SRIMfit 入門

(半導体照射試験用)

SRIMfitを半導体照射試験に利用される方向けの入門コースです。

(目標)

主に以下の SRIMfit 関数の使い方を習得してください。

- ▶ 基本関数 srE2Rng(), srRng2E(), srE2LETt(), srLETt2E()
- ➢ 組合せ関数 srEnew(), srEold()

Update Log :

2022.09/14 ver 1.00 初版

2020.11/04 ver 0.01 未完 srEnewの解説まで

SRIMfit 入門

目 次

(1) SRIMと SRIMfit、E ⇔ Range 変換関数

- (1a) srE2Rng(), srRng2E()を使ってみる
- (1b) srE2Rng()の例題
- (1c) srRng2E()の 例題
- (2) SRIMfit 基本関数の種類
 - (2a) 基本関数 の 例題-1 MySRIMwb 内容表示
 - (2b) 基本関数 の 例題-2
- (3) 便利な関数: srEnew() ⇔ srEold()
 - (3a) srE2Rng(), srRng2E()を使って srEnew(), srEold()を記述する
 - (3b) srEnew(), srEold() 関数の引数について
 - (3c) srEnewGas(), srEoldGas() 関数の引数について
 - (3d) srEnew(), srEnewGas()の 例題
 - (3e) srEold(), srEoldGas()の例題
 - (3f) srEnew(), srEold()の総合例題
- (4) おわりに

(1) SRIMと SRIMfit、E ⇔ Range 変換関数

💐 lon Stopping	g & Range Tables	- 🗆 ×
Ion St	topping and Range	e Tables
	Atomic Mass Ic Symbol Name Number (amu) Lo	on Energy Range (keV) owest Highest
? Ion	PT Kr Krypton 🔽 36 84	10 10000
	Target Description	Density Ga (g/cm3) Tgt
2 Targ	et Krypton in Silicon	02.32120
Add Elemen	at Compound Dictionary Ber	store Last Target
Add Liemen		
Element Symbo	ol Name Atomic Weight (amu)	Stoich %
X PT Si	Silicon 🔽 14 28.086	1 100.00

R Calculation: SRIM	Outputs¥Krypton	in Silicon.txt
---------------------	-----------------	----------------

Bragg Correction = 0.00% Stopping Units = MeV / (mg/cm2) See bottom of Table for other Stopping units

lon Energy	dE/dx	dE/dx	Pro	jected L	ngitudinal	Lateral Straggling
Lineigy	LICC.	Nuclear		i tange	otragging	onagging
10.00 keV	4.101E-01	4.307E	-00	120 A	43 A	33 A
11.00 keV	4.301E-01	4.417E	+00	127 A	45 A	34 A
12.00 keV	4.492E-01	4.516E	+00	134 A	47 A	36 A
13.00 keV	4.676E-01	4.606E	+00	141 A	49 A	38 A
14.00 keV	4.852E-01	4.688E	+00	148 A	51 A	39 A
15.00 keV	5.023E-01	4.764E	-00	155 A	53 A	41 A
16.00 keV	5.187E-01	4.833E	00	161 A	55 A	43 A
Print			С	lose		

ご存知の様に SRIM-2013 コードの Ion Stopping and Range Tables は、 ビーム核種(例 Kr)と、標的材質(例 Si) 及び ビームのエネルギー(E)を決めると、 「その E に於ける、dE/dX(LET), Range(飛程)などの値」を計算して出力してくれます。 つまり、変換関数 from E to Range: R = E2Rng(E); 連続関数(理論式) を内部に持っています。

一方、SRIMfit ユーザーマニアルで説明した様に、
 SRIMfit は、上記 SRIM-2013コードの出力表を読み込み、例えば E と Range の場合、
 「ある E に於ける Range を、離散的な出力表に従って、直線補間して求める」
 変換関数 from E to Range: R = E2Rng(E) ; 離散データ点から内挿補間版
 という愚直な機能しかありません。理論式は入っていません。

