

)}]−1

. (4.40)

From the relation between the on-shell t-matrix and scattering amplitude (2.62), the scattering ampli-

tude f(p) is obtained as

f(p) = − µ

2π

(λ0 + g20
p2

2µ − ν0

)−1

+
µ

π2

{
Λ + ip arctan

(
−Λ

ip

)}−1

. (4.41)

The eignenergy is obtained as the pole of the scattering amplitude:

Veff(E)−1 −G0(E) =

(
λ0 +

g20
E − ν0

)−1

+
µ

π2

{
Λ + i

√
2µE + 0+ arctan

(
− Λ

i
√
2µE + 0+

)}
= 0.

(4.42)

By comparing Eq. (4.41) to the effective range expansion (2.65), the scattering length a0 and effective

range re are obtained as

a0 =

[
2π

µ

(
λ0 −

g20
ν0

)−1

+
2

π
Λ

]−1

, (4.43)

2This is called monopole type form factor because Eq. (4.37) has single pole with respect to the energy E ∼ p2, while

it seems to be dipole in terms of p.
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re = −2πg20
ν20µ

2

(
λ0 −

g20
ν0

)−2

+
4

πΛ
. (4.44)

When the Hamiltonian is Hermitian with the real coupling constant (i.e., g20 > 0), the first term of

re (4.44) is always negative for any coupling constants. This indecates that re have an upper limit

4/(πΛ), called the Wigner bound [136, 137, 138]. In contrast, a0 (4.43) can be arbitrary value, from

−∞ to ∞.

4.1.5 Renormalization

While we keep the cutoff Λ finite in this study, it is instructive to discuss the renormalization of

the resonance model. To avoid the divergence of the momentum integral (4.33), we performed the

regularization in Section 4.1.3. The choice of the regulator (monopole form factor, sharp cutoff etc.)

is arbitral, and the result depends on the choice of the form factor F (p,Λ) and the value of the cutoff

Λ as seen in Eqs. (4.38) and (4.36).

The cutoff dependence should disappear for consistent field theories such as QED and QCD. It

is known that the cutoff dependence can be absorbed if the theory is renormalizable. In the renor-

malization procedure, we let the bare parameters be functions of the cutoff Λ so that the physical

quantities (observables) are kept finite in the formal limit of Λ → ∞. The resonance model is shown

to be renormalizable [77]. After the renormalization, the scattering amplitude f(p) of the resonance

model reduces the ERE truncated at O(p2):

f(p) =

[
− 1

a0
+
re
2
p2 − ip

]−1

. (4.45)

Because the inverse of the cutoff 1/Λ is regarded as the interaction range Rint, the Λ → ∞ limit

corresponds to the Rint → 0 limit, called the zero-range limit. In this limit, the EFTs correspond to the

zero-range theory which describes the system in the low-energy scale with the point-like interactions.

Therefore, the zero-range theory has been adapted to consider low-energy phenomena [77, 80].

Although the resonance model is formally renormalizable as discussed above, in this study, we keep

the cutoff Λ finite to consider the finite interaction range Rint ∼ 1/Λ. The resonance model with

finite interaction range is constructed with the Hamiltonian where the form factor in coordinate space

F̃ (r1, r2) is originally included [139]:

Hint = λ0

∫
dr1dr2dr

′
1dr

′
2 ψ

†
1(r1)ψ

†
2(r2)F̃ (|r1 − r2|,Λ)F̃ (|r′1 − r′2|,Λ)ψ1(r

′
1)ψ2(r

′
2)

+ g0

∫
dxdy [ϕ†(x)F̃ (|y|,Λ)ψ1

(
x+

y

2

)
ψ2

(
x− y

2

)
+ h. c. . (4.46)

From this Hamiltonian, the interaction is calculated as

⟨p′|Hint|p⟩ = λ0F (p1,Λ)F (p2,Λ), (4.47)

⟨p|Hint|ϕ⟩ = ⟨ϕ|Hint|p⟩ = g0F (p,Λ). (4.48)

We note that if we choose the form factor as F̃ (r1 − r2) = δ(r1 − r2), Eqs. (4.47) and (4.48) become

the contact interaction. The effective interaction Veff is obtained with explicitly including the form

factor:

Veff(E,Λ) =

(
λ0 +

g20
E − ν0

)
|F (p,Λ)|2. (4.49)
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With this effective interaction, the momentum integral in the t-matrix appears as the product of form

factor (4.49) and loop function (4.33). Thanks to the form factor, the momentum integral converges

without artificially introducing an additional cutoff.

4.1.6 Correspondence to Feshbach method

In this subsection, we discuss the relation between the resonance model in the EFT and the single

resonance approach in the Feshbach method in Sec. 3.2. By comparing the completeness relations (3.56)

to (4.17), it is seen that both models have the same model space whose basis is the free scattering

states |p⟩ and single discrete bare state |ϕ⟩. Therefore, both formulations equivalently describe the

system (2.19) in Section 2.1. We can choose both models appropriately based on the purpose. In

the Feshbach method, the Hamiltonian is written as a matrix form (3.48). Thanks to this property,

the Feshbach method is suitable for the visual understanding of the Hamiltonian of the system. In

contrast, using the EFT, we can explicitly identify the origin of the eigenstates of the free Hamiltonian

|p⟩ and |ϕ⟩ which are defined by the creation operators and vacuum |0⟩ in Eqs. (4.9) and (4.10).

By comparing the t-matrix in the single resonance approach (3.60) with that in the resonance

model (4.40), we find that

VPP + VPQP (E) = λ0 +
g20

E − ν0
, (4.50)

G0
P (Ep)

∣∣
single resonance approach

= (2π)3G0(E,Λ)
∣∣
resonance model

. (4.51)

Here we denote the Green’s function in the single resonance approach as G0
P (Ep)

∣∣
single resonance approach

,

and the loop function in the resonance model as G0(E,Λ)
∣∣
resonance model

. From this observation, the

single resonance approach reduces to the resonance model, if we determine the interactions in the

Hamiltonian (3.48) as

VPP = λ0, (4.52)

⟨p|V̂PQ|ϕ⟩ = ⟨ϕ|V̂QP |p⟩ = g0, (4.53)

with the following correspondence of the form factors:

F (p)|single resonance approach = (2π)3/2F (p,Λ)
∣∣∣
resonance model

. (4.54)

Here F (p)|single resonance approach is the form factor in the single resonance approach and |resonance model

is that of the resonance model. From Eq. (4.53), the self energy Σ (3.73) in the resonance model is

given as

Σ(E) = g20{[G0(E)]−1 − λ0}−1. (4.55)

In this way, the system single-channel scattering system in Chapter 2.1 can be formulated in both

the single resonance approach and resonance model. These frameworks are utilized to introduce the

compositeness [72, 140, 91, 92], as will be shown in the next chapter. Furthermore, in Chapter 6, we

discuss the compositeness of shallow bound states using the resonance model, as the main topic of this

thesis.
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4.2 Resonance model with decay width and coupled channel

In the previous section, we have considered the model with the single-channel scatterings. In the

present section, for more practical applications to exotic hadrons, we construct the model with the

decay channel (lower channels than the eigenstate) and coupled channel (a higher channel than the

eigenstate), as an expansion of the resonance model [71]. We show how to introduce the decay contri-

bution in Section 4.2.1 and coupled-channel contribution in Section 4.2.2.

4.2.1 Decay contribution

Here we show a simple way to effectively introduce the contribution of the decay channel to the

resonance model. It is using the complex coupling constant λ0, g0 ∈ C instead of the real λ0, g0.
3

In the single-channel elastic scattering in Section 4.1, the Hamiltonian (4.2) and (4.3) are Hermitian

Ĥ† = Ĥ due to the real coupling constants. However, the Hamiltonian with the complex λ0 and g0

becomes non-Hermitian because λ∗0 ̸= λ0 and g∗0 ̸= g0. This non-Hermitian nature allows to have

complex eigenenergy and unstable eigenstates as shown in the following. With the complex coupling

constant, the eigenstate is obtained as the state below the threshold, but with the decay width. Such

a state is called a quasi-bound state.

In the energy region below the threshold, while the loop function G(E) is real, the effective interac-

tion Veff(E) 4.31 becomes the complex function due to the complex coupling constants. Therefore, the

eigenenergy from the pole condition (4.42) is obtained as a complex value. This is consistent with the

fact that the eigenenergy of unstable states is expressed as the complex value (2.83). Here we denote

the complex eigenenergy of quasi-bound states as

E = −B − i
Γ

2
, (4.56)

with the quasi-binding energy B > 0 and decay width Γ > 0. In this way, we effectively introduce the

decay channel.

The physical quantities such as the scattering amplitude, scattering length, and effective range are

also written as the same formula in Section 4.1.4 but with the complex coupling constants. This model

is utilized to discuss the contribution of decay to the near-threshold states in Chapter 6.

4.2.2 Coupled channel resonance model

Let us consider the two-channel resonance model for coupled-channel systems. For this purpose, we

introduce another tow-body scattering of Ψ1,Ψ2 (channel 2) in addition to that of ψ1, ψ2 (channel 1)

in the free Hamiltonian (4.2) [94]:

Hfree =
1

2m1
∇ψ†

1 · ∇ψ1 +
1

2m2
∇ψ†

2 · ∇ψ2 +
1

2M1
∇ψ†

1 · ∇Ψ1 +
1

2M2
∇Ψ†

2 · ∇ψ2 +
1

2M
∇ϕ† · ∇ϕ

+ ω1Ψ
†
1Ψ1 + ω2Ψ

†
2Ψ2 + ν0ϕ

†ϕ, (4.57)

3As another procedure, we can also construct the model by explicitly introducing the decay channel as in the higher

coupled channel case (Section 4.2). However, we need a complicated calculation in this case, because the three-body

decay should be considered to apply the model to exotic hadrons. In contrast, we can effectively consider the decay

contribution by letting g0 be complex, even if the system has many-body decays.
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where M1,2 are the masses of Ψ1,2, and ω1,2 are the energy of Ψ1,2 measured from the ψ1ψ2 threshold.

We denote the threshold energy difference as ∆ω = ω1 + ω2 > 0. The interaction Hamiltonian is

defined as

Hint = λ11(ψ
†
1ψ

†
2ψ1ψ2) + λ12(ψ

†
1ψ

†
2Ψ1Ψ2) + λ21(Ψ

†
1Ψ

†
2ψ1ψ2) + λ22(Ψ

†
1Ψ

†
2Ψ1Ψ2)

+ g0,1(ϕ
†ψ1ψ2 + ψ†

1ψ
†
2ϕ) + g0,2(ϕ

†Ψ1Ψ2 +Ψ†
1Ψ

†
2ϕ). (4.58)

The terms with λ12 and λ21 represent the direct transition between channel 1 and channel 2, and

terms with g0,1 and g0,2 correspond to the transition through the bare state ϕ. In this model, the

completeness relation is written as∫
dp1

(2π)3
|p1⟩ ⟨p1|+

∫
dp2

(2π)3
|p2⟩ ⟨p2|+ |ϕ⟩ ⟨ϕ| = 1, (4.59)

where |pi⟩ is the free scattering states in the i-th channel.

In the multi-channel case, the on-shell t-matrix t(p1) is written as the 2 × 2 array by the matrix

interaction V (pi) and loop function G0(pi) [94]:

t(p1) = V (p1) + V (p1)G
0(p1)t(p1), (4.60)

V (p1) =

(
V11 V12

V21 V22

)
=

λ11 + g20,1
p21/(2µ1)−ν0 λ12 +

g0,1g0,2
p21/(2µ1)−ν0

λ21 +
g0,1g0,2

p21/(2µ1)−ν0 λ22 +
g20,2

p21/(2µ1)−ν0

 , (4.61)

G0(p1) =

(
G0

1(p1) 0

0 G0
2(p2(p1))

)
, G0

i (pi) = −µi
π2

[
Λ− ipi arctan

(
− Λ

ipi

)]
. (4.62)

Here p1,2 are the momenta of the channel 1 and 2, respectively:

p1 =
√
2µ1E, (4.63)

p2(p1) =
√
2µ2(E −∆ω) =

√
µ2

µ1
p21 − 2µ2∆ω, (4.64)

with the reduced masses of each channel µ1,2. As in the single-channel cases, the eigenenergy is

obtained by the pole condition of the on-shell t-matrix (4.60). In the coupled-channel cases, it is

shown that the pole condition is written as [141]

det[1−G0(E)V (E)] = 0. (4.65)

To calculate the compositeness in a later discussion, we derive the effective interaction in this model.

In the two-channel case, the effective interaction Veff(p1) is obtained by eliminating the channels other

than the ψ1,2 scattering which is not only the bare state ϕ but also Ψ1,2 scattering [94]:

Veff(p1) = V11(p1) +
[V12(p1)]

2

[G0
2(p1)]

−1 − V22(p1)
. (4.66)

Using the effective interaction Veff(p1), the bound state condition is also written as

t−1
11 (E) = 1−G0

1(E)Veff(E) = 0. (4.67)

This condition is confirmed to be equivalent to Eq. (4.65) by using the relation V12 = V21. We will use

this model to consider the coupled channel system in Chapter 6.
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Chapter 5

Compositeness

In this chapter, we review the compositeness, a useful measure for analyzing the internal structure

of states. We start with an introduction of the wavefunction renormalization factor which provides

the foundation for the idea of the compositeness (Section 5.1). We then define the compositeness of

bound states in Section 5.2. For bound states, the compositeness is straightforwardly regarded as the

probability of finding the molecular component in the wavefunction. For later calculations, we also

show some useful expressions of the compositeness in Section 5.3. To discuss the universal nature of the

compositeness of shallow bound states, we present the weak-binding relation in Section 5.5. Since actual

exotic hadrons appear as unstable states in multi-channel scatterings, we define the compositeness for

coupled-channel systems in Section 5.4, and we extend the notion of the compositeness to generalized

eigenstates (virtual states and resonances) in Section 5.6. As shown in Section 5.6, however, the

compositeness of virtual states and resonances cannot be regarded as the probability. To address this

issue, we discuss a prescription of the probabilistic interpretation of the compositeness of generalized

eigenstates by considering the nature of unstable states in Section 5.7. Finally, in Section 5.8, we

present various applications of the compositeness not only to exotic hadrons but also to nuclei and

atomic systems. This demonstrates the universal applicability of the compositeness.

5.1 Wavefunction renormalization factor

Before the introduction of the compositeness, we discuss an essentially equivalent quantity called

“the renormalization factor of the wavefunction” in quantum mechanics or “field renormalization

constant” in field theory. The renormalization factor is defined as the coefficient of the perturbed

eigenstate [142, 143]. Let us consider the perturbative expansion of an eigenstate of the full Hamiltonian

|n⟩p:

|n⟩p = |n⟩0 + |n⟩1 + ..., (5.1)

where |n⟩i represents the i-th perturbation of the wavefunction. Here we define |n⟩0 as the eigenstate

of the free Hamiltonian which is normalized and orthogonal to |n⟩i ̸=0:

0 ⟨n|n⟩0 = 1, 0 ⟨n|n⟩i ̸=0 = 0 (5.2)
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Therefore, the norm of |n⟩p deviates from unity:

p ⟨n|n⟩p = 1/Z ̸= 1. (5.3)

To “re”-normalize perturbed eigenstate of the full Hamiltonian |n⟩p, we define the normalized eigen-

state |n⟩N :

|n⟩N =
√
Z |n⟩p , (5.4)

N ⟨n|n⟩N = Z · p ⟨n|n⟩p = 1 (5.5)

By substituting Eq. (5.1), the perturbative expansion of the normalized eigenstate is written as

|n⟩N =
√
Z |n⟩0 +

√
Z |n⟩1 + ... (5.6)

From Eq. (5.2), we see Z is written as the overlap of |n⟩N and |n⟩0:

0 ⟨n|n⟩N =
√
Z · 0 ⟨n|n⟩0 =

√
Z, (5.7)

Z = |0 ⟨n|n⟩N |2. (5.8)

From this equation, Z is regarded as the probability of finding the eigenstate of the free Hamiltonian

|n⟩0 in that of the full Hamiltonian |n⟩N . In this sense, the renormalization constant Z is essentially

equivalent to the elementarity Z as shown in the next section.

Around 1960, the field renormalization constant Z was applied to particle physics to distinguish

the elementary and composite particles [144, 145, 98]. A summary of studies in this era is given by

the review article [146]. The remarkable application of the field renormalization constant is performed

by S. Weinberg in a series of four works [75, 76, 147, 72]. It is epoch-making that he develops the

model-independent approach to calculate the field renormalization constant from the observables. This

method is now known as the weak-binding relation, which is shown in Section 5.5. Using the weak-

binding relation, it is shown that the deuteron is not an elementary particle, namely, the composite

particle of two nucleons [72].

Since 2003, motivated by observations of exotic hadrons (see Section 1.1), Weinberg’s works have

been revisited as a framework for investigating the internal structure of hadrons [140]. The extension

of Weinberg’s idea has developed into the method for analyzing the internal structure of hadrons using

the compositeness and is now being widely applied. The representative studies and applications of the

compositeness are summarized in Section 5.8.

5.2 Definition of compositeness

In this section, we define the compositeness X and elementality Z. Here we consider the system

introduced in Section 2.1.2 where the bound state |B⟩ (2.7) is written as the linear combination of the

free scattering states |p⟩ (2.17) and bare discrete state |ϕ⟩ (2.18). The compositeness X (elementarity

Z) is defined as the overlap of the bound state |B⟩ and the free scattering states |p⟩ (the bare discrete

state |ϕ⟩):

X =

∫
dp | ⟨p|B⟩ |2, (5.9)
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Z = | ⟨ϕ|B⟩ |2. (5.10)

From the completeness relation (2.19), the sum of X and Z is normalized:

X + Z = 1. (5.11)

In the effective field theory in Section 4.1, the definition of X and Z can be written by the momentum

space wavefunction χ(p) = ⟨p|B⟩ (4.25) and overlap constant c = ⟨ϕ|B⟩ (5.32):

X =

∫
dp

(2π)3
|χ(p)|2, (5.12)

Z = |c|2. (5.13)

Furthermore, X and Z can also be regarded as the weights which are obtained by the projection of |B⟩
to the P and Q spaces in the single resonance approach in the Feshbach method in Section 3.2 [148, 74]:

X = ⟨B|P̂ |B⟩ , (5.14)

Z = ⟨B|Q̂|B⟩ . (5.15)

To regard the compositeness X and elementarity Z as probabilities, the following two conditions

should be satisfied;

(i) X and Z are real and positive value; and

(ii) X + Z is normalized.

In this case, the compositeness X and elementarity Z are

0 ≤ X ≤ 1, 0 ≤ Z ≤ 1. (5.16)

For bound states, the absolute value square of the overlaps in Eqs. (5.9) and (5.10) is real and positive,

which guarantees the condition (i). The condition (ii) is satisfied by the sum rule (5.11). In this way,

the compositeness X (elementarity Z) can be regarded as the probability of finding the composite

component (elementary component) in the bound state |B⟩. In fact, this consideration is confirmed

by the following expansion of |B⟩ by the completeness relation (4.17):

|B⟩ =
∫
dp ⟨p|B⟩ |p⟩+ ⟨ϕ|B⟩ |ϕ⟩ . (5.17)

Due to the probabilistic nature of the compositeness, we can perform the quantitative analysis of the

internal structure of bound states. For example, if the compositeness X is larger than 50 % (X > 0.5),

we can see the composite component is dominant in the wavefunction, and therefore the state is

concluded as composite dominant. In contrast, the state is non-composite or elementary dominant

when X < 0.5. We emphasize that the notion of the compositeness can be used to characterize

any bound state in the two-body sector as long as the free scattering states |p⟩ can be defined. In

hadron physics, the compositeness represents the weight of the hadronic molecular component when

|p⟩ corresponds to the hadron scatterings. However, the compositeness cannot be defined for the quark

degrees of freedom, because there are no free scattering states |p⟩ due to the color confinement.

Finally, we emphasize that the compositeness X and elementarity Z are the model-dependent

quantities. We recall that the free Hamiltonian Ĥ0 can be arbitrarily chosen for a given full Hamiltonian
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Ĥ, as mentioned in Section 2.1.2. Therefore, the eigenstates |p⟩ of Ĥ0 also depend on the choice. As

shown in the definition (5.9), the compositeness contains the overlap of the free scattering states |p⟩
and the bound state. Therefore, the compositeness X can also be changed depending on the choice of

Ĥ0. This arbitrariness induces the model dependence of the compositeness.

5.3 Expressions of compositeness

In this section, let us review some useful expressions of the compositeness X and elementarity Z [17, 74].

5.3.1 Compositeness with t-matrix

We first derive the expression of the compositeness X by the form factor g2thF (E) in Chapter 2. By

multiplying the free scattering state ⟨p| to the Schrödinger equation of the full Hamiltonian (2.7), we

obtain

−B ⟨p|B⟩ = ⟨p|Ĥ|B⟩ ,

= ⟨p|(Ĥ0 + V̂ )|B⟩ ,

= Ep ⟨p|B⟩+ ⟨p|V̂ |B⟩ ,

⇒ ⟨p|B⟩ = −⟨p|V̂ |B⟩
Ep +B

. (5.18)

By substituting this ⟨p|B⟩ into the definition (5.9), X is written by the binding energy B and form

factor g2thF (E):

X =

∫
dp

| ⟨p|V̂ |B⟩ |2

(Ep +B)2
, (5.19)

= 4π
√

2µ3g2th

∫ ∞

0

dE

√
E|F (E)|2

(E +B)2
, (5.20)

In the second line, ⟨p|V̂ |B⟩ is written by Eq. (2.53) for the bound state coupling to the scatterings in

the s wave. For general partial waves, see Ref. [74].

We then show Eq. (5.20) can further be rewritten with the on-shell t-matrix obtained by the

Low-equation (2.52). Solving Eq. (2.54) for the square of the form factor |F (E)|2, we obtain:

X = 4π
√
2µ3

∫ ∞

0

dE

√
E

E +B

[
t(E)− v − 4π

√
2µ3

∫ ∞

0

dE′
√
E′|t(E′)|2

E − E′ + i0+

]
, v = ⟨p|V̂ |p⟩ . (5.21)

We note that the compositeness X in Eq. (5.21) is obtained as real because the imaginary part

of t-matrix cancels with that of the third term [17] as shown in the following. From the optical

theorem (2.66) and (2.67), the imaginary part of the scattering amplitude f(E) is expressed by the

magnitude of f(E):

Im f(E) = p|f(E)|2. (5.22)

Using the relation between f(E) and t(E) (2.59), we then obtain

Im t(E) = −µ(2π)2p|t(E)|2. (5.23)
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In fact, this exactly cancels with the imaginary part of the third term in Eq. (5.21) which is calculated

as

Im

(∫ ∞

0

dE′
√
E′|t(E′)|2

E − E′ + i0

)
= −π

√
E|t(E)|2. (5.24)

Here the following integral formula with the principal value P is utilized

1

x± i0
= P

(
1

x

)
∓ iπδ(x). (5.25)

Using p =
√
2µE, we see that the imaginary part of X in Eq. (5.21) is canceled.

5.3.2 Compositeness with effective interaction

The elementarity Z is also expressed by the derivative of the effective interaction V̂eff(E) [148]. From

the property of the projection operator Q̂ = Q̂Q̂ and Eq. (3.27), Z (5.15) is written as

Z = ⟨Ψ|Q̂Q̂|Ψ⟩ , (5.26)

= ⟨Q|Q⟩ , (5.27)

= ⟨P |ĤPQ(E − ĤQQ)
−2ĤQP |P ⟩ , (5.28)

= ⟨P |

(
−dV̂eff(E)

dE

)
|P ⟩ . (5.29)

In the third line, we use Eq. (3.33). Using the sum rule X = 1−Z, the compositeness X is also written

by

X = ⟨P |

(
1 +

dV̂eff(E)

dE

)
|P ⟩ . (5.30)

From this expression, we see that X = 1 and Z = 0 for an energy-independent interaction. In other

words, the energy dependence of the interaction induces the finite elementarity. Note that to obtain

reasonable X and Z, some conditions are imposed for the energy derivative. For Z > 0 (X > 0), the

energy derivative of the effective interaction should be negative (have a lower limit) [149, 150].

5.3.3 Compositeness for separable interaction

If the interaction is separable, it is possible to express the compositeness X and elementality Z with

the effective interaction and the loop function (Green’s function). We demonstrate this using the

single-channel resonance model with λ0 = 0 in the EFT (Section 4.1). From Eqs. (4.29) and (4.28),

χ(p) and c are obtained as

χ(p) =
Veff(−B)

−B − Ep

∫
dq

(2π)3
χ(q), (5.31)

c =
g0

−B − ν0

∫
dq

(2π)3
χ(q). (5.32)

By substituting Eq. (5.31) into the definition of X (5.12), we obtain

X = −G0′(−B)[Veff(−B)]2
∣∣∣∣∫ dp

(2π)3
χ(p)

∣∣∣∣2 , (5.33)
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where we denote

α′(E) =
dα(E)

dE
. (5.34)

In the same way, by substituting Eq. (5.32) into the definition (5.13), Z is also written as

Z = −V ′
eff(−B)

∣∣∣∣∫ dp

(2π)3
χ(p)

∣∣∣∣2 , (5.35)

By eliminating
∣∣∫ dp/(2π)3χ(p)∣∣2 using the sum rule (5.11) the following formulas of X and Z can be

derived [94]:

X =
G0′(E)

G0′(E)− [1/Veff(E)]′

∣∣∣∣
E=−B

, (5.36)

Z =
−[1/Veff(E)]′

G0′(E)− [1/Veff(E)]′

∣∣∣∣
E=−B

. (5.37)

These formulas are used to calculate X and Z in Chapter 6.

We also show that the compositeness is expressed by the residue g2 of the t-matrix. By substituting

the Lippmann-Schwinger equation (2.46) into the square of the residue g2 (2.55), we obtain

g2 = lim
E→−B

(E +B)[1/Veff(E)−G0(E)]−1. (5.38)

By expanding 1/Veff(E) and G0(E) around E = −B, and using the bound state condition

1

t(−B)
= 1/Veff(−B)−G0(−B) = 0, (5.39)

the residue can be rewritten as

g2 = − 1

G0′(E)− [1/Veff(E)]′

∣∣∣∣
E=−B

. (5.40)

Because this equation corresponds to the denominator of Eq. (5.36), the compositeness X and elemen-

tarity are also expressed by the residue and derivative of the loop function:

X = −g2G0′(E)|E=−B , (5.41)

Z = g2[1/Veff(E)]′|E=−B . (5.42)

We note that the same expressions of X and Z can be used in quantum mechanics for the general

separable interaction (2.46) using the appropriate convention (see Section 2.3.2). For example, the

loop function in the field theory (2.63) should be replaced by that in quantum mechanics (2.42).

5.3.4 Compositeness with self energy

Finally, we show the expression of X by the self energy Σ(E):

X =
−Σ′(E)

1− Σ′(E)

∣∣∣∣
E=−B

, (5.43)

Z =
1

1− Σ′(E)

∣∣∣∣
E=−B

. (5.44)
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In the following, we show that Z in this expression is equivalent to that in Eq. (5.37) in the resonance

model.

We first tranceform the operator Σ̂ to calculate the energy derivative of the self energy Σ(E) =

⟨ϕ|Σ̂(E)|ϕ⟩. From the relation between full Green’s function in P channel space ĜP (E) (3.40) and free

Green’s function Ĝ0
P (E) (3.36), we obtain [97]

ĜP (E) = [1− Ĝ0
P (E)V̂PP ]

−1Ĝ0
P (E)

= {[Ĝ0
P (E)]−1 − V̂PP }−1. (5.45)

We then substitute this relation into the operator Σ̂(E) (3.42) and calculate the energy derivative of

Σ̂(E) at E = −B:

d

dE
Σ̂(−B) =

d

dE
ĤQP {[Ĝ0

P (−B)]−1 − V̂PP }−1ĤPQ

= −ĤQP {[Ĝ0
P (−B)]−1 − V̂PP }−1 d

dE
[Ĝ0

P (−B)]−1{[Ĝ0
P (−B)]−1 − V̂PP }−1ĤPQ

= −ĤQP [V̂eff(−B)− V̂PP ]
−1 d

dE
[Ĝ0

P (−B)]−1[V̂eff(−B)− V̂PP ]
−1ĤPQ

= ĤQP [ĤPQĜQ(−B)ĤQP ]
−1[Ĝ0

P (−B)]−1 d

dE
[Ĝ0

P (−B)][Ĝ0
P (−B)]−1[ĤPQĜQ(−B)ĤQP ]

−1ĤPQ

= [ĤPQĜQ(−B)]−1[Ĝ0
P (−B)]−1 d

dE
[Ĝ0

P (−B)][Ĝ0
P (−B)]−1[ĜQ(−B)ĤQP ]

−1. (5.46)

Here we define

ĜQ(E) = (E − ĤQQ)
−1. (5.47)

In the third line, we use the bound state condition for operators:

V̂ −1
eff (E)− Ĝ0

P (E) = 0
∣∣∣
E=−B

. (5.48)

Furthermore, we use the formulas of the derivative of the inverse of the operators:

d

dE
[α̂(E)]−1 = −[α̂(E)]−1 d

dE
α̂(E)[α̂(E)]−1, (5.49)

d

dE
[1− α̂(E)]−1 = [1− α̂(E)]−1 d

dE
α̂(E)[1− α̂(E)]−1 (5.50)

By calculating the matrix element of Eq. (5.46) in the resonance model, we obtain

⟨ϕ| d
dE

Σ̂(−B)|ϕ⟩ = ⟨ϕ| [ĤPQĜQ(−B)]−1[Ĝ0
P (E)]−1 d

dE
[Ĝ0

P (E)][Ĝ0
P (E)]−1[ĜQ(−B)ĤQP ]

−1 |ϕ⟩

= ⟨ϕ| [ĜQ(−B)]−1Ĥ−1
PQV̂eff(−B)

d

dE
[Ĝ0

P (E)]V̂eff(−B)Ĥ−1
QP [ĜQ(−B)]−1 |ϕ⟩

=

∫
dp

(2π)3
⟨ϕ| [ĜQ(−B)]−1Ĥ−1

PQV̂eff(−B) |p⟩ ⟨p| d

dE
[Ĝ0

P (E)]V̂eff(−B)Ĥ−1
QP [ĜQ(−B)]−1 |ϕ⟩

=

∫
dp

(2π)3
(−B − ν0)

−1 ⟨ϕ|Ĥ−1
PQ|p⟩Veff(−B)

−1

(−B − Ep)2
Veff(−B) ⟨p|Ĥ−1

QP |ϕ⟩ (−B − ν0)
−1

=

∫
dp

(2π)3
(−B − ν0)

−1g−1
0 Veff(−B)

−1

(−B − Ep)2
Veff(−B)g−1

0 (−B − ν0)
−1

=

∫
dp

(2π)3
−1

(−B − Ep)2
1

(−B − ν0)2
g−2
0 Veff(−B)2
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= G0′
P (−B)

1

{[Veff(−B)]−1}′
. (5.51)

In the third line, we multiply the completeness relation (4.17). By substituting this result into

Eq. (5.44), we find that the expression with energy derivative of Σ(E) is equivalent to the expres-

sion (5.37) by appropriately taking into account the (2π)3 factor.

Z =
1

1− [G0
P (−B)]′

[1/Veff (−B)]′

=
[1/Veff(−B)]′

[1/Veff(−B)]′ − [G0
P (−B)]′

. (5.52)

Equation (5.44) shows that the elementarity Z can be written by the same expression as the field

renormalization constant [151].

5.4 Compositeness for coupled channels

To consider exotic hadrons observed in the multi-channel scatterings, we extend the notion of the

compositeness for the coupled-channel systems. Different from the single-channel scatterings discussed

in the previous sections, let us consider the multi-channel system where several channels couple to the

bound state. Here we call the lowest-energy channel “the threshold channel” and all other higher-

energy channels “the coupled channels”. To define the compositeness in the multi-channel system,

we first need to fix the model space. Let us pick up the N scattering channels out of all possible

coupled channels. In this case, the compositeness of the threshold channel X1 (coupled channels Xi)

is schematically defined as the weight of the threshold channel component |ch. 1⟩ (the coupled channel

component |ch. i⟩) in the bound state |B⟩:

|B⟩ =
√
X1 |ch. 1⟩+

√
X2 |ch. 2⟩+ ...+

√
Xi |ch. i⟩+ ...+

√
XN |ch. N⟩+

√
Z |others⟩ . (5.53)

Here we emphasize that the elementarity Z is defined due to the existence of channels not explicitly

considered in this model space, |others⟩. The components contained in |others⟩ depend on the choice

of the model space. Therefore, the elementarity Z is not uniquely given in multi-channel systems. For

example, with the channel elimination, the coupled channels become implicitly contained in |others⟩,
and Xi of the eliminated channel is redefined as a part of Z.