しかしながら、この単純な直線補間法を用いることで、

E2Rng()の逆関数 from Range to E: E = Rng2E(R) = E2Rng⁻¹(E);離散点から内挿補間版 も簡単に作ることができます。

E - Rangeの関数形は、 単調増加関数なので、 直線補間がしやすいです。

<u>(1a) srE2Rng(), srRng2E()を使ってみる</u>

SRIMfit「ユーザーズマニアル:関数一覧表」に、srE2Rng()と srRng2E() 関数の説明があります。 その関数へ渡す引数と、関数からの戻り値の型に注意して表を見て下さい。

		SRIMfit Function List(1)	基本関数		
≪変数・肩	ミリ伯	i 型≫			
	Ι	Integer	∨ 型関数のコ	ニラー戻り値	
	D	Double	#NUM!	xlErrNum 2036	引数の値が不適当
	В	Boolean	#N∕A	xlErrNA 2042	表範囲外、計算中エラー
	S	String			
	V	Variant型 Excelエラーも返す			
《変数名	表言	≪5	≪Private 変	数名 表記≫ WS掛	操作関連で主要なのも
WS	S	SRIMoutput WorkSheet名	Clm*		WS内の行番号
E, Eu	D	Beam Energy [MeV/u]	Row*		WS内の列番号
Et	D	Beam Energy [MeV]	MySRwbNow		ユーザーが指定した WorkBook
R	D	Range [μ m]	MySRwsNow		関数が参照中の Current Sheet pointer

カ	テゴリー							
l	更值型	関数	な名			関数の説明		
			引数名	型	引数の説明	戻値	戻値条件	理由など
	-	_	-					
W.	S検索	(2)	E <-> Ran	ge				
	V,D	srE	2Rng			WS検索 E->	Rng [μm]; 飛程	
			WS	S	WS名	#NUM!	E<0	
			E	D	Beam E [MeV/u] 検索値	#N∕A		E がWS範囲外 (>Emax)
						=0	E=0	
	V,D	srR	ng2E			WS検索 Rng	;]
			WS	S	WS名	#NUM!	Rng<0	
			Rng	D	Range [μm] 検索値	#N/A		RngがWS範囲外 (>Rmax)
						=0	Rng=0	

• : X	√ fx	=srE2Rr	ng()		
В	С	D	E	F	G
F2Rng()	関数の引	数			
	srE2Rng)			
	ws			1 =	
	Ei			<u>+</u> =	
	この関数は	、WS検索 E -	> Rng [µm]	= ;飛程 を返し	ます。
	-		WS	5 は、WS名:	です。

先ず、空のセルに数式を書いてみます。
 = srE2
 まで書くと「関数名候補が表示」されます。
 srE2Rngを選択し Tab キーで確定します。

関数ヘルプを表示するには、 fx アイコンをクリック してください。 この関数へ渡すべき引数の説明が表示されます。

<u>(1b) srE2Rng()の例題</u>

「SRIMfit入門_半導体照射試験用.xlsm: ex01 シート」に、srE2Rng()を用いた例題を示しました。

,	А В	С	D	E	F	G	Н	I J	К	L	м	N	0	P	Q
0	COINA	fit 解釋語・半分	首体昭射計	輸田											
2	SRIM	по <i>и</i> нало тък По се се се с	F I A SE ATION			al l									
3		[ex01]	STEZK	ng()	12月19	'									
4															
5															
6		[ex01]	コリメ	ータ	選び										
7		照射ボー	トの手前	にビ	ームコリメ	(一タを置	き		7						
8		照射チッ	ブの周辺	にビー	ムが当た	らない様	に工夫した	ບຸ							
9															
10	Q.	コリメー	タの厚	さは亻	可μm业	と要か?		- 1			RA				
11									71/2		19 X	- A."			
12										¥		~			
13	A.	ヒーム核	種、コリン	(一夕幕	才質、及び	F									
14		ビームエ	ネルギー	を指	定して、					青字	の部	分に「値	創を入力し	てくたさい。	D
15		srE2Rng	()関数を	を使って	7 Range	(最薄厚	さ)を求める			紫字	lt 🏼	敗式の	吉果です。		
16		0				A				緑字	が、う	マクロ関	数の計算	結果です。	
17						Ja									-
18		WS name	•		head	ビーム	材質	関数の	ら数						?
19		srim84K	r_AI	<	srim	84Kr	AI	srE2	Rng						
20	WS =	thead & Bm	&& Tr	ę	head	Bm	Trg		acar.			1			
21								ws	\$C\$6				= "srim84	4Kr_Al	
22			E beam		Range			Ei	D10			1	= 70		
23			MeV/u		μm										
24		(3)	70	>	1452.0	(4)							= 1452		
25			95	>	2400.4			この関係	数は、WS検索	E -> Rng	[µm] ;	飛程を	返します。		
26			E		rt = srE2R	ng(WS;E)					Fi	(‡. Bea	m F [MeV	/u] 検索値	শ্ব,
27											-				