The compositeness for the multi-channel system is defined as in the single-channel case in Sec-

tion 5.2. Let us consider the system with N scattering channels |p,±, i⟩ and one bound state |B⟩:

Ĥ |p,±, i⟩ = Ep,i |p,±, i⟩ , Ep,i =
p2

2µi
+ Eth,i, (5.54)

Ĥ |B⟩ = −B |B⟩ , (5.55)

with i = 1, 2, ..., N . The energy of the i-th threshold is denoted as Eth,i, where the lowest threshold

energy is setted as Eth,1 = 0, and the index i is assigned in ascending order Eth,i+1 > Eth,i. Here we

introduce the free Hamiltonian whose eigenstates are N free scattering states |p, i⟩ and one discrete

bare state |ϕ⟩:

Ĥ0 |p, i⟩ = Ep,i |p, i⟩ , (5.56)
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Ĥ0 |ϕ⟩ = ν0 |ϕ⟩ . (5.57)

We note that the free scattering states |p, i⟩ consist of the same set of channels as the interacting

scattering states |p,±, i⟩ to span the same Hilbert space.1 The free scattering states and discrete bare

state are normalized and orthogonal to each other:

⟨p′, i|p, j⟩ = δ(p′ − p)δij , (5.58)

⟨ϕ|ϕ⟩ = 1, (5.59)

⟨p, i|ϕ⟩ = ⟨ϕ|p, i⟩ = 0. (5.60)

The completeness relation for the multi-channel case is given by

1 =
∑

1≤i≤N

∫
dp |p, i⟩ ⟨p, i|+ |ϕ⟩ ⟨ϕ| . (5.61)

The compositeness of i-th channel Xi and the elementarity Z are defined

Xi =

∫
dp | ⟨p, i|B⟩ |2, (5.62)

Z = | ⟨ϕ|B⟩ |2. (5.63)

Using the completeness relation (5.61), the bound state |B⟩ can be expanded as

|B⟩ =
∑

1≤i≤N

∫
dp ⟨p, i|B⟩ |p, i⟩+ ⟨ϕ|B⟩ |ϕ⟩ . (5.64)

This relation shows that Xi represents the probability of finding the i-th scattering channel in the

bound state |B⟩. Thanks to Eq. (5.61), a sum rule holds for Xi and Z:∑
1≤i≤N

Xi + Z = 1. (5.65)

The practical calculation of the compositeness Xi can be performed as in the single-channel case

in Section 5.3. Let us show the expression of Xi in the coupled-channel resonance model introduced in

Section 4.2.2. The compositeness of threshold channel X1 is obtained by the components of the loop

function G0
1 (4.62), and the effective interaction Veff (4.66) [94]:

X1 =
G0′

1 (E)

G0′
1 (E)− [V −1

eff (E)]′

∣∣∣∣
E=−B

, (5.66)

We will use this expression in Chapter 6.

5.5 Weak-binding relation

In this section, we introduce the method to estimate the compositeness of shallow bound states from

observables, called the weak-binding relation. In the single-channel case, the compositeness of the

1In general, multiple discrete states can be introduced, independently from the scattering states. In this case, the

elementarity can be defined for each bare state [74].
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shallow bound state X is related to the observables, the scattering length a0 and the radius of the

bound state R = 1/
√
2µB through the weak-binding relation [72, 17, 94]:

a0 = R

{
2X

1 +X
+O

(
Rtyp

R

)}
. (5.67)

Here Rtyp corresponds to the interaction range, which characterizes the uncertainty O(Rtyp/R) of the

compositeness in the weak-binding relation. For example, the interaction range of the nuclear force is

characterized by the mass of the pion as 1/mπ, because the long-range part of the nuclear force can

be described by the π exchange. In this case, the interaction range is estimated as Rtyp ∼ 1/mπ. By

solving Eq. (5.67) for X, the compositeness is written as

X =
a0/R+O (Rtyp/R)

2− a0/R−O (Rtyp/R)
. (5.68)

This relation shows that when the binding energy B is sufficiently small, the radius of the bound

state R becomes much larger than Rtyp so that the uncertainty O(Rtyp/R) is negligible. In this case,

the compositeness X can be estimated only by observables, the scattering length a0 and the radius

R. Although the compositeness is a model-dependent quantity in general, the compositeness of the

shallow bound states can be obtained in a model-independent manner by the weak-binding relation.

The weak-binding relation was developed by S. Weinberg to discuss the internal structure of the

deuteron, and he succeeded in showing that the deuteron is not an elementary particle [72]. After his

work, the weak-binding relation has been widely used as the model-independent method to estimate

the compositeness of the near-threshold exotic hadrons [140, 94].

In the following, we review the details of the weal-binding relation. In Section 5.5.1, we derive the

weak-binding relation following the original paper [72]. We then discuss the quantitative estimation

of the uncertainty O(Rtyp/R) in Section 5.5.2 [93, 94]. To enlarge the applicable region of the weak-

binding relation, we introduce the range correction in Section 5.5.3 [95].

5.5.1 Derivation of weak-binding relation

Let us discuss the nature of the compositeness of the shallow bound state to derive the weak-binding

relaiton [72, 17, 74]. In quantum mechanics, the weak-binding relation can be obtained from the

expression of the compositeness X with the coupling constant gth and the form factor F (E) (5.20).

For the derivation, we focus on the shallow bound state with a small binding energy B, where B is

much smaller than the typical energy scale of the system Etyp. We first expand the square of the form

factor |F (E)|2 in terms of the energy E around E = 0:

|F (E)|2 = |F (0)|2 + E
d

dE
|F (E)|2

∣∣∣∣
E=0

+O(E2)

= 1 + E
d

dE
|F (0)|2 +O(E2), (5.69)

where we denote d
dE |F (E)|2

∣∣
E=0

= d
dE |F (0)|

2 for simplicity. When B is much smaller than Etyp, the

integrand in Eq. (5.20) is dominated by the near-threshold region E ≲ Etyp. Therefore, the integration

range of Eq. (5.20) can be restricted within 0 ≤ E ≤ Etyp. By substituting the expansion (5.69) into

Eq. (5.20), compositeness is given by

X = 4π
√
2µ3g2th

[∫ Etyp

0

dE

√
E

(E +B)2
+

d

dE
|F (0)|2

∫ Etyp

0

dE
E
√
E

(E +B)2
+ ...

]
. (5.70)
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The first term in the parentheses is integrated as∫ Etyp

0

dE

√
E

(E +B)2
= −

√
Etyp

B + Etyp
+

1√
B

arctan

√
Etyp

B
. (5.71)

For small B/Etyp, the leading contribution is π/(2
√
B). The other terms in Eq. (5.70) are in higher

orders of B/Etyp. For example, the second integral is calculated as∫ Etyp

0

dE
E
√
E

(E +B)2
=
B
√
Etyp

B + Etyp
+ 2
√
Etyp − 3

√
B arctan

√
Etyp

B
, (5.72)

where all terms are finite in the B → 0 limit. Therefore, the compositeness of shallow bound states is

written as

X = 2π2
√
2µ3g2th

1√
B

[
1 +O

(√
B

Etyp

)]
. (5.73)

This relation indicates that the square of the coupling constant g2th should have the µ−3/2
√
B depen-

dence in the weak-binding limit (B → 0) so that the compositeness X is finite. In the weak-binding

limit, the square of the form factor |F (E)|2 behaves as constant at E ∼ −B

|F (−B)|2 = 1 +O
(

B

Etyp

)
. (5.74)

From this equation and Eq. (2.56), the residue of the bound state g2 is approximated as g2th. Therefore,

the compositeness can also be expressed as

X = 2π2
√

2µ3g2
1√
B

[
1 +O

(√
B

Etyp

)]
. (5.75)

Because the residue of the bound state g is determined model-independently [74], we find that the

compositeness is model-independent in the weak-binding limit (B → 0). In other words, the model

dependence of the compositeness disappears in the B → 0 limit.

We then consider the low-energy behavior of the t-matrix using the Low equation (2.54) for E ≪
Etyp. From Eq. (5.73), the square of the coupling constant g2th is proportional to

√
B. Therefore, the

first term ⟨p|V̂ |p⟩ is negligible compared with the second term ∝ g2th/(E+B) in the Low equation (2.54)

for small B. This corresponds to setting V̂PP = 0 in the Feshbach method [see Section (3.1.1)] or λ0 = 0

in the resonance model [see Section 4.1]. While the third term has no explicit B dependence2, this

term cannot be neglected to guarantee the unitarity of the t-matrix [72]. Therefore, the Low-equation

is approximated in the low-energy region as

t(Ep) =

[
g2th

Ep +B
+ 4π

√
2µ3

∫ ∞

0

dEq

√
Eq|t(Eq)|2

Ep − Eq + i0+

][
1 +O

(√
B

Etyp

)]
. (5.76)

If we neglect the higher-order terms O(
√
B/Etyp), this integral equation can be analytically solved in

terms of t(Ep) [72]. This is because after neglecting ⟨p|V̂ |p⟩, the remaining interaction is separable

2Note that this term implicitly contains B dependence through t(Ep) in the integrand.
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in the low-energy region, as shown in Eq (3.62). The scattering amplitude f(p) is then obtained

as [72, 17, 74]

f(p) =

[
− B

4π2µg2th
−

√
2µB

2
+

1

2

(
− 1

4π2µ2g2th
+

1√
2µB

)
p2 − ip

]−1

. (5.77)

By comparing this equation and the effective range expansion (ERE) (2.65) and using Eq. (5.75), we

find that the scattering length a0 and the effective range re can be written by the compositeness X as

a0 =
2X

X + 1
R+O(Rtyp), (5.78)

re =
X − 1

X
R+O(Rtyp). (5.79)

These equations are the weak-binding relations.

The weak-binding relation can also be reserved with the EFT framework [93, 94]. In this derivation,

Eq. (5.78) with a0 is found to be more fundamental than Eq. (5.79) with re. From the t-matrix (2.46)

and the relation (2.62), the scattering length a0 = −1/f(0) is written by the effective interaction Veff

and loop function G0(E):

a0 = − µ

2π

1

V −1
eff (0)−G0(0)

. (5.80)

By expanding a0 by Rtyp/R, we obtain Eq. (5.78) [93, 94]. Equation (5.79) is then obtained using the

bound state condition in the ERE by assuming that the bound state pole exists within the convergence

radius of the ERE.

Finally, we discuss the weak-binding relation in the zero-range limit (Rtyp → 0). In this case, the

uncertainty becomes exactly zero, and the weak-binding relation is written as

a0 = R
2X

1 +X
(Rtyp → 0). (5.81)

In this limit, the compositeness X can be completely determined by the observables. We will return

to this topic in Section 6.1.

5.5.2 Uncertainty estimation

Let us quantitatively estimate the uncertainty of the compositeness O(Rtyp/R) in the weak-binding

relation (5.67). If we neglect the uncertainty in Eq. (5.68), the central value of the compositeness Xc

is obtained as

Xc =
a0/R

2− a0/R
. (5.82)

For example, Xc of the deuteron is obtained as Xc = 1.68 which cannot be regarded as a probability.

In general, the compositeness exceeds unity if the scattering length a0 is larger than the radius R.

In fact, the scattering length (a0 = 5.42 fm) is larger than the radius (R = 4.32 fm). It is therefore

important to consider the uncertainty to obtain the meaningful compositeness 0 < X < 1 [95].

To quantitatively estimate the uncertainty, we introduce ξ [94]:

ξ =
Rtyp

R
, (5.83)
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for 0  ⇠  1. It is expected that the exact value of X is contained within Xl  X  Xu.
Numerically, Xu and Xl can go beyond the definition domain of the compositeness 0 

X  1, depending on the values of a0,R and ⇠. However, the results X � 1 and X  0 do not
make sense, because the exact value of X is not contained there. Therefore, we define

X̄u = min{Xu, 1}, X̄l = max{Xl, 0}, (6)

to restrict the uncertainty band of the compositeness within the definition domain of X:

X̄l  X  X̄u, (7)

as illustrated in Fig. 1. We regard this uncertainty band (7) as the estimated compositeness
and discuss the internal structure of the bound state with it. It is clear that the estimated
compositeness with the uncertainty band (7) is restricted within 0  X  1, and we can
interpret X as the probability. More details about the estimation of X are discussed in Sec. III
and IV in Ref. [5].

1
X

0

Eq. (7)

 form 
weak-binding relation

X

1
X

0

 form 
weak-binding relation

X

Eq. (7)

Figure 1. Schematic illustration of the definition of the uncertainty band (7). The left panel shows the
case for Xu > 1 (X̄u = 1), and the right shows that for Xl < 0 (X̄l = 0).

3 Application to physical systems

Now we estimate the compositeness X of the actual physical systems with the uncertainty
estimation discussed in Sec. 2.2. We consider the deuteron, X(3872), D⇤s0(2317), Ds1(2460),
N⌦ dibaryon, ⌦⌦ dibaryon, 3

⇤
H, and 4He dimer. The deuteron d in the p-n scattering is

chosen as the typical observed hadron. X(3872) in the D0-D̄⇤0 scattering, D⇤s0(2317) in the
D-K scattering, and Ds1(2460) in the D⇤-K scattering are the candidates for the exotic hadrons
which are experimentally observed [7]. N⌦ and ⌦⌦ dibaryons are the states obtained by
the lattice QCD calculation [11, 12]. We can apply the weak-binding relation not only to
the hadron systems but also to the nuclei and atomic systems. 3

⇤
H in the ⇤-d scattering is

an example of nuclei, and 4He dimer which is the weakly bound state of 4He atoms is an
example in the atomic systems.

For the estimation of X from the weak-binding relation, we need the scattering length
a0, the reduced mass µ, the binding energy B, the e↵ective range re, and the interaction
range Rint. The radius of the bound state is calculated by R =

p
2µB. We tabulate relevant

quantities in Tab. 1. We note that Rint is not an observable, and therefore it is determined
from the theoretical consideration. The procedure to determine these physical quantities is
explained in Ref. [5].

uncertainty estimation in 
Eqs. (5.84) and (5.85)

Figure 5.1: The schematic illustration of the uncertainty estimation of the weak-binding relation. The

bars correspond to the range of the compositeness X estimated by Eq. (5.84) and by Eqs. (5.85) and

(5.86).

Using ξ, the uncertainty of the compositeness is estimated as [94]

a0/R− ξ

2− a0/R+ ξ
≤ X ≤ a0/R+ ξ

2− a0/R− ξ
. (5.84)

By considering 0 ≤ X ≤ 1 in Eq. (5.16), we define the upper and lower boundaries of the compositeness

Xu and Xl (see Fig. 5.1) [95]:

Xu = min

{
1,

a0/R+ ξ

2− a0/R− ξ

}
, (5.85)

Xl = max

{
0,

a0/R− ξ

2− a0/R+ ξ

}
, (5.86)

We exclude the regions X < 0 and 1 < X where the exact value of the compositeness does not

exist. We note that when the binding energy B is large, Xu − Xl can be too large to estimate the

compositeness from the weak-binding relation. In other words, the weak-binding relation is useful as

long as Xu −Xl is sufficiently small [95].

5.5.3 Finite range correction

To extend the applicability of the weak-binding relation, we finally introduce the contribution of the

higher order term of the ERE, which is called the finite range correction. It is known that some hadron

systems have a sizable effective range re by comparing to other length scales. In this case, the effective

range plays an important role in characterizing the low-energy phenomena in the system. For example,

the effective range of the deuteron re = 1.75 fm is larger than the interaction range Rtyp = 1.43 fm,

and this suggests that the range correction is necessary to consider the deuteron, as mentioned in the

introduction.

In Ref. [95], we show that the weak-binding relation does not correctly work for the system with a

large effective range re > Rtyp. To apply the weak-binding relation to such systems, we introduce the

finite range correction to the weak-binding relation by redefining Rtyp as the maximum length scale

between the interaction range Rint and the magnitude of the effective range |re| [152, 153, 95, 154]:

Rtyp = max{Rint, |re|}. (5.87)
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With this range correction, we show the applicable region of the weak-binding relation to the system

with |re| > Rint, such as the deuteron system. The range correction is also discussed in Refs. [100,

155, 156, 157, 158].

5.6 Compositeness of virtual states and resonances

In the previous sections, we consider the compositeness of bound states. Strictly speaking, the com-

positeness in Section 5.2 can be defined only for bound states, which are normalizable ⟨B|B⟩ = 1, in

contrast to virtual states and resonances whose norms diverge. However, the notion of the composite-

ness can be extended for virtual states and resonances, using the expression of the compositeness in

Section 5.3 and using the Gamow vector in Section 2.5, respectively.

Let us first discuss the compositeness of virtual states. For virtual states |V ⟩, the compositeness and

elementality cannot be calculated by definition using Eqs. (5.9) and (5.15), because of the divergence

of the norm ⟨V |V ⟩ → ∞. However, if the effective interaction Veff is given, the compositeness of virtual

states can be obtained by extending Eq. (5.36) with the following replacement;

• the binding energy −B with the virtual state eigenenergy −EV ; and

• the loop function in the first Riemann sheet of the energy plane G(E) with that of the second

Riemann sheet GII(E).

The eigenmomentum p of virtual states is pure imaginary and its imaginary part is negative (p = −iκ
with real and positive κ). In this case, it is shown that both the energy derivative of 1/Veff(E) and

that of GII(E) are positive. From Eq. (5.36), we find that the compositeness of virtual states is always

larger than unity X > 1 due to [1/Veff ]
′/GII

′
> 0. Furthermore, the sum rule (5.11) indicates that

the elementarity Z is always negative. This is consistent with the fact that virtual states are the

negative norm states with the negative residue. In this way, the compositeness of virtual states can be

calculated from the expression of X. However, we note that X > 1 and Z < 0 cannot be interpreted

as probability, and the internal structure of virtual states is not discussed straightforwardly by the

compositeness.

For unstable resonances, we can define compositeness and elementality using the Gamow vector

⟨R̃| instead of the usual eigenvector ⟨R|. In this case, the compositeness and elementality are defined

as complex:

X =

∫
dp ⟨R̃|p⟩ ⟨p|R⟩ =

∫
dp χ(p)2 ∈ C, (5.88)

Z = ⟨R̃|ϕ⟩ ⟨ϕ|R⟩ = c2 ∈ C. (5.89)

This is because X and Z of resonances are obtained from the square of complex values χ(p) and c, not

from the absolute square of those. This property can also be seen in Eqs. (5.14) and (5.15), because

the expectation values with Gamow vector become complex as shown in Sec. 2.5. The expressions of

the compositeness in Section 5.3 are also modified by replacing the normal eigenvector |R⟩ with the

Gamow vector |R̃⟩ and the binding energy −B with the complex eigenenergy ER. Even for resonances,

the sum rule is not modified, namely, X + Z = 1 holds for complex X and Z. On the other hand,

the definitions (5.88) and (5.89) show that the compositeness X and elementality Z of resonances do

not satisfy the condition for probability (i). Therefore, the internal structure of resonances cannot be



5.7. THE PROBABILISTIC INTERPRETATION OF COMPLEX COMPOSITENESS 77

Table 5.1: The summary of the compositeness X and elementarity Z for bound states, virtual states,

and resonances.

States X, Z Probabilistic interpretation

Bound states 0 ≤ X ≤ 1, 0 ≤ Z ≤ 1 Yes

Virtual states 1 < X, Z < 0 No

Resonances X,Z ∈ C No

probabilistically analyzed by the compositeness, different from the bound state case. However, since

exotic hadrons appear as unstable resonances, we need to propose a prescription for a probabilistic

interpretation of complex X and Z for the application to the exotic hadrons. We will discuss this topic

in Section 5.7.

Finally, we summarize the nature of the compositeness of bound states, virtual states, and res-

onances in Table 5.1 The compositeness X and elementarity Z are regarded as probabilities only

for bound states, and X and Z of virtual states and resonances do not satisfy the conditions for a

probability.

5.7 The probabilistic interpretation of complex compositeness

To apply the notion of the compositeness not only to bound states but also to resonances, the proba-

bilistic interpretation of the complex compositeness has been studied. In this section, we review several

prescriptions of the probabilistic interpretation of the complex compositeness of unstable resonances

in Sections 5.7.1, 5.7.2, and 5.7.3. Finally, in Section 5.7.4, we propose a new interpretation scheme

by considering the unstable nature of resonances.

5.7.1 Taking absolute value or real part of X

To extract some probabilistic information about the molecular component from the complex com-

positeness, it is necessary to define some real quantities based on the compositeness. One of the

simplest proposals is taking the absolute value |X| or real part Re X of the compositeness X. In

Refs. [159, 17, 160, 150], the authors consider that the absolute value of the complex X is associated

with the molecular component of the resonance wavefunction. The real part of the complex X is

regarded as the weight of the molecular component of the resonance [112]. However, we note that |X|
and Re X can be negative or larger than unity, and such values cannot be regarded as a probability.

Therefore, we should take care of the applicability of these schemes.

5.7.2 Using weak-binding relation

For near-threshold states, the compositeness can be estimated by the weak-binding relation, as dis-

cussed above. Based on the weak-binding relation, there are some proposals to obtain the probabilistic

compositeness of resonances. Reference [161] suggests that the compositeness is calculated as a prob-
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abilistic quantity not only for bound states but also resonances by using the following relation:

X̄ =

√√√√ 1∣∣∣1− 2re
a0

∣∣∣ , (5.90)

where a0 is the scattering length and re is the effective range. In the later work [138], X̄A is proposed

by imposing the smoothness assumptions with which the compositeness becomes 0 ≤ X̄A ≤ 1 in all

momentum region:

X̄A =

√√√√ 1

1 +
∣∣∣ 2rea0 ∣∣∣ . (5.91)

Using X̄A, we can obtain the probabilistic compositeness also for virtual states while X̄ provides the

negative value as the compositeness of virtual states.

5.7.3 Defining new quantity

As another approach, we can also define a new probabilistic measure from complex compositeness X.

Some interpretation schemes are proposed inspired by Ref. [162] where the probabilistic interpretation

of the expectation value of resonances is discussed. For example, in Refs. [93, 94], the probabilities

X̃KH and Z̃KH are defined from the absolute values of X and Z as

X̃KH =
1− |Z|+ |X|

2
, (5.92)

Z̃KH =
1− |X|+ |Z|

2
, (5.93)

with the quantity U :

U = |Z|+ |X| − 1. (5.94)

We can clearly confirm that X̃KH and Z̃KH satisfy the conditions for probability: 0 ≤ X̃KH, Z̃KH ≤ 1,

and X̃KH + Z̃KH = 1. In this scheme, U is defined as the measure of uncertainty of the interpretation

which characterizes the reasonability of the interpretation of the internal structure of resonances. If

the decay width is large, the nature of resonance is expected to be apart from that of a resonance with

narrow width (the narrow resonance), because the pole exists very far from the physical scattering

region Re E > 0. For resonances with broad decay width (the broad resonances), Im X and Im Z = −
Im X are expected to be large. In this case, U becomes large [94], and the interpretation of the internal

structure of resonances is regarded to have a large uncertainty. As a criterion for the interpretation,

the authors propose that the state with U > 1 is considered not to be worth interpreting with X.

For coupled channels, the probability X̃ is proposed using the compositeness of each channels Xj

as [163]

X̃j =
|Xj |
1 + U

, (5.95)

Z̃ =
|Z|

1 + U
, (5.96)
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with

U =
∑

1≤j≤N

|Xj |+ |Z| − 1. (5.97)

We use X̃j to discuss the compositeness in the multi-channel system in Chapter 6.

5.7.4 X ,Y ,Z

In the interpretation scheme in Section 5.7.3, the degree of the uncertain identification U is defined to

distinguish the broad resonance from narrow resonances by focusing on the relation between the decay

width and the imaginary part of the compositeness. However, in the previous works, the criterion

for U is not based on the physical consideration. Here let us propose another scheme by introducing

the physical-based criterion for the states with large uncertain identification [96, 164]. In this scheme,

we define the probability of the uncertain identification Y as an equivalently essential quantity to the

compositeness X and elementarity Z:

X =
(α− 1)|X| − α|Z|+ α

2α− 1
, (5.98)

Y =
|X|+ |Z| − 1

2α− 1
, (5.99)

Z =
(α− 1)|Z| − α|X|+ α

2α− 1
. (5.100)

Here α is an arbitrary real parameter with α ≤ 1/2. The new quantity Y reflects the ambiguities arising

from the identification of the resonance. This is a significant difference from other prescriptions shown

above where all resonance is characterized only by compositeness and elementarity. From the definition

of Y (5.99), the broad resonances with a large magnitude of Im X have large Y. As shown below,

based on the large Y, we determine the criterion for the broad resonances whose internal structure is

not worth interpreting with compositeness.

Here we explain the foundation of the idea of X ,Y,Z. Let us consider observing an eigenstate

in an experiment. For the bound state case, there arise no ambiguities to distinguish a bound state

contribution from other spectra in the experimental data Fig 5.2 (a)]. This is because the bound state

below the threshold is observed as a delta function, where any spectra of the continuum scattering

backgrounds are not observed. In contrast, if we try to distinguish the resonance above the threshold

from a background, the identification of the resonance spectra has some uncertainty arising from the

following two factors [Fig. 5.2 (b)] [162];

• the finite decay width (the width of the resonance spectra) induces the ambiguity to identify the

eigenenergy of the resonance; and

• the separation from the background is not unique, which depends on the framework of the

analysis.

In this way, the identification of resonances is qualitatively different from that of bound states.

We apply this idea to the classification of the internal structure of resonances by focusing on

the observation. We consider that the ambiguities also appear in the identification of the internal

structure of resonances, in addition to observing the composite or elementary states. It is reasonable
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Figure 5.2: The schematic illustration of the experimental spectrum including a bound state [B.S. in

panel (a)] and that including a resonance [R in panel (b)]. The spectra in the shaded region in panel

(b) represent the ambiguity of resonance spectra, the finite decay width, and the separation from the

background (B.G.) contribution.

to regard that the internal structure of bound states is uniquely identified in a single observation,

whether composite or elementary. Therefore, after a sufficiently large number of observations, we can

conclude that the internal structure of bound states is composite dominant or not. This is because the

compositeness X and elementarity Z of bound states are defined as real and probabilistic quantities.

On the other hand, X and Z of resonances are complex by definition. We consider that the complex

X and Z reflect the ambiguity of the identification of the internal structure of resonances which is

induced by the instability of resonances [96]. Based on this consideration, we assume that the internal

structure of resonances is characterized by the following three quantities

X : the probability to certainly finding the composite component;

Z : the probability to certainly finding the elementary component; and

Y : the probability of uncertain identification.

In this case, the internal structure of resonances is regarded as the dominant component among X , Y,

and Z, as composite dominant, elementary dominant, and uncertain to identify. The large uncertain

identification Y corresponds to the situation that the internal structure cannot be identified whether

composite or not, because of a large ambiguity of broad resonances.

To be a natural extension of the compositeness of bound states, X ,Y,Z are defined to satisfy that

• normalized as X + Y + Z = 1; and

• X → X, Z → Z, and Y → 0 in the bound state limit where the limit where the decay width

goes to zero,

In the second condition, Y should be zero for stable bound states because it characterizes the uncertain

nature of resonances. In addition to these conditions, for a probabilistic interpretation, X , Y, and Z
should also be positive and smaller than unity. Because α > 1/2, we see Y (5.99) is always positive

from the triangle inequality. However, X (5.98) and Z (5.100) can be negative even if α > 1/2. In

this prescription, we regard that such a state with negative X or Z has a non-interpretable structure
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with the compositeness. Adopting the category “non-interpretable”, we propose the classification of

the internal structure of resonances as follows;

• composite dominant, if X > 0, Z > 0, and X is largest;

• elementary dominant, if X > 0, Z > 0, and Z is largest;

• uncertain whether composite or elementary, if X > 0, Z > 0, and Y is largest; and

• non-interpretable with the compositeness, if X < 0 or Z < 0.

In this prescription, the internal structure of resonances is at first classified into interpretable or non-

interpretable. Then the interpretable states are categorized into composite dominant, elementary dom-

inant, or uncertain (Fig. 5.3). In summary, the internal structure of resonances can be classified into

not only composite or elementary dominant but also uncertain or non-interpretable, which are newly

introduced based on the ambiguities of resonances. We note that the category “non-interpretable” is

not considered in the previous works in Section 5.7.3 where the internal structure of all resonances is

interpreted by the compositeness.

We note that Y does not have an upper limit and can be larger than unity, while the lower limit is

determined as Y ≥ 0. If Y is much large, X or Z can be negative because of the sum rule X+Y+Z = 1,

and the state is regarded as non-interpretable. For example, either X or Z must be negative if Y > 1.

As discussed above, the broad resonances are considered to have large Im X, and therefore have

large Y. In this sense, broad resonances are expected to be automatically distinguished from narrow

resonances as a non-interpretable state. By determining the value of α in the next paragraph, we will

show this expectation holds.

From Eqs. (5.98), (5.99), and (5.100), X ,Y,Z have not only on the eigenenergy dependence through

X and Z, but also on the parameter α dependence. This indicates that the classification of the

resonance also depends on the value of α. In principle, the choice of α is arbitrary within the region

α > 1/2. Here we discuss a reasonable value of α based on the physical consideration. For this purpose,

we first see the α dependence of the region where the state is interpretable with positive X and Z in

the complex X plane. If we set α = 1/2, the interpretable region is restricted only within real and

0 ≤ X ≤ 1. Because the states with X in this region correspond to the bound state, this setup claims

that only bound states are meaningful to interpret with the compositeness. In contrast, in the α→ ∞
limit, X ,Y,Z reduce to the interpretation scheme in the previous work [94]: X → X̃KH, Z → Z̃KH,

and Y → 0 as seen in Eqs. (5.98), (5.99), and (5.100). In other words, this corresponds to the scheme

where all resonances are interpretable with the compositeness.

The limits of α discussed above correspond to excessive cases, and it is not suitable for practical

discussion. As a reasonable value of α, let us choose α by relating the non-interpretable states with

the broad resonances. Specifically, we determine the value of α with which the broad resonances are

classified into the non-interpretable state. As the criterion of the broad resonance, we adopt

Re E < Γ ⇔ Re E < −2 Im E, (5.101)

where Γ is the decay width. Based on this criterion, we regard the state satisfying Eq. (5.101) as the

broad resonance. By using the weak-binding relation in the zero-range limit (6.5), the corresponding

value of α is obtained as [96]

α =

√
5− 1 +

√
10− 4

√
5

2
≈ 1.1318. (5.102)
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Figure 5.3: The classification of the internal structure of resonances using X ,Y,Z.

We use this criterion in Chapter 6 to obtain the compositeness of Tcc(3875)
+ and X(3872).

5.8 Applications of compositeness

In this section, we introduce some applications of the compositeness to various states. We first focus on

the application to the quark-model exotics in hadron physics, to baryons in Section 5.8.1 and mesons

in Section 5.8.2. We then see the application of the compositeness of the quantum-number exotic and

quarkonium-associated exotic hadrons in Section 5.8.3. We also show the compositeness applies to

the lattice QCD prediction (Section 5.8.4), the nuclei, and atoms (Section 5.8.5). Here we denote the

compositeness of the AB molecular component as XAB .

5.8.1 Application to baryons

deuteron

Let us start with the deuteron as the first applied hadron. Actually, before Weinberg’s work, the

internal structure of the deuteron was discussed in section 5 in Ref. [146]. However, it is innovative

that Weinberg’s consideration is based only on three observables, the binding energy, scattering length,

and effective range. Since the development of the weak-binding relation, the compositeness of the

deuteron has been discussed multiple times. We align the representative works on the compositeness

of the deuteron;

• Z ∼ 0 (the pioneering work of the weak-binding relation) [72];

• X = 1.68+2.15
−0.83, using the weak-binding relation (5.67) [165];

• X̄A = 0.8, using the extended weak-binding relation (5.91) [138].

The compositeness of the deuteron is considered particularly with consideration of the range correction;

• X ≥ 0.62 even with a much smaller cutoff [100];

• X ∼ 1, namely, mostly a pn molecule [156];
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• X ≳ 0.7 is very plausible [157]

• 0.74 ≤ X ≤ 1 [95].

In addition to the deuteron in the pn scattering, the virtual state in the nn scattering is also studied

using the compositeness in Ref. [157].

N and ∆ resonances

Not only the deuteron but also excited N and ∆ baryons are investigated using the compositeness [166,

163]. In Ref. [166], the authors calculate the compositeness from the residue and loop function. In

Refs. [163], the compositeness of various exotic hadrons is studied using X̃ (5.95). In these studies,

the compositeness of N and ∆ is calculated as follows.