上図例の計算結果から、

ビーム = 84Kr で、コリメータ材質 = AI の場合、

ビームエネルギーが 70 MeV/u なら、コリメータの厚さは 1.452 mm 以上

ビームエネルギーが 95 MeV/u なら、コリメータの厚さは 2.400 mm 以上 必要 という事がわかります。

【解説】

- SRIMfit関数に渡す WS: WorkSheet名 を決めるために必要なパラメータ指定欄です。 ビーム核種を ①a に、ビームが照射される標的材質を ①b に、青字セルの部分に文字列で記入。
- ② 関数に渡す WS: WorkSheet名 (MySRIMwb.xlsxのシート名)を決めます。 WS名の命名基準は、"srim" & "ビーム核種名" & "_" & "材質名" となってます。 紫字のセルには、これを自動生成するための数式が書いてあります。 数式を、そのセルの脇に記述しておきますので、ご参照ください。
- ③ 関数に渡す E: ビームエネルギー [MeV/u] を指定します。 青字のセルに、数値を記入します。
- 4 指定した WS名、ビームエネルギーの場合の、飛程 Range [µm] が表示されます。
 緑字のセルには、srE2Rng() 関数を呼び出す

 srE2Rng(WS, E) 'という数式が書いてあります。

<u>(1c) srRng2E()の例題</u>

「SRIMfit入門_半導体照射試験用.xlsm: ex02 シート」に、srRng2E()を用いた例題を示しました。

/	АВ	С	D	E	F	G	Н	Ι	J	К		L	М	N	0		
1	0.01	40. 47.54. 14.	····································	-						主曲	~ 1	77.1-1		* 1 - 1 - 2	- / + • + 1 、		
2	SRI	Vifit 解記:千年	导体照射試験	用						育子	ωł	都分に	10」	を入力して	くにさい。	,	
3		[ex02]	srRng2l	EO 1	更用例				紫字 は、数式の結果です。								
4										緑字	が、	マクロ	関裁	奴計算結	果です。		
5																	
6		[ex02]	加速器	選び	۴				T	hk不感層厚							
7		照射チッ	ブ表面に、ス	不感層	がある。					$ \longrightarrow $							
8		感広層深	だまで ビー	ムを至	達させる	には・・・											
9									Ebeam								
10	G	1. 加速器	に必要な	最低	ビームコ	C ネルギ	-は?										
11											匷						
12											12						
13	F	レビーム移	、種、照射チ	ップ材	質、及び						巤						
14		不感層の) 厚さ を指っ	記して							>						
15		srRng2E	() 関数を何	 もって	ビームエ	ネルギー	を求める			照射ナツノ							
16				1					開設の21数								
17						(1)										
18		WS name	e		head	ビーム	材質		srRng2E								
19		srim84K	r_Si	<	srim	84Kr	Si		WS C19	9			Ť	= "srim?	84Kr Si"		
20	WS	=head & Bm	&& Trg		head	Bm	Trg			-			10000				
21									Ri D2	3			Ţ	= 200			
22			不感層厚さ		Ebeam									- 17 17	020556		
23			μm		MeV/u				スの開業加上					- 17.17: + 17.17:	,		
24			200	>	17.2	3			この関数は、	WS使希 Kng	; #84	±->⊧[Mev	/uj で送しま	9.		
25			800	>	44.6							Ri	(t, R	Range [µm]	検索値 です	5 .	
26			Thk		E = srRn,	g2E(WS, 1	Thk)										
27																	
28																	
29									数式の結果	= 17.17920)556						