• N(1535): the non-molecular dominant with Z = 0.70− 0.09i Ref. [166] and Z̃ = 0.62 [163]

• N(1650): the elementarity dominant with Z̃ = 0.74 [163].

• ∆(1232): the πN molecule-dominant with X̃ = 0.61 - 0.71 [163];

Λ, Σ, and Ξ resonances

As an application to the exotic hadrons in the strange sector with s quarks, we first focus on Λ(1405).

There are a lot of approaches to studying the structure of Λ(1405), from the viewpoint of the finite-

volume effect [167], with the generalized weak-binding relation [93, 94], using the idea of the rank one

projection operator [160], and with a unitarized meson-baryon model [168]. The results of these are

summarized as follows;

• XK̄N = 0.99 + 0.05i (see Table II in the paper). With the finite volume effect, XK̄N,FV = 0.82 -

1.03 [167];

• X̃KH = 0.6 - 1.0 [93, 94] (see Table I in Ref. [93] and Table 2, 3, and 4 in Ref. [94]);

• the total compositeness is X = 0.73+0.15
−0.10.

As a representative study of other strange baryons, a comprehensive examination of the structure of

excited decuplet heavy baryons is performed in Ref. [112]. We present some results as follows;

• Λ(1380): the total compositeness is X = 0.14 + 0.40i (see Table III in the paper) [167], X =

0.23 + 0.46i [166], and X = 1.00+0.49
−0.25 [160];

• Λ(1520): elementary dominant with the small total compositeness (e.g., X = 0.21, see Table III

in the paper) [169];

• Λ(1670): the total compositeness is X = 0.47 + 0.06i [166];

• Σ(1385): XπΛ = 0.13 - 0.24 (depending on the cutoff) [112];

• Ξ(1535): XπΞ = 0.09 - 0.15 (depending on the cutoff) [112];

• Ξ(1690): K̄Σ molecule-dominant with XK̄Σ− = 0.86 − 0.50i using the coupled-channel unitary

approach [170].
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• Ω−: XK̄Ξ = 0.18 - 0.53, and XπΣ = 0.09 - 0.12 (depending on the cutoff) [112].

Also for the baryons in the heavy sector, the compositeness is applied mainly to Λc baryons. For

example, in Ref. [161], the internal structure of the near-threshold s-wave resonance is studied using the

effective range expansion, and the framework is applied to Λc(2595). The compositeness of Λc(2595) is

also studied in Ref. [171] with the SU(6) × HQSS model. In Ref. [172], the compositeness of Λc(2595)

is calculated based on the result of the pole analysis. In the following, we summarize the compositeness

of Λc(2595);

• not likely a πΛc molecule [161];

• total compositeness is X = 0.11+0.02
−0.02 [160];

• not a composite dominant with small total compositeness (see Table IV in the paper for more

quantitative results) [168];

• X = 0.14 ± 0.02 - 0.17 ± 0.04 for single-channel analysis, and X = 0.11 ± 0.02 - 0.04 ± 0.01 for

coupled-channel analysis (depending on the setup) [172];

• they consider πΣc molecular component, and obtain XπΣc
= −0.024 + 0.107i. For more results

with other setups, see table II in Ref. [171].

In addition to Λc(2595), the compositeness of other Λc baryons are considered. In Ref. [168], the

compositeness of Λc(2625) is computed as XπΣ∗
c
= 0.268. Other-channel compositeness is shown in

Table IV in that paper. Furthermore, Λb baryon in the bottom sector is also discussed. In Ref. [168],

the authors show the compositeness of Λb(5912) and Λb(5920) as XB̄∗N = 0.539 and XπΣ∗
b
= 0.581,

respectively. The compositeness of other components is shown in Table V in that paper.

5.8.2 Application to mesons

Light mesons

From now on, let us present the various studies of the compositeness of exotic mesons. For light

mesons, f0(980) and a0(980) are actively studied. For example, in Ref. [140], the compositeness of

f0(980) and a0(980) is calculated with the extended weak-binding relation which is developed based on

the spectrum function. In Ref. [173], the KK̄ compositeness of f0(980) and a0(980) are investigated

from the consideration of the a0(980)-f0(980) mixing density. We first summarize the compositeness

of f0(980);

• X ≳ 0.8 [140]

• Xππ = 0.01 + 0.01i, XKK̄ = 0.74 − 0.11i. With the finite volume effect, XKK̄,FV = 0.73 -

0.97 [167];

• XKK̄ = 0.87− 0.04i, Xηη = 0.06 + 0.01i [166];

• XK+K− = 0.35 − 0.05i, XK0K̄0 = 0.35 − 0.05i, Xπ+π− = 0.01 + 0.01i, and Xπ0π0 = 0.01 +

0.00i [173];

• the compositeness is small X̃KH = 0.3 - 0.9 (depending on the dataset) [93, 94];



5.8. APPLICATIONS OF COMPOSITENESS 85

• total compositeness X = 0.67+0.28
−0.27 [160].

The compositeness of a0(980) is computed as

• X = 0.5 - 0.75 [140];

• the compositeness is small X̃KH = 0.1 - 0.3 for most of all dataset [93, 94];

• XK+K− = 0.17− 0.15i, XK0K̄0 = 0.17− 0.15i, and Xπ0η = −0.07 + 0.12i [173].

Other light mesons, such as ρ(770), a0(1450), a1(1260), σ meson (also as known as f0(500)), f0(1710)

are also studied. In Ref. [174], the mixture of the quark and hadronic component in a1(1260) structure

is discussed. We summarize the compositeness of these mesons as follows;

• ρ(770): Xππ = −0.08 + 0.03i, and XKK̄ = −0.02 + 0.00i [166];

• ρ(770): total compositeness X = 0.08+0.01
−0.01 [160];

• a0(1450): total compositeness X = 0.23+0.37
−0.18 [160];

• a1(1260): total compositeness X = 0.46 [160];

• a1(1260): a1(1260) has comparable amounts of the elementary component to the πρ composite

component [174];

• σ = f0(500): Xππ = −0.09 + 0.37i, and XKK̄ = −0.01− 0.00i [166];

• σ = f0(500): total compositeness X = 0.40+0.02
−0.02 [160];

• f0(1710): total compositeness X = 0.25+0.10
−0.10 [160].

Strange mesons

In the strange sector, there are some applications of the compositeness to the excited K mesons (K∗).

In Ref. [175], the internal structure of K∗ mesons is discussed as the state appearing with p-wave in

the πK scatterings. We summarize the studies on strange mesons;

• K∗: |X| = 0.158 - 0.192 (depending on the cutoff) [175];

• K∗
0 (800) = κ: XπK = 0.32 + 0.36i and XηK = −0.01− 0.00i [166];

• K∗
0 (800) = κ: total compositeness X = 0.94+0.39

−0.52 [160];

• K∗(892): XπK = −0.03 + 0.04i and XηK = −0.03 + 0.00i [166];

• K∗(892): total compositeness X = 0.05+0.01
−0.01 [160].



86 CHAPTER 5. COMPOSITENESS

Charmed mesons

In the charm sector, the compositeness is often applied to X(3872). In Ref [155], the authors calculate

the compositeness of X(3872) using Eq. (5.91). The compositeness of X(3872) is studied from the

analysis of the experimental line shape [176, 177]. We summarize the compositeness of X(3872) as

follows;

• X̄A ≳ 0.9 [155]

• Z = 0.19± 0.29 [176]

• 0.86 < X < 0.948 [177]

• 0.53 ≤ X ≤ 1 [95]

The compositeness of X(3872) is also studied in this thesis, in Chapter 6. Also in Ref. [160], the

internal structure of Y (4260) is considered as the non-composite state with the total compositeness

X = 0.21.

Strange and charmed mesons

The compositeness is also applied to the mesons including both s and c quarks, called Ds mesons. For

example, in Ref. [178], the compositeness of D∗
s0(2317) and D

∗
s1(2460) is considered using the result of

the lattice QCD. In Ref. [179], the compositeness of D∗
s0(2317) is calculated using the chiral unitarity

model. We summarize the compositeness of D∗
s0(2317);

• XKD = 72± 13± 5 % [178];

• XDK = 0.69 and XDsη = 0.09 [179];

• total compositeness X = 0.70+0.07
−0.05 [160];

• XKD ≥ 0.6 [156];

• XKD ≥ 0.5 [157];

• 0.81 ≤ X ≤ 1 [95].

The compositeness of D∗
s1(2460) is also calculated as

• XKD∗ = 57± 21± 6 % [178]

• 0.4 < XKD∗ < 0.7 [156];

• 0.55 ≤ X ≤ 1 [95].

5.8.3 Application to the quantum-number and quarkonium-associated ex-

otic hadrons

In the previous subsection, we show the applications for quark-model exotic hadrons, including the

candidates of exotic hadrons. In addition to these, the compositeness is used to analyze the internal

structure of quantum-number exotic hadrons and the quarkonium-associated exotic hadrons. For

example, the compositeness of Tcc(3875)
+ is calculated with Eq. (5.91) [155, 64], using the weak-

binding relation with the range correction [157], from the residue of the pole [64];
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• the compositeness is for exmaple obtained as X̄A = 0.87±0.01
±0.07. It depends on the scheme, and

the quantitative result is almost the same among the schemes [155];

• it is consistent with the molecular picture [157];

• for example, XD0D∗+ = 0.71±0.01
±0.02, XD+D∗0 = 0.29±0.01

±0.02 using the residue of the pole (also

depending on the scheme) [155].

We also consider the compositeness of the quantum-number exotic hadron, Tcc(3875)
+ using the EFT

model in the later Chapter.

5.8.4 Application to lattice QCD results

The compositeness is applied not only to the experimentally observed states but also to the states

predicted by the lattice QCD simulation. For example, the internal structure of NΩ and ΩΩ dibaryons

is considered using the weak-binding relation [95];

• NΩ dibaryon: 0.80 ≤ XNΩ ≤ 1;

• ΩΩ dibaryon: 0.79 ≤ XΩΩ ≤ 1.

These results suggest that the bound states of NΩ and ΩΩ are suitable to the dybaryon picture.

5.8.5 Application to nuclei and atoms

Because the notion of the compositeness is universal, the compositeness is also applicable to nuclei and

atomic systems. In Ref. [95], the compositeness of the hypertriton 3
ΛH and 4He dimer are estimated

by the weak-binding relation;

• 3
ΛH: 0.74 ≤ XdΛ ≤ 1;

• 4He dimer: 0.93 ≤ X ≤ 1.

These results show that they are composite dominant. In particular, the result of 4He dimer agrees

with the dimer picture from the ab initio calculation. This analysis serves as a demonstration of the

validity of the weak-binding relation. Furthermore, the essentially same concept to elementarity Z is

discussed to consider the atomic systems [180, 181] and the polaron-molecule [182].
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Chapter 6

Structure of near-threshold bound

states

In this chapter, we discuss the internal structure of the near-threshold bound states using the com-

positeness. In Section 6.1, we show that the compositeness is unity in the exact weak-binding limit

and discuss the threshold rule for the states with small but finite binding energy. Based on the ex-

pectation from the empirical threshold rule, the near-threshold bound states are considered to be

composite dominant. In Section 6.2, we establish the theoretical foundation of the threshold rule using

the single-channel resonance model introduced in Section 4.1. In anticipation of applications to exotic

hadrons, we study the nature of near-threshold states in the presence of the decay width (Section 6.3)

and channel couplings (Section 6.4) using the models in Section 4.2. Finally, we apply the present

framework to analyze the internal structure of Tcc(3875)
+ and X(3872) by examining the decay and

coupled-channel effects in Section 6.5.

6.1 Low-energy universality and threshold rule

In this section, we discuss the qualitative nature of near-threshold bound states from the viewpoint

of the low-energy universality. We first introduce general concepts of the low-energy universality in

Section 6.1.1. Then we discuss the compositeness of shallow bound states relation with the threshold

rule in Section 6.1.2.

6.1.1 Low-energy universality

Here we examine the consequence of the low-energy universality using the effective range expansion

(ERE) (2.65). In the near-threshold energy region with a sufficiently small momentum p, the scattering

amplitude f(p) is governed by the scattering length a0, by neglecting the higher order terms in the

ERE:

f(p) ∼ 1

− 1
a0

− ip
. (6.1)

Let us assume that the system has a shallow bound state. From the bound state condition 1/f(p) = 0

with the near-threshold scattering amplitude (6.1), the eigenmomentum of the shallow bound state is
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written as

p ∼ i

a0
. (6.2)

The binding energy B can also be estimated by the scattering length a0:

B = − p2

2µ
∼ 1

2µa20
. (6.3)

This equation indicates that the scattering length a0 diverges when the bound state exists exactly at the

threshold B = 0, as mentioned in the introduction. In the same way, near the threshold energy region,

all the quantities are scaled only by a0. This observation leads to the low-energy universality: the

near-threshold phenomena is universally described by the theory characterized solely by the scattering

length as the relevant scale (the zero-range theory) [77, 104, 80].

6.1.2 Compositeness theorem and threshold rule

Based on the low-energy universality, let us discuss the compositeness of shallow bound states. It is

shown in Eqs. (5.43) and (5.44) that the compositeness X and the elementarity Z are expressed by the

energy derivative of the self energy Σ(E). In the E → 0 limit, Σ(E) is proportional to
√
E as G0(E)

is, and therefore, Σ′(E) diverges for E → 0. Namely, we obtain

X = 1, Z = 0 (B → 0) (6.4)

Thus, the compositeness is unity when the state exists exactly at the threshold (B → 0) [161, 91, 92].

Therefore, a hadron at the threshold always has a pure hadronic molecular structure. This fact is

called the compositeness theorem. We emphasize that this is a model-independent consequence of the

low-energy universality.

The result of the compositeness theorem can be confirmed by the weak-binding relation (5.67).

As discussed in Section 4.1.5, taking the zero-range limit (Rint → 0) corresponds to considering the

low-energy limit of the scattering amplitude which is capable of describing the shallow bound state.

Thus, the compositeness X of the shallow bound state is estimated by the weak-binding relation in

the zero-range limit:

a0 ∼ R
2X

1 +X
, R =

1√
2µB

. (6.5)

By substituting the result of the compositeness theorem, X = 1, we obtain a0 ∼ R. This is equivalent

to Eq. (6.3) obtained from the low-energy universality.

The B → 0 limit is an idealization, and physical bound states have a small but finite binding energy

B ̸= 0. Naively, shallow bound states are expected to be composite dominant with X ∼ 1. This expec-

tation aligns with the empirical fact that the near-threshold states are observed as molecule-dominant

states, the threshold rule (see Section 1.3). However, strictly speaking, the composite theorem is shown

only at the threshold B = 0. Therefore, the internal structure of shallow bound states (B ̸= 0) is not

theoretically well established. In fact, for finite binding energy B ̸= 0, it is shown that non-composite

shallow bound states can always be realized with a tuning of the parameters, even if B is small [91, 92].

In other words, by deliberately choosing the parameters, it is always possible to construct a model that

does not follow the threshold rule. These facts indicate that the reason why the threshold rule holds

is not theoretically clear. Given this background, we study the theoretical foundation of the threshold

rule by focusing on the tunings of model parameters.
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6.2 Threshold rule in single-channel systems

Here we numerically examine the realization of the threshold rule using the single-channel resonance

model in Section 4.1. We first present the setup of the numerical calculation in Section 6.2.1. The

results of the analysis of the compositeness are then shown in Section 6.2.2.

6.2.1 Set up

To clarify the theoretical basis of the threshold rule, we examine the model dependence of the compos-

iteness through the comparison of typical and shallow bound states. Here we use the single-channel

resonance model introduced in Section 4.1. By setting λ0 = 0 for simplicity, this model has three pa-

rameters, the coupling constant g0, bare state energy ν0, and cutoff Λ (see Section IIIA of Ref.[93] for

the effect of finite λ0). In this case, eigenstates are described by the coupling of a bare state to a single

free scattering state. The compositeness X is calculated from the effective interaction Veff(E) (4.31)

and loop function G0 (4.36) using the formula (5.36):

X(B, ν0,Λ) =

1 + π2κ

g20µ
2

(
arctan

(
Λ

κ

)
−

Λ
κ

1 +
(
Λ
κ

)2
)−1

−1

, (6.6)

with κ =
√
2µB. Here the ν0 dependence arises from g20 which is given by the bound state condi-

tion (4.42):

g20(B; ν0,Λ) =
π2

µ
(B + ν0)

[
Λ− κ arctan

(
Λ

κ

)]−1

. (6.7)

It can be analytically shown in Eq. (6.6) that, in the weak-binding limit B → 0 (i.e., κ → 0), the

compositeness X becomes unity, in accordance with the compositeness theorem (6.4). However, with

the finite binding energy κ ≠ 0, the compositeness X depends on the model parameters, such as the

bare energy ν0 and the cutoff Λ. In fact, for B ̸= 0, we find X → 0 for ν0 → −B and X → 1 for

ν0 → ∞. This indicates that the compositeness of bound states with B ̸= 0 can be varied arbitrarily

by adjusting the model parameters.

To set a reference for the energy scale, we define

Etyp =
Λ2

2µ
. (6.8)

This energy Etyp can be regarded as the typical energy scale in the EFT framework because the

cutoff Λ represents the intrinsic momentum scale in the microscopic theory. Based on the argument of

naturalness [183, 184, 185, 186], we expect that a typical bound state in this system has the binding

energy of the order of Etyp if the system has a bound state. Because Λ is the upper limit of the EFT,

we assume B ≤ Etyp so that the bound state appears in the applicable region of the model.

In this work, we study the model dependence of the compositeness by considering two representative

cases: a typical bound state with B = Etyp, and a shallow bound state with B = 0.01Etyp. In this

model, there are three model parameters: the coupling constant g0, bare state energy ν0, and cutoff

Λ. For a given binding energy B, one degree of freedom of the model parameters can be reduced by

the bound state condition as shown in Eq. (6.7). Furthermore, we use the dimensionless quantities

with the cutoff Λ so that the Λ dependence in the results is absorbed. For example, the dimensionless
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Figure 6.1: The compositeness X as a function of the bare state energy ν0 in the parameter region (6.9).

The solid line corresponds to X of the typical bound state B = Etyp, the dashed line to the shallow

bound state B = 0.01Etyp, and the dotted line to the bound state with the critical binding energy

B = Bcr = 0.243Etyp. This figure is adapted from Ref. [71].

binding energy B/Etyp is used instead of B. Because this procedure also reduces one more degree of

freedom of the model parameters, the bare state energy ν0 is the only remaining parameter in this

setup. The determination of ν0 requires the knowledge of the microscopic theory because it cannot be

given within the framework of the EFT. For hadron systems, ν0 may be calculated by the constituent

quark model, where the bare state |ϕ⟩ corresponds to the multiquark state. In this work, we take

a different approach; we vary ν0 in the allowed region in the resonance model, and regard the ν0

dependence as the model dependence of X (6.6). The allowed parameter region of ν0 is given as

− B

Etyp
≤ ν0
Etyp

≤ 1. (6.9)

The lower limit is determined to have the real coupling constant g20 > 0 from Eq. (6.7). The upper

limit ν0/Etyp = Etyp/Etyp = 1 is given as the maximum energy scale in the EFT.

6.2.2 Structure of near-threshold bound states

We numerically calculate the compositeness X (6.6) by varying the bare state energy ν0 within the

model-allowed region (6.9). In Fig. 6.1, we plot the compositeness X of the typical bound state

B/Etyp = 1 (solid line) and shallow bound state B/Etyp = 0.01 (dashed line). Note that the ν0

regions are different in each plot of X since the lower limit of the region is determined by the binding

energy (6.9).

At ν0/Etyp = −B/Etyp, the compositeness becomes zero for all cases. This can be analytically

shown by substituting g20 = 0 into Eq. (6.6), where g20 becomes zero when ν0 = −B in Eq. (6.7). When

the couplings vanish g0 = 0, the state becomes the pure elementary bare state whose compositeness is
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exactly zero X = 0. When ν0 increases, we find that X becomes larger. This is because the couplings

g20 of the bare state to the scattering state increase with ν0 as shown in Eq. (6.7), and the scattering

states contribute to enhancing the compositeness X. This heavier of the compositeness is discussed also

in Refs. [187, 92]. We note that the degree of the increase of X depends on the binding energy, while

the qualitative behavior of X is common among the bound states with different binding energies. In

the following, we discuss the compositeness of typical, shallow, and critical bound states individually.

Typical bound state

We first focus on the typical bound state with B = Etyp. In this case, the compositeness X is X < 0.5

for most parameter region −1 ≤ ν0/Etyp ≤ 1. This means that, when we randomly choose the model

to determine ν0, it is usual to obtain the non-composite state for the typical binding energy. We can

understand this result from the feature of the resonance model; the origin of the bound state is the

bare state |ϕ⟩ which contributes to the elementary component.

Shallow bound state

In contrast to the typical bound case, the compositeness of the shallow bound state B = 0.01Etyp is

larger than 0.5 in a large proportion of the −0.01 ≤ ν0/Etyp ≤ 1 region. This shows that the shallow

bound state is usually composite dominant while a bound state in this model is constructed from the

pure elementary bare state with X = 0. However, at the same time, we also find that the elementary

dominant state (X < 0.5) is realized if we tune the value of ν0 within the small parameter region. This

is the demonstration of the results in Refs. [91, 92].

Let us further consider the fine tuning of the parameter from the viewpoint of naturalness. As

discussed above, if the system has a bound state, it is usual to obtain the order of the typical energy

scale as the binding energy B ∼ Etyp. On the other hand, to obtain a shallow bound state, we have to

tune the binding energy so that B ≪ Etyp. In addition, we need one more fine-tuning of ν0 discussed

above to obtain the shallow non-composite bound state. This situation corresponds to double fine

tuning, which is very unlikely from the viewpoint of naturalness. In Ref. [188], the same feature of the

shallow bound state is observed using the dynamical quark model.

Bound state with critical binding energy

We search for the critical binding energy Bcr with which the fraction of the model parameter region

of X < 0.5 and X > 0.5 becomes half and half. The critical binding energy is numerically found to

be Bcr = 0.243Etyp. The behavior of X with B = Bcr is shown in Fig. 6.1 by the dotted line. The

definition of Bcr indicates that the fraction of the ν0 region of the composite dominant state is larger

(smaller) if B < Bcr (B > Bcr). In other words, the exception of the threshold rule becomes less

and less frequent when the binding energy decreases from Bcr. This suggests that Bcr can become

a criterion of the applicability of the threshold rule. We note that the value of Bcr depends on the

model because the result of the compositeness X (6.6) is affected, for instance, by the choice of the

Hamiltonian (the effective interaction) and that of the regularization (the loop function).
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Figure 6.2: The schematic figure of the definition of Pcomp in the B = Etyp case. Pcomp corresponds

to the fraction of the shaded region νc/Etyp < ν0/Etyp < 1 to the whole parameter region (6.9). This

figure is adapted from Ref. [71].

Probability of obtaining composite dominant model (Pcomp)

In order to quantitatively examine the fine tuning of a parameter for various binding energy, we define

Pcomp as the probability of obtaining the model with the composite dominant bound state:

Pcomp(B) =
1− νc(B)/Etyp

1 +B/Etyp
, (6.10)

where νc is the value of ν0 with which X(B; νc) = 0.5. In other words, we can quantitatively examine

the validity of the threshold rule through Pcomp. The definition of Pcomp is schematically shown in

Fig. 6.2. The fraction of the entire parameter region (horizontal axis) corresponds to the denominator

in Eq. (6.10), and the shaded region to the numerator. In this way, with a given binding energy B,

Pcomp (6.2) corresponds to the fraction of the model (ν0) with the composite dominant state to all

models (whole ν0 region). By definition of Bcr, it is clear that Pcomp(Bcr) = 0.5. In Fig. 6.1, the typical

bound state is found to be Pcomp(Etyp) = 0.25, and shallow bound state to be Pcomp(0.01Etyp) = 0.88.

In Fig. 6.3, we show the binding energy B/Etyp dependence of Pcomp. We see Pcomp monotonically

increases with the decrease of the binding energy B. Finally, at B = 0, we find Pcomp = 1, which

indicates that the bound state with B = 0 is always composite dominant regardless of the choice of the

model (the value of ν0), which is consistent with the compositeness theorem (6.4). Moreover, in the

small B region, we also see Pcomp is smaller but still close to unity. Therefore, it is natural to expect

that the bound state retains the composite nature, namely, the threshold rule is valid, even when the

binding energy deviates slightly from the B → 0 limit. More quantitatively, the threshold rule holds

for shallow bound states whose Pcomp is sufficiently large.
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Figure 6.3: The probability of finding the model with the composite dominant bound state Pcomp as

a function of the binding energy B/Etyp. This figure is adapted from Ref. [71].

6.3 Decay contribution to compositeness

As shown in the introduction (Fig. 1.7), exotic hadron systems have the decay width and channel

couplings. To apply to the exotic hadrons, we first consider the decay contribution in this section.

Here we adopt the resonance model with the complex coupling constant g0 ∈ C in Section 4.2.2, where

the unstable quasi-bound state with the finite decay width Γ ̸= 0 can be described. For comparison

with the single-channel case, we set λ0 = 0 also in this section. To see the model dependence of the

compositeness, we fix the binding energy and vary the model parameter as was done in the previous

section. From the pole condition (4.42), the relation between g20 and model parameters are obtained

as almost same as Eq. (6.11) but with decay width Γ:

g20

(
B + i

Γ

2
; ν0,Λ

)
=
π2

µ

(
B + i

Γ

2
+ ν0

)[
Λ− κ arctan

(
Λ

κ

)]−1

, κ =

√
2µ

(
B + i

Γ

2

)
. (6.11)

We can confirm the coupling constant is complex with Γ ̸= 0, and g20 becomes real in the Γ → 0 limit.

Even in this case, we adopt the same ν0 region as Eq. (6.9) as the allowed parameter region to be

compared with the Γ = 0 case.

In this study, we investigate the contribution of the decay to the typical and shallow quasi-bound

states by fixing the eigenenergy −B− iΓ/2. The compositeness X is calculated by the same expression

as Eq. (6.6), but with the complex g20 . As discussed in Section 5.6, the compositeness of an unstable

state becomes complex. To discuss the internal structure, we adopt the prescription in Ref. [163] with

the N = 1 in Eqs. (5.95), (5.96), and (5.97):

X̃ =
|X|

|X|+ |Z|
, Z̃ =

|Z|
|X|+ |Z|

. (6.12)
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FIG. 9. The compositeness X̃ as a function of the normalized bare state energy ν0/Etyp for −B ! ν0 ! Etyp. The solid (dashed) lines repre-
sent the results with " ̸= 0 (" = 0). Panel (a) corresponds to the case with (B,"/2) = (0.01Etyp, 0.1Etyp ), (b) to (B,"/2) = (0.01Etyp, Etyp ),
(c) to (B,"/2) = (Etyp, 0.1Etyp ), and (d) to (B,"/2) = (Etyp, Etyp ).

dashed lines, we see that the effect of the decay width gen-
erally suppresses the compositeness, while X̃ is enhanced at
small ν0 ∼ −B. Basically, the compositeness of the threshold
channel decreases when the decay width is turned on because
the coupling to the decay channel increases. This tendency
becomes prominent especially in panel (b). The behavior of
the compositeness with small ν0 is, however, governed by
X̃ at ν0 = −B. From Eqs. (13) and (17), without the decay
effects, the compositeness becomes zero in the ν0 → −B limit
because g2

0 → 0. On the other hand, with a finite width " ̸= 0,
g2

0 does not vanish at ν0 = −B:

g2
0

(
−ν0 + i

"

2
; ν0,#

)

= π2

µ

(
−i

"

2

)[
# − κ arctan

(
#

κ

)]−1

̸= 0. (42)

From Eq. (13), the complex compositeness X becomes
nonzero, and X̃ in Eq. (39) becomes larger than zero. This
explains the enhancement of X̃ at ν0 ∼ −B.

Furthermore, by comparing panels (a) and (c) with (b) and
(d), we see that the ν0 dependence of X̃ becomes smaller for
larger decay width. It follows from Eq. (37) that the ν0 de-
pendence of g2

0 is negligible for |B + i"/2| ≫ ν0. Therefore,
X̃ is less dependent on ν0, and the plot of X̃ becomes flat for
larger ". For more quantitative discussion, let us analytically

evaluate X̃ in the large decay width limit, " ≫ Etyp. Because
ν0 is varied in the −B ! ν0 ! Etyp region and the binding
energy is restricted within B ! Etyp, the relations ν0 ≪ " and
B ≪ " hold under the large width limit. Furthermore, because
κ =

√
2µ(B + i"/2) ∼

√
iµ" and " ≫ Etyp = #2/(2µ), we

find |κ| ≫ # in this limit. In this case, the coupling constant
g2

0 in Eq. (37) behaves as

g2
0 = 3π2κ4

2µ2#3
+ · · · , (43)

from the expansion of arctan(#/κ ) for |κ| ≫ #:

arctan(z) = z − z3

3
+ O(z5)(|z| ≪ 1). (44)

By substituting Eq. (43) into the compositeness in Eq. (13)
and expanding the terms in the parenthesis by #/κ , we obtain
X for the large decay width limit as

X = 1
2 + · · · . (45)

Because Z = 1/2 + · · · , X̃ is calculated as

X̃ = 1
2 + · · · . (46)

Therefore, in the large width limit, X̃ approaches 1/2 for any
ν0 as expected from panels (b) and (d) in Fig. 9. It should,
however, be noted that, in the large width limit " ≫ Etyp, the

045205-10

Figure 6.4: The compositeness X̃ with Γ ̸= 0 (solid lines) and X̃ with Γ = 0 (dashed lines) as functions

of the bare state energy ν0/Etyp with the typical and shallow binding energy and decay width. The

panel (a) shows X̃ with (B,Γ/2) = (0.01Etyp, 0.1Etyp), (b) with (B,Γ/2) = (0.01Etyp, Etyp), (c) with

(B,Γ/2) = (Etyp, 0.1Etyp), and (d) with (B,Γ/2) = (Etyp, Etyp). This figure is adapted from Ref. [71].

Compositeness X̃ of near-threshold quasi-bound states

Here we numerically study the decay contribution to X̃ of the shallow quasi-bound state. In Fig. 6.4,

we plot the compositeness X̃ of the quasi-bound states as a function of the normalized bare state

energy ν0/Etyp with Γ ̸= 0 (solid lines) and with Γ = 0 (dashed lines). We use the same parameter

region with the Γ = 0 case in Eq. (6.9). For the comparison of the shallow and typical bound states, we

show the shallow case with the real part of the eigenenergy B = 0.01Etyp in panels (a) and (b), and the

typical case with B = Etyp in panels (c) and (d). Furthermore, to investigate the decay contribution

to the compositeness, we show the case with a narrow decay width Γ/2 = 0.1Etyp in panels (a) and

(c), and a broad width Γ/2 = Etyp in panels (b) and (d). The contribution of the decay is represented

by the difference between solid and dashed lines. We note that the dashed lines with Γ = 0 are the

same as the solid and dashed lines in Fig. 6.1.

By comparing the solid and dashed lines in all panels, we find that the compositeness X̃ with

decay width Γ (solid lines) is usually smaller than that without Γ (dashed lines). This indicates that

the decay contribution reduces the compositeness. In this model, the decay components are implicitly

contained in the elementarity as a non-composite component. Thus, with the presence of the decay,
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there exists a larger fraction of the non-composite components than that in the Γ = 0 system. As a

consequence, the elementarity increases with the decay contribution, which is equivalent to the decrease

of the compositeness due to X̃ + Z̃ = 1.

However, in the small ν0/Etyp region, X̃ with Γ ̸= 0 becomes lager than that with Γ = 0. This is

because at ν0 = −B, X̃ is finite with Γ ̸= 0, in contrast to that with Γ = 0. It is analytically shown

from Eq. (6.11), that g20 ̸= 0 with finite Γ at ν0 = −B:

g20

(
B + i

Γ

2
; ν0 = −B,Λ

)
=
π2

µ
× i

Γ

2
×
[
Λ− κ arctan

(
Λ

κ

)]−1

̸= 0. (6.13)

The finite g20 at ν0 = −B leads to the finite value of the complex X (6.6) and X̃ (6.12), which explains

the irregular behavior of X̃ at B/Etyp ∼ −ν0/Etyp.

Furthermore, by comparing panels (a), (c) and (b), (d), we find that the ν0 dependence of X̃

becomes smaller for larger decay width Γ. The reason is shown by Eq. (6.11) where ν0 dependence

of g20 is suppressed with large |B + iΓ/2| ≫ ν0. In the formal limit Γ → ∞, it is shown that the

compositeness finally becomes constant1 [71]:

X̃ =
1

2
+ ... , (6.14)

From this observation, we find that X̃ in panels (b) and (d) is the appearance of the feature of X̃ in

the Γ → ∞ limit.