上図例の計算結果から、

ビーム = 84Kr で、照射チップ材質 = Si の場合、 不感層の厚さが 200 µm なら、加速器のビームエネルギーは 17.2 MeV/u 以上 不感層の厚さが 800 µm なら、加速器のビームエネルギーは 44.6 MeV/u 以上 が必要 という事がわかります。

【解説】

- WS 名 を決めるために必要なパラメータ指定欄です。
 青字 のセルに、文字列を記入します。
- 2 関数に渡す Thk: 不感層の厚さ [µm] を指定します。 青字のセルに、数値を記入します。
- 3 指定した WS名、厚さの場合の、ビームエネルギー [MeV/u] が表示されます。 緑字のセルには、srRng2E() 関数を呼び出す (= srRng2E(WS, Thk) (という数式が書いてあります。

(2) SRIMfit 基本関数の種類

SRIMfit「ユーザーズマニアル」で説明してあるように、SRIMfit のマクロ関数は、 MySRIMwb.xlsx にあるデータシートを読んで計算をしてその結果を返します。 SRIMfitの基本関数(例:前述の srE2Rng()や srRng2E())は、 このデータシートに書いてある値を参照する関数 などです。 ここでは、データシートに書いてある事について説明します。

	А	В	С	D	Е	F	G	н	Ι	J	К	L	М	N	Ο	P
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	2	″SRIMfi	t″data :	table							please t	fill in		from SRI	M out	put
3		SRIM ver=	SRIM-2013.	00	Gas?		== Target (Composit	ion ==		please chana	εe in		for appropriate value/		
4		Ion Z=	36			Atom	Atom	Atomic	Mass		Multiply Stopp	ing by	/ ; for Stop	ping Unit	s	
5	5	Ion A=	84	amu		Name	Numb	[%]	[%]	unitID	Onv. Factor			This∛/S	name	srim84Kr_3
6	6	Target=	Si	shortname		Si	14	100	100	1	2.32E+01	eV /	Angstrom	0	orded	Ayoshida. <mark>F</mark>
7	- 7		Silicon								2.32E+02	keV /	/ micron			
8	8	Trg.Dens=	2.3212E+00	€/om3						V 3	2.32E+02	MeV	/ mm 🦳			
9	9		4.9770E+22	atoms/cm3						4	1.00E+00	keV /	((ug/cm2)			
10	10	BraggOrot=	0.00%							5	1.00E+00	MeV	/ (mg/cm2	2)		
11	11		row#	SRIM E ra	ange					6	1.00E+03	keV /	/ (mg/cm2)		
12	12	Emin=	20	0.84	10eV/A					7	4.66E+01	eV /	(1E15 ator	ns/cm <mark>2</mark>)		
13	13	Emax=	228	84000000	1GeV/A					8	5.97E-02	L.S.S	, reduced (unit		
14	- 14	if Gas; Ptbl =		Pa				100.0	100.0	0	== 5 : MeV/(r	mg/cr	m2)			
15	15	if <mark>Gas</mark> ; Ttbl =		degC												
16	16			SRI	Stor 4 P	ower Unit =	MeV/(mg/c	m2)]	6	6			<u> </u>		a	
17	17	Ion	(3)	E/dx Elec	dE/dx Nucl	dE/dx tot	Projecte	ed		Longitudinal	_(6)a	Lateral	U	רסע
18	18	Energy		[MeV/u]	[N	leV/(mg/cm)	2)]	Range		[um]	Straggling		[um]	Stragglin	e I	[um]
19	19															
20	- 20	899,999	еV	0.000011	1.230E-01	1.748E+00	1.871E+00	- 33	A	0.003	14	A	0.001	10	A	0.001
21		999,999	eV	0.000012	1.297E-01	1.836E+00	1.966E+00	35	A	0.004	15	A	0.002	11	A	0.001
22		1.1	keV	0.00001	1.360E-01	1.917E+00	2.053E+00	37	A	0.004	15	A	0.002	11	A	0.001
23		1.2	keV	0.00001	1.421E-01	1.994E+00	2.136E+00	38	A	0.004	16	A	0.002	12	A	0.001
24		1.3	keV	0.00002	1.479E-01	2.0666+00	2.214E+00	40	A	0.004	17	A	0.002	12	A	0.001
-	•	srim	84Kr_Si	srim84k	(r_Al s	rim84Kr_Au	u srim8	84Kr_C	sri	m84Kr_Ai	r 🕂	:	4			

1	上図例のシート名は srim84Kr_Si =(ビ-	ーム 84Kr, 標的物質 Si) 用のものです。
	値の説明	関連する SRIMfit関数名
2	ビーム と 標的物質 に 関連する情報	srInfoIonZ(),
3	ビーム の エネルギー: Ε に対する・・・	srMinE(), srMaxE(), etc.
4	LET値(dE/dX)electric, nuclear	srE2LETt(), srLETt2E(), srMaxLETt(), etc.
5	Range値(飛程)	srE2Rng(), srRng2E()
6 a,b	Straggling 値 ビーム方向、垂直方向	srE2StLng(),
7	LET値表示 の 単位換算表	srLETUNm(), srLETCnvF(), etc.

※ それぞれの関数の使い方については、 「ユーザーズマニアル」 SRIMfit の 関数一覧(1),(2) を参照してください。

(2a) 基本関数 の 例題-1 MySRIMwb 内容表示

「SRIMfit入門__半導体照射試験用.xlsm: ex03 シート」に、SRIMfit 基本関数 を用いた例題を示しました。

Provide Bit = 4010 BBR (2010) (Control I String Bit O (2010) (Control	1	А	В	С	D	E	F	G	H I	J	К	L	М	Ν	0	P	Q	R	S	Т	U	V
2 Image: Except Back Bits 00 Gr HB(H)(1) Image: Back Bits 00 Gr HB(H)(1) 2 Image: Except Back Bits 00 Gr HB(H)(1) Image: Back Bits 00 Gr HB(H)(1) 2 Image: Except Back Bits 00 Gr HB(H)(1) Image: Back Bits 00 Gr HB(H)(1) 2 Image: Except Back Bits 00 Gr HB(H)(1) Image: Except Back Bits 00 Gr HB(H)(1) 2 Image: Except Back Bits 00 Gr HB(H)(1) Image: Except Back Bits 00 Gr HB(H)(1) 2 Image: Except Back Bits 00 Gr HB(H)(1) Image: Except Back Bits 00 Gr HB(H)(1) 2 Image: Except Back Bits 00 Gr HB(H)(1) Image: Except Back Bits 00 Gr HB(H)(1) 2 Image: Except Back Bits 00 Gr HB(H)(1) 2 Image: Except Back Bits 00 Gr HB(H)(1) Im	2		SRIMfit 解說:当	≚導体照射試	験用						青字	に「値」を	¥እታ									
In our Mr.SELIM. CH38 275: W≠ 2 171 B 200 E 2 W Dumes = unitSME Air W C Muscle Status 779 (PD WorkStote	3			[ex04]	基本関	数の	使用例	l(1)			慰室	数式の筆	吉里									
C C	4			[ex04]	My SRI	Mwb P	~~未	$\overline{\pi}$			緑字	マクロ関	数の結果	₽								
WS main Intro340 Air WS C Multiple Air WS C Multiple Air MS C M	5		(1)		ご自分の	MySRIM	wb.xlsx	の確認用	です													
Construct Construct <thconstruct< th=""> <thconstruct< th=""> <th< td=""><td>7</td><td></td><td>WS name =</td><td>srim84Kr</td><td>Air</td><td>WS (- M</td><td>vSRIMwh</td><td>viev Jerh</td><td>由の WorkSh</td><td>eet 25</td><td>* 1 77</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thconstruct<></thconstruct<>	7		WS name =	srim84Kr	Air	WS (- M	vSRIMwh	viev Jerh	由の WorkSh	eet 25	* 1 77											
$ \begin{array}{ c } \hline \hline Condition MERK 2010 & condition weight of the set of the set$	8		WO.Maine -	armond_		110 (m)	y 07 070 0 02	100 2 2 2 2	., ., .,	=IF(srIn	nfo TgisGa	s(WS), "Gas	"."")									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9		Corded	Ayoshida.RIKE	N 2016.06	srinfoWScor	rded(WS)		Gas	? Gas	== Tar	get Com	position	n ==								
$ \begin{array}{ c b b b c c c c c $	10		SRIM ver	SRIM-2013	3.00	srinfoVer(W	'S)			Atom	Atom	Atomic	Mass		Multiply S	topping by	; for Sto	pping Unit	ts			