To see the contribution of the decay width, we compare panels (a) with (c), which have the same

Γ/2 but different binding energy B. We find that the difference between solid and dashed lines is

sizable in panel (a), while that is too small to distinguish in panel (c). In other words, the decay

contribution to X̃ is much smaller in panel (c) than in panel (a), while both have the same Γ/2. By

focusing on the ratio, Γ/2 is 10 times larger than B in panel (a), and 10 times smaller in panel (c).

This indicates that the suppression of X̃ is determined by the ratio of B and Γ, not by the magnitude

of Γ.

Probability of obtaining composite dominant model Pcomp

In order to observe the nature of the shallow quasi-bound states, we show the probability of finding

the composite dominant model Pcomp(B,Γ) (Fig 6.5). We note that Pcomp(B,Γ) is the function of not

only the binding energy B but also the decay width Γ in this case. In this observation, we fix the

decay width Γ. The definition of Pcomp(B,Γ) is essentially same as Eq. (6.10) with the replacement of

B with B + iΓ/2, but νc is defined with X̃ = 0.5. The solid, dashed, and dotted lines stand for the

case with Γ/2 = 0 (the same plot with the Fig. 6.3), Γ/2 = 0.1Etyp, and Γ/2 = Etyp, respectively.

To discuss the decay contribution to Pcomp(B,Γ), we compare the solid, dashed, and dotted lines.

We see that Pcomp(B,Γ) becomes smaller with the larger decay width Γ. This is explained by the

comparison of the solid lines in panels (a) with (b) or (c), (d), which shows that νc becomes larger

when the Γ is increasing. Furthermore, the difference of νc becomes smaller in panels (c) and (d)

than that in (a) and (b). This explains the fact that the difference between dashed and dotted lines is

smaller in the large B region while that is prominent in the small B region.

1The Λ → ∞ limit exceeds the applicable energy scale of the EFT Γ ≫ Λ, as shown below. Therefore, this

consideration should only be utilized to understand the behavior of X̃ with the increase of Γ.
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Figure 6.5: The probability of obtaining the composite dominant model Pcomp(B,Γ) as a function

of the binding energy B/Etyp. The solid line corresponds to Pcomp with Γ/2 = 0, the dashed with

Γ/2 = 0.1Etyp, and the dotted with Γ/2 = Etyp. This figure is adapted from Ref. [71].

We then compare Pcomp with and without decay width Γ. By decreasing B from B/Etyp = 1, we

see that the deviation of dashed and dotted lines (Γ ̸= 0) from the solid line (Γ = 0) becomes larger.

This is expressed by the nature of the decay contribution to the compositeness discussed above; the

suppression of X̃ by Γ is determined by the ratio of B to Γ. Because the ratio of B to Γ becomes

smaller when we decrease B with the fixed Γ, the decay more contributes to suppressing X̃ for the

smaller B region.

We finally focus on the small B region B ∼ 0. We find that Pcomp does not become unity at B = 0

with the finite Γ ̸= 0 (dashed and dotted lines). With the presence of Γ, the states do not go to the

threshold B = Γ = 0 even in the B → 0 limit. In this case, the coupling constant g20 (6.11) and κ

are finite in Eq. (6.6), and X̃ cannot become unity even in B → 0 limit, as long as Γ is finite. This

is the reason why Pcomp(B,Γ) < 1 at B = 0 with finite decay width. Furthermore, the dotted line

never exceeds Pcomp = 0.5 even with small B. This shows that the state with Γ/2 = Etyp is usually

elementary dominant. From these observations, we find that the quasi-bound states are not always

composite dominant even if B is small, and their internal structure is characterized by the ratio of B

to Γ is large. We note that even when we decrease B, the state remains in the far-threshold region

unless Γ is sufficiently small (see Fig. 6.6). From the viewpoint of the low-energy universality, the

finite scattering length induces the fact that Pcomp < 1 at B = 0 with finite Γ.

6.4 Coupled channel contributions to compositeness

In addition to the previous discussion with the decay channel, here we consider the coupled channel

higher than the threshold channel. For this purpose, we use the coupled-channel EFT model in

Section 4.2.2. To focus on the situation that a bound state couples to the two higher-energy channels,
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Figure 6.6: The schematic illustration of the position of shallow bound state with Γ ̸= 0 and shallow

quasi-bound state with Γ ̸= 0 in the complex energy plane.
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Figure 6.7: The diagram of the transition between ψ1ψ2 scattering (channel 1) and Ψ1Ψ2 scattering

(channel 2) where these two channels couples to the bare state ψ with the common coupling constant

g0.

we assume that a bound state exists below the threshold of the lowest energy channel. For the

calculation of the compositeness in this case, we should determine the threshold energy difference ∆ω

in addition to the model parameters, the coupling constants g0,1, g0,2, λ11, λ12, λ21, λ22, bare state

energy ν0, cutoff Λ. We set λ11 = λ12 = λ21 = λ22 = 0 also in this section. Furthermore, to focus

on the contribution of the channel coupling, we assume that the channels coupled to the bound state

with the same coupling constants g0,1 = g0,2 = g0. In this case, the transition between channels 1 and

2 occurs through the bare field ϕ with the coupling constant g0 (Fig. 6.7). We note that the coupling

constant g0 is real, in contrast to the previous section on decay contribution.

In the coupled channel case, we define the compositeness of the threshold channel X1 and that

of the coupled channel X2 from the completeness relation (4.59) as discussed in Section 5.4. The

compositeness X1, X2, and elementarity Z are written by the loop functions (4.62) as [94, 71]

Xi(B,∆ω, ν0, g0,Λ) =
G0′
i (iκi)

G0′
1 (iκ1) +G0′

2 (iκ2)− [v−1(iκ1)]′
, (6.15)

Z(B,∆ω, ν0, g0,Λ) = − [v−1(iκ1)]
′

G0′
1 (iκ1) +G0′

2 (iκ2)− [v−1(iκ1)]′
, (6.16)
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with i = 1, 2. κ1,2 and v are given as

κ1 =
√
2µ1B, κ2 =

√
2µ2(B +∆ω), (6.17)

v(k) =
g20

k
2µi

− ν0
. (6.18)

X1,2 are real because the loop functions are real with positive B. From Eqs. (6.15) and (6.16), we see

that X1 +X2 + Z = 1. The energy derivative of v−1(iκ1) and loop functions are negative. Therefore,

0 ≤ X1 ≤ 1, 0 ≤ X2 ≤ 1, and 0 ≤ Z ≤ 1. In this way, we can confirm that X1, X2, and Z can be

regarded as the probability.

From Eq. (6.15), the compositeness in this model depends not only on the binding energy B and

the model parameters ν0, g0,Λ, but also on the threshold energy difference ∆ω. In this study, we fix B

and ∆ω to investigate the model dependence of the compositeness. As was the same in the previous

Section 6.2, we can reduce the one degree of the model parameters from the bound state condition, and

further reduce Λ dependence by using the dimensionless quantities. In this case, the result depends on

the reduced mass ratio µ1/µ2. To focus on the ∆ω dependence, we assume µ1/µ2 = 1 in the numerical

calculation.

Compositeness X1 and X2 of near-threshold bound states

To observe the coupled-channel contributions to the compositeness, we show the compositeness of the

threshold channel X1 and that of the coupled-channel X2 of the typical and shallow bound states as

functions of the normalized model parameter ν0/Etyp. For the comparison with the single-channel

case, we adopt the same parameter region (6.9). In Fig. 6.8, X1 is plotted as the dotted lines, and the

total compositeness X1 +X2 as the solid line. Therefore, the difference between solid and dotted lines

corresponds to X2. To see the coupled-channel contributions, we also show the compositeness of the

single-channel case as the dashed line, which is calculated by the single-channel resonance model (6.6).

The panels (a) and (b) correspond to the shallow bound states with B = 0.01Etyp, and (c) and (d)

to the typical bound states with B = Etyp. The states with small threshold energy difference ∆ω are

shown in panels (a) and (c), and large ∆ω is in panels (b) and (d).

We first focus on how the threshold energy differences ∆ω affect to the threshold channel compos-

iteness X1, which is quantified by the difference between the threshold channel compositeness with

channel couplings (dotted lines) and that without channel couplings (dashed lines). By comparing the

dashed and dotted lines in all panels, we first find that the threshold channel compositeness decreases

with the presence of the coupled channel. This is because the probability is shared also by the coupled

channel component, not only by the threshold channel and elementary components. In other words,

the channel couplings induce the reduction of the threshold channel compositeness. This is understood

by the quantitatively same reason as the decay contribution.

We then compare the panels (a) with (b) and (c) with (d), where the binding energy is the same

but ∆ω is different. From the difference between the dashed and dotted lines, we find that the degree

of the reduction of X1 is smaller when the threshold energy difference ∆ω is larger. Because channel 1

and 2 have the same coupling constant g0, the contribution of the channel coupling to the bound state

is determined only by the threshold energy difference ∆ω. Therefore, the coupled channel does not

affect very much the compositeness with the larger ∆ω. Furthermore, for comparison panels (b) with

(d), we find that the difference between dashed and dotted lines is smaller in panel (b), even though
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FIG. 11. The compositeness as a function of the normalized bare state energy ν0/Etyp for −B ! ν0 ! Etyp at fixed binding energy and
the threshold energy differences (B,"ω) = (0.01Etyp, 0.01Etyp ) [panel (a)], (B,"ω) = (0.01Etyp, Etyp ) [panel (b)], (B,"ω) = (Etyp, 0.01Etyp )
[panel (c)], and (B, "ω) = (Etyp, Etyp) [panel (d)]. The solid lines represent X1 + X2, the dotted linesX1, and the dashed lines the compositeness
in the the single-channel case.

ν0, we need the same amount of the dressing to obtain the
bound state at E = −B, irrespective of the number of coupled
channels. In the coupled-channels model, channels 1 and 2
work cooperatively to achieve the dressing equivalent to that
in the single-channel model. In other words, the composite-
ness X1 + X2 ∼ X represents the total amount needed to dress
the bare state to the bound state.

For the multichannel case, the low-energy universality
indicates that the bound state is completely dominated by
the threshold channel, namely, X1 = 1, X2 = 0, and Z = 0
in the B → 0 limit. To focus on the dominance of X1, we
define Pcomp in Eq. (19) with νc, which gives X1 = 0.5 as
the probability of finding a model with the ψ1ψ2 composite
dominant state. In Fig. 12, we plot Pcomp as a function of
the normalized binding energy B/Etyp for "ω = Etyp (dashed
line), "ω = 10Etyp (dotted line), and the single-channel case
(solid line). By comparing the three lines, we find that Pcomp
in the coupled-channels case is suppressed compared to that
in the single-channel case at the same B, and the suppression
becomes larger for smaller "ω. The reason for this is seen as
the change of νc in panels (a) and (b) in Fig. 11; νc/Etyp =
0.15 for "ω = Etyp [panel (b)] changes to νc/Etyp = 0.71 for
"ω = 0.01Etyp [panel (a)] so that the fraction of the com-
posite dominant region decreases. In Fig. 12, the dashed line
becomes zero in the region B/Etyp " 0.35, where the channel

1 compositeness X1 is always smaller than 0.5 and there is no
X1 dominant region [see panel (d) in Fig. 11]. At B = 0 in

FIG. 12. The fraction of the threshold channel composite dom-
inant region Pcomp as a function of the normalized binding energy
B/Etyp for fixed threshold energy difference. The solid line represents
the single-channel case, the dotted line "ω = 10Etyp, and the dashed
line "ω = Etyp.

045205-13

Figure 6.8: The compositeness X1 (dotted lines), total compositeness X1 + X2 (solid lines) and X

in the single channel case (dashed lines) as functions of the bare state energy ν0/Etyp. The panel

(a) shows the case with (B,∆ω) = (0.01Etyp, 0.1Etyp), (b) with (B,∆ω) = (0.01Etyp, Etyp), (c) with

(B,∆ω) = (Etyp, 0.1Etyp), and (d) with (B,∆ω) = (Etyp, Etyp). This figure is adapted from Ref. [71].

the ∆ω is common in these two panels. This indicates that the coupled channel contribution X2 is

determined by the ratio of B to ∆ω, not by the magnitude of ∆ω.

We then compare the total compositeness X1 + X2 (solid lines) with that in the single channel

case (dashed lines). As discussed above, the dashed lines correspond to the case with ∆ω → ∞. We

find that the solid and dashed lines do not differ very much in all panels. This is considered as the

appearance of the feature of the model, where the bound state is constructed by the dressing of the

bare state through the couplings to the scattering states. The couplings to each scattering channel

contribute to the increase of X1 and X2. In both the single and coupled channel models, the bare

state needs almost the same amount of the dressing so that the bound state appears at E = −B with

the same bare state energy ν0. Therefore, the amount of the dressing in the coupled-channel model is

produced by the cooperation of channels 1 and 2, while that in the single-channel model is provided

only by the threshold channel. This is the reason why the total compositeness X1 +X2 is close to the

X in the single channel case.

By comparing panels (a) with (b) and (c) with (d), the coupled channel compositeness X2 is smaller

with larger ∆ω/B. This relation between X2 and ∆ω is analytically observed from Eq. (6.15). In the
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Figure 6.9: The probability of obtaining the composite dominant model Pcomp(B,∆ω) as a function of

the binding energy B/Etyp. The solid line stands for Pcomp in the single-channel model with ∆ω → ∞,

the dashed line for ∆ω = Etyp, and dotted line for ∆ω = 10Etyp. This figure is adapted from Ref. [71].

formal limit ∆ω → ∞, the momentum of the coupled channel κ2 also goes to infinity. In this case, the

loop function becomes zero and X2 ∝ G0′
2 (iκ2) → 0. This is intuitively regarded as the contribution

of the channel coupling vanishes when the coupled channel goes infinitely far away from the bound

state. In this case, the system reduces to the single channel case and X1 to X in the single channel

resonance model.

We finally consider the opposite limit ∆ω → 0. From Eq. (6.15), we analytically see κ1 = κ2 and

G0
1 = G0

2. Because we assume µ1 = µ2, the compositeness becomes X1 = X2 in this limit. This is

because the bound state couples to both channels 1 and 2 with an equal weight, through the common

g0. In Fig. 6.8, we see this feature is reflected in panel (c), where the threshold energy difference is too

small than the binding energy to be negligible as ∆ω ∼ 0.

Probability of obtaining composite dominant model Pcomp

To quantitatively discuss the nature of the near-threshold states in a coupled-channel system, we define

the probability of finding the composite dominant model Pcomp(B,∆ω). In the presence of the channel

coupling, Pcomp(B,∆ω) also depends on the threshold energy difference ∆ω in addition to the binding

energy B. In this case, we define νc in Pcomp(B,∆ω) (6.10) as X1(νc) = 0.5, in order to focus on the

threshold channel. We plot the probability of finding the composite dominant model Pcomp(B,∆ω) as

functions of the normalized binding energy B/Etyp in Fig. 6.9. The solid line represents Pcomp(B,∆ω)

in the single channel case with ∆ω → ∞ (the same plot with the Fig. 6.3), dashed line in the coupled

channel case with ∆ω = Etyp, and dotted line with ∆ω = 10Etyp.

In the B → 0 limit, we find that Pcomp(B,∆ω) goes to unity in all cases, which means that

X1 → 1, X2 → 0, and Z → 0 at B = 0. When the binding energy B is sufficiently small, the threshold
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energy difference ∆ω becomes relatively much larger than B, and we can neglect the higher coupled

channel as shown in the discussion of ∆ω → ∞ limit. This is consistent with the compositeness

theorem (6.4), where the coupled channel component is included in the non-threshold-channel one

with the elementarity Z.

When we deviate from the point at B = 0, we see the gradient of Pcomp(B,∆ω) becomes larger

when ∆ω is smaller. The reason is explained by the behavior of X1 in Fig. 6.8, where νc becomes

larger with decreasing ∆ω by comparing panels (a) with (b). On the other hand, in panels (c) and

(d), X1 never goes beyond 0.5 in the whole ν0 region. The behavior of the dashed line reflects this

property of X1, where Pcomp(B,∆ω) becomes zero in the large B/Etyp region.