12 000 A 94 000000000000000000000000000000000000	11		Ion Z	36	Kr	srinfolonZ(V	VS), srElmNi	n(WS)	i	X Name	Numb	[%]	[%]	Uid	Cnv. Facto	or .						
1 100	12		Ion A	84		srintolonA()	WS)				6	0.02	0.02	1	1.20E-02	eV/A						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14		Target	Air (Dry ICRU	-104(gas))	srinfo TreNa	me(WS)			N	7	78.43	75.51	2	1.20E-01	MeV/mm						
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	15		Tgt.Dens	1.20E-03	g/cm3	srInfoTrgDe	ns(WS)			Ar	18	0.47	1.29	4	1.00E+00	keV/(ug/	cm2)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16			4.99E+19	atoms/cm3	srInfoTrgDe	nsA(WS)		4	1	0	0	0	5	1.00E+00	MeV/(mg/	(cm2)					
13 17 242E-01 (W/1E) is toms/cm2 16 0	17		Bragg.Crct.	0.00%		srinfoBrgC(WS)		5	ī	0	0	0	6	1.00E+03	keV/(mg/	cm2)					
1 1 abb Hange Mm	18								6	i	0	0	0	7	2.42E+01	eV/1E15	atoms/cr	m2)				
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	19		Lable Range	Min 1.075-05	Max 1.005+02	orthin Elute)	orMa-Ehur	0		/	0	100.0	100.0	8	4.90E-02	JL.S.S.						
Long Strig Lan 1 72F-00 728 F-00 este 2007/9 2040/212/9792 este 2012/9792 este 20	20		E [Mev/u] Bna[µm]	5.56E+00	1.00E+03	srMinE(WS), srMinRnø(W	SINUXE(WS) S). STMAXF(U	/ VS)		srinfa T.	sum <i>cCmAtm</i> A	(WS ix)	100.0	U	U : MeV srLETCovF/V	/(ing/cm2) VS.(/id)						
$ \begin{array}{c} 123 \\ 124 $	22	Ŀ	ong.Strg[µm]	1.72E+00	7.39E+06	srMinStLng(WS), srMax!	StLng(WS)			srinfo Te	CmAtmNo(WS,ix)			srLETUNm(L	lid)					
dE/dX unititi 0 0.1 8. //σ dE/dX unititi 0 0.0033 MeV/u ordset/files/levels/leve	23	L	ate.Strg[µm]	1.24E+00	4.21E+05	srMinStLtr(V	WS), srMaxS	tLtr(WS)				srinfo TgC	mAtmPot(WS.ix)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24												srlnfo TgC	mMasi	Pot(WS,ix)							
$ \begin{array}{c} \frac{1}{2} & \frac{1}{2} \left(\frac{1}{2} \frac$	25		dE/dX unitID	0	= 0,1 8	Uid				- 67					100		<u></u> 王 元	40				-
2/1 00/2 / X max 49 33.3 49 3400 7/123 m unitio 20 multical (1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	26		15 / 1	LETtotal	LETelec	LETnucl		and and other	1/14/0 ((- A	- 1	srim84	Kr_Air				LOB-LOB	- 10	<u> </u>	srim84	Kr_Air	Lin-Lin 夛	7.