6.5 Application to Tcc(3875)
+ and X(3872)

Set up

In the last section, we discuss the internal structure of the near-threshold exotic hadrons by calcu-

lating the compositeness. As well-known examples of the near-threshold exotic hadrons, we consider

Tcc(3875)
+ and X(3872). The detail of the system of Tcc(3875)

+ and X(3872) are shown in Fig. 1.7 in

the introduction. As mentioned there, Tcc(3875)
+ and X(3872) are observed as the quasi-bound states

just below the D0D∗+ and D0D̄∗0 thresholds, respectively. The binding energies and decay width of

Tcc(3875)
+ and X(3872) are observed by the experiments as in Ref. [29] and PDG [1], respectively:

Tcc(3875)
+ : E = −0.36+0.044

−0.040 − i0.024+0.001
−0.007 MeV, (6.19)

X(3872) : E = −0.04± 0.06− i0.595± 0.105 MeV. (6.20)

As shown in the data above, their binding energies are much smaller than the typical energy scale of

the binding energy of hadrons [≲ O(10) MeV]. In this sense, Tcc(3875)
+ and X(3872) are regarded as

the near-threshold quasi-bound states. Tcc(3875)
+ and X(3872) have a decay width with 0.048 MeV

and 1.19 MeV, respectively. We note that the binding energy of X(3872) is much smaller than the

decay width, even though Γ is already smaller than the typical decay width O(10) MeV - O(100) MeV.

Furthermore, in addition to the threshold channels, there are higher coupled channels D∗0D+ (D∗−D+)

in the Tcc(3875)
+ (X(3872)) system, which exists 1.41 MeV (8.23 MeV) above the D0D∗+ (D0D̄∗0)

threshold. The deviation between threshold and coupled channels is induced by isospin symmetry

breaking. Thus, these coupled channels might affect the structure of Tcc(3875)
+ and X(3872) as the

isospin partner of the threshold channel. In this way, both the decay width and channel coupling

should be considered to study Tcc(3875)
+ and X(3872).

To calculate the compositeness, we construct the EFT model combining the resonance models with

decay width (Section 4.2.1) and channel couplings (Section 4.2.2), so that both of these contributions

are included in the model. In the model with decay width in Section 4.2.1, we effectively introduced the

decay contribution. In contrast, we explicitly considered the channel coupling to the higher channel in

the coupled channel resonance model in Section 4.2.2. Based on these, in the model considered here,

we let the coupling constant in the coupled channel model be the complex value. For simplicity, we

again set λ0 = 0. Furthermore, we assume g0,1 = g0,2 = g0 as in the previous Section 6.4.

For numerical calculation, we take the mass of D mesons from PDG [1]. Based on these values, the

reduced masses µ1 and µ2 of the Tcc(3875)
+ and X(3872) system are determined, while we assumed

µ1 = µ2 in the previous section.
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FIG. 13. The compositeness X̃ as a function of the bare state energy ν0. Panel (a) [(b)] shows the result of Tcc [X (3872)]. The solid lines
stand for the sum of the compositenesses of threshold and coupled channels, X̃1 + X̃2, the dotted lines show X̃1, and the dashed lines show
X̃1 + X̃2 with setting " = 0. The cutoff is fixed as # = 140 MeV.

mass and width. For X (3872), the real part of the eigenen-
ergy in Eq. (65) can go above the threshold within the error.
Nevertheless, the large imaginary part weakens its impact on
the compositeness, because the errors change the magnitude
of the complex eigenenergy only slightly. In summary, the
experimental errors of the mass and width have only a minor
effect on the compositeness, thanks to the small errors of Tcc
and the (relatively) large decay width of X (3872).

It is instructive to evaluate the probability of obtaining the
model with the composite dominant state Pcomp of Tcc and
X (3872) discussed in the previous sections. Pcomp is defined
by Eq. (19) as the fraction of the parameter region where the
state is composite dominant. Here, we examine two methods
to determine νc in Eq. (19) for the different discussions. First,
by focusing on the compositeness of the threshold channel X̃1,
we can discuss the low-energy universality as in Sec. III C. In
this case, we consider Pcomp in terms of X̃1 (PX̃1

comp) with νc

determined by the condition X̃1 = 0.5. Second, because not
only X̃1 but also X̃2 contribute to the molecular component,
we can also determine νc by the condition X̃1 + X̃2 = 0.5, and
discuss PX̃1+X̃2

comp to consider the molecular nature of Tcc and
X (3872).

Let us evaluate Pcomp of Tcc and X (3872). For # = 140
MeV, we obtain

PX̃1
comp(Tcc, # = 140 MeV) = 0.45+0.049

−0.037, (66)

PX̃1
comp[X (3872), # = 140 MeV] = 0.59+0.040

−0.043. (67)

This result shows that the substantial coupled-channels and
decay effects can reduce the threshold channel compositeness
of Tcc and X (3872), even though both the states exist within
the 1 MeV region from the threshold. The molecular compo-
nent PX̃1+X̃2

comp is calculated as follows:

PX̃1+X̃2
comp (Tcc, # = 140 MeV) = 0.71+0.012

−0.008, (68)

PX̃1+X̃2
comp [X (3872), # = 140 MeV] = 0.65+0.027

−0.035. (69)

When the X̃2 component is taken into account, the composite
dominant region in the parameter space increases. For the
cutoff # = 770 MeV, we obtain the following results:

PX̃1
comp(Tcc, # = 770 MeV) = 0.85+0.019

−0.009, (70)

PX̃1
comp[X (3872), # = 770 MeV] = 0.87+0.016

−0.014, (71)

FIG. 14. Same as Fig. 13, but the cutoff is fixed as # = 770 MeV.

045205-15

Figure 6.10: The compositeness of Tcc(3875)
+ [panel (a)] and X(3872) [panel (b)] as functions of

the bare state energy ν0. The compositeness of the threshold channel X̃1 is plotted as the dashed

lines, and the total compositeness with Γ ̸= 0 is as the solid line. The dashed lines correspond to

the total compositeness without decay contribution Γ = 0. The gray bands show the compositeness

by considering the experimental error. We use the cutoff Λ = 140 MeV. This figure is adapted from

Ref. [71].

With this setup, the compositeness of the threshold channel X1 and coupled channel X2 are cal-

culated from Eq. (6.15) but with the complex coupling constant g0 ∈ C. In this case, X1 and X2 are

obtained as the complex values. For the probabilistic interpretation, we use the prescription Eqs. (5.95)

and (5.96) in Ref. [163], where X̃1 (X̃2) is regarded as the compositeness of the threshold channel (the

coupled channel).

In the previous sections, we use the dimensionless quantities with the cutoff Λ. However, to consider

the actual hadron system of Tcc(3875)
+ and X(3872), here we use the fixed cutoff Λ = 140 MeV ∼ mπ

because the interaction between D mesons can occur through the π exchange. In this case, the typical

energy scale Etyp becomes

Tcc(3875)
+ : Etyp = 10.13 MeV, (6.21)

X(3872) : Etyp = 10.14 MeV. (6.22)

Compositeness of Tcc(3875)
+ and X(3872)

In Fig 6.10, we plot the compositeness of Tcc(3875)
+ [panel (a)] and X(3872) [panel (b)] by varying

the bare state energy ν0. The dotted lines stand for the compositeness of the threshold channel X̃1.

To see the decay contribution, we plot the total compositeness X̃1 + X̃2 with finite decay width Γ ̸= 0

(the solid line), and that without decay contribution Γ = 0 (the dashed lines). The shaded bands

represent the error from the experimental uncertainty of the binding energy in Eqs. 6.19 and (6.20).

At first, we discuss the decay contribution to the compositeness by comparing the total compos-

iteness with Γ ̸= 0 (the solid lines) and that with Γ = 0 (the dashed lines). In the Tcc(3875)
+ case in

the left panel, we see the solid and dashed lines overlap, which means that the difference between the

two lines is too small to distinguish. This is because the decay width of Tcc(3875)
+ (Γ = 0.048 MeV)

is about ten times smaller than the binding energy (B = 0.36 MeV). This nature of the compositeness
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was observed in Section 4.2.1; the decay contribution to the compositeness becomes smaller with the

small ratio of Γ to B. On the other hand, we find that the decay contributes very much to the compos-

iteness of X(3872) because the difference between dashed and solid lines is sizable. This is explained

by the much larger decay width Γ = 1.19 MeV of X(3872) than its binding energy B = 0.04 MeV.

We then focus on the coupled channel contribution to the compositeness. By comparing the dashed

with dotted lines, we find that the degree of the reduction of the threshold channel compositeness of

Tcc(3875)
+ is larger than that of X(3872). This indicates that the coupled channel contributes more

to the compositeness of Tcc(3875)
+ than that of X(3872). In the Tcc(3875)

+ system, the threshold

energy difference ∆ω = 1.41 MeV is smaller than the binding energy B = 0.36 MeV. On the other

hand, ∆ω of X(3872) system (8.23 MeV) is much larger than the binding energy B = 0.04 MeV. As

discussed in Section 6.4, the coupled channel contribution to the threshold channel compositeness is

characterized by the ratio of B to ∆ω. This is because why the compositeness of Tcc(3875)
+ is more

suppressed by the coupled channel by comparing with the X(3872) case, and X̃1 becomes smaller in

Tcc(3875)
+.

In this way, we find that the coupled channel contribution plays an important role in considering

the threshold channel compositeness X̃1 of Tcc(3875)
+, while the decay contribution is negligible. This

is because Tcc(3875)
+ has the small decay width and the threshold energy difference. In contrast, the

compositeness of X(3872) is more affected by the presence of the decay channel, while the coupled

channel contribution is relatively small. The decay width Γ of X(3872) is not always taken into

account in previous works because it is smaller than the typical Γ of hadrons. However, to consider

the compositeness, this work indicates that the decay with Γ of X(3872) should not be neglected.

The probability of finding composite dominant model Pcomp of Tcc(3875)
+ and X(3872)

To observe the contributions of decay and channel couplings to the molecular nature of Tcc(3875)
+

and X(3872), we calculate the probability of finding the composite dominant model Pcomp. When we

consider both the decay width and channel coupling, Pcomp is calculated for a given B, Γ, and ∆ω. The

critical value νc is defined such that X̃1(B; νc) = 0.5 in this case. With considering the experimental

error of the eigenenergy, the Pcomp of Tcc(3875)
+ and X(3872) are obtained as

Pcomp = 0.45+0.049
−0.037 [Tcc(3875)

+], (6.23)

Pcomp = 0.59+0.040
−0.043 [X(3872)]. (6.24)

These results show that the probability of finding the composite dominant model is not so large,

while Tcc(3875)
+ and X(3872) are observed as the near-threshold states. From the discussion above,

this is explained by the presence of the decay and coupled channel contributions which suppress the

threshold channel compositeness X̃1. This result indicates that the non-composite dominant state

might also characterize the internal structure of Tcc(3875)
+ and X(3872) because of the decay and

channel couplings.

Compositeness of Tcc(3875)
+ and X(3872) for fixed ν0

The value of ν0 cannot be determined within the EFT framework, and we focused on the model

dependence of the compositeness by varying the bare state energy ν0 in the above analysis. Here we

calculate practical values of the compositeness of Tcc(3875)
+ and X(3872) for fixed ν0. For one of the
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practical values of ν0 for Tcc(3875)
+ and X(3872) systems, we adopt the energy of the state calculated

by constituent quark models in Ref. [62] and Ref. [4], respectively:

• ν0 = 7 MeV, [Tcc(3875)
+]; and

• ν0 = 78.36 MeV, [X(3872)].

The compositeness of the threshold channel X1, that of the coupled channel X2, and elementarity

Z can be read off from the previous result in Fig. 6.10. Here we focus on the central value of X1,

X2, and Z obtained from the central value of the binding energy. The compositeness X1, X2 and

elementarity Z of Tcc(3875)
+ are calculated as

X1 = XD0D∗+ = 0.541− 0.007i, (6.25)

X2 = XD∗0D+ = 0.167 + 0.003i, (6.26)

Z = 0.292 + 0.005i. (6.27)

We also show those of X(3872) as follows

X1 = XD0D̄0∗ = 0.919− 0.079i, (6.28)

X2 = XD∗−D+ = 0.046 + 0.050i, (6.29)

Z = 0.035 + 0.030i. (6.30)

In the Tcc(3875)
+ case, we see that the imaginary parts of X1,2 and Z are smaller than the real part

of those. This is because the decay width Γ of the Tcc(3875)
+ is smaller than the binding energy B.

On the other hand, for the X(3872) case, the imaginary part of X2 and Z are as large as the real part,

as a consequence of the large ratio of Γ/B of X(3872).

For the probabilistic interpretation of the complex compositeness and elementarity, we adopt the

interpretation scheme with X ,Y,Z discussed in Section 5.7.4. In this scheme, the compositeness X is

regarded as the fraction of the threshold channel component (i.e., the interpretation of complex X1),

and the coupled channel compositeness X2 is contained in the elementarity Z. Here we use α = α0,

which corresponds to adapting the criterion for interpretable state in Eq. (5.101). The compositeness

X , probability of uncertain identification Y, and elementary Z are calculated as

X = 0.537, Y = 0.008, Z = 0.456, [Tcc(3875)
+], (6.31)

X = 0.890, Y = 0.028, Z = 0.081, [X(3872)]. (6.32)

In both of the Tcc(3875)
+ and X(3872) cases, Y is much smaller than other probabilities. Recalling Y

is defined to be small for narrow resonances, this is consistent with the nature of these exotic hadrons

with narrow decay width ≲ O(1) MeV. The result of Tcc(3875)
+ shows that the compositeness X is

the largest but also Z is non-negligible. This is explained by the sizable magnitude of X2 (6.26) and

Z (6.27), which are included in the non-threshold channel components Z. In this sense, Tcc(3875)
+

is concluded to be composite dominant but with considerable contributions of the coupled channel

and non-composite components. On the other hand, X(3872) has a large fraction of the composite

component X . This is a consequence of a large ν0 value adopted here; the complex compositeness

increases together with ν0 as shown in Fig 6.10. Therefore, X(3872) is regarded as a D0D̄0∗ highly

molecule-dominant state.
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Chapter 7

Summary

In this thesis, we study the universal nature of near-threshold states by studying their internal structure

with the compositeness. In recent years, the study of exotic hadrons has been attracting significant

attention as one of the key topics in hadron physics. Exotic hadrons are frequently observed in the

near-threshold energy region, where the threshold rule is empirically known; the near-threshold bound

states are expected to be composite dominant. However, the theoretical explanation for why the

threshold rule holds has not yet been provided. Furthermore, the threshold rule cannot be directly

applied to hadron systems due to decay and coupled channels. Here we discuss these problems in the

context of the low-energy universality.

We begin with the simplest system, a bound state in single-channel scatterings. We adopt the

effective field theory model which describes a bound state generated by the coupling of the bare state

to the scattering states. By examining the model dependence of the compositeness, we show that

the shallow bound state is predominantly composite in most cases without significant fine tuning

of parameters. While the non-composite shallow bound state is always possible, we show that the

possibility of obtaining a model with the composite dominant bound state increases for small binding

energy. In this way, the threshold rule is properly established.

We then discuss how the compositeness is modified by the decay and channel couplings, toward an

application to exotic hadrons. We show that the compositeness is suppressed by the decay and coupled

channel contributions. Since the decay (coupled channel) contribution is quantitatively characterized

by the decay width (threshold energy difference), the suppression of compositeness is determined by the

ratio of the decay width (the threshold energy difference) to the binding energy. This result suggests

that the decay (coupled channel) effect substantially contributes to the compositeness, if the decay

width (threshold energy difference) is larger (smaller) than the binding energy, even for the small

(large) magnitude of the decay width (threshold energy difference).

As an application to near-threshold exotic hadrons, we discuss the internal structure of Tcc(3875)
+

and X(3872). We show that the coupled channel (decay) significantly affects the compositeness of

Tcc(3875)
+ [X(3872)], compared to the decay (channel coupling). This is because Tcc(3875)

+ [X(3872)]

has the narrow (broad) decay width and small (large) energy difference between the thresholds. Thus,

we conclude that the coupled channel (decay width) is important for the compositeness of Tcc(3875)
+

[X(3872)], while their contributions are not always included in previous studies.

As prospects, it would be interesting to discuss the nature of near-threshold states interacting
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through the Coulomb plus short-range interaction. In hadron physics, the Coulomb force is usually

neglected, because it is approximately 100 times weaker than the strong interaction. However, at a

low-energy scale near the threshold, the Coulomb force might play an important role. In the presence

of the Coulomb interaction, near-threshold states might exhibit a distinct nature, because the effective

range expansion of the scattering amplitude becomes a different form from that of the short-range

interaction [189, 81, 190]. Consequently, it is not trivial that the same conclusion holds as in the case

of the short-range interaction. Therefore, the compositeness of near-threshold states in the Coulomb

plus short-range interaction will give an alternative viewpoint on the present results in this thesis.
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