LET® 70x 33.97 33.88 4.988 m.mittic -LET# * MatLET(Lon) 30 Elow side 0.294 0.298 0.0005 KeV/v wittic=LET# * MatLET(Lon) 30 Eligh side 11.238 13.30 0.0005 KeV/v wittic=LET# * MatLET(Lon) 30 Eligh side 11.238 13.03 0.0005 KeV/v wittic=LET# * MatLET(Lon) 30 E Eligh side 11.208 13.02 0.0005 KeV/v wittic=LET# * MatLET(Lon) 30 E E Eligh side 11.208 32.00575 KeV/v wittie=LET# * MatLET(Lon) 30 E E ELigh side 11.714E-02 32.00575 KeV/r wittie=LET# * MatLET(KeV) 30 E E E E MatLET# * MatLET(KeV) wittie=LET# * MatLET(KeV) wittie=LET# * MatLET(KeV) 30 E E E E E MatLET# * MatLET(KeV) wittie=LET# * MatLET(KeV) wittie=LET# * MatLET(KeV) wittie=LET# * MatLET(KeV) 0.000010.000 0.010.010 0.0100 0.00000 30 E E E E E E E 0.00000 </td <td>28</td> <td></td> <td>dE/dx max</td> <td>48.533</td> <td>48.400</td> <td>7.123</td> <td>MeV/u</td> <td>srMaxLET(t</td> <td>e,n/(₩5,0/a/</td> <td></td> <td></td> <td></td> <td></td> <td>/</td> <td>-10</td> <td></td> <td></td> <td>35 🚽 🗑 🚽</td> <td></td> <td></td> <td></td> <td>-</td>	28		dE/dx max	48.533	48.400	7.123	MeV/u	srMaxLET(t	e,n/(₩5,0/a/					/	-10			35 🚽 🗑 🚽				-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29		LETØ 70%	33.97	33.88	4.986	in unitID	=LET% * M	axLETIt.e.nl				\checkmark					20			■dE/dxElec	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30		Elow side	0.294	0.298	0.00008	MeV/u	srLET(t,e,n)	2EI(WS,LET%,Uid	0		. , <u> </u>						°° ≱			=dE/dxTot	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	31		Ehigh side	11.253	11.303	0.00575	MeV/u	srLET(t,e,n)	2Eh(WS,LETX,Ui	0.000	0010.000	0.001	0.01	0.1	(1)	10 100	1000	25 🗄	- \			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	32	_			. 1.6									1				¥				-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33	-(2	10.0	= Emin LMe	eV/u](Lin-	-Lin フロッ	ト)確認用			- 5	2				0.1		-	20			2	- E
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	35		F	- Estep dEdXelec	dEdXnucl	dEdXtotal	Bange	Long Strag	Late Strag		5							15				
3 12 56 3 207 E+01 174E-02 3 209 E+01 2 258 E+03 7 550 E+03 1 479 E+03 3 E er22LET/(WS.E0) er22LE/(WS.E0) er22L	36		[MeV/u]	[MeV/(mg/	(cm2)]	acartota	[μm]	[μm]	[μm]		<u>e</u>			0	.01			10			<u> </u>	-
30 E ord21FW/WE 00 ord22EFW/WE 00 ord22FW/WE 00 ord22FW/WE 00 ord22FW/WE 00 ord2	37	0	10.56	9 207 E+01	1 744 E-02	9 200 E±01	2 259 E±05	7 560 E±02	1 479 5402		è.	dE /dv	Elec	1				10	1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	39	୍ତ	E	srE2LETe(WS	(E.O)	srE2LETt(W	S.E.0)	srE2StLng(WS.E)	- 2	3	dE/dx	Nucl	0.	001		.	5				
41 1000 9584 E+01 2.138 E+02 9586 E+01 1731 E+05 5584 E+03 1388 E+03 1388 E+03 42 1100 3.438 E+01 1960 E+02 3.45 E+01 1980 E+02 3.85 E+03 1388 E+03 1.488 E+03 43 12.00 3.286 E+01 1818 E+02 2.837 E+01 2.578 E+03 1.488 E+03 1.488 E+03 44 13.00 3.145 E+01 1.680 E+02 2.818 E+03 1.504 E+03 1.504 E+03 1.528 E+03 1.504 E+03 1.508 E+03 <	40				srE2LETn(W.	S,E,O)	srE2Rng(W	S,E)	srE2StLtr(WS,E)	₹ -	dE/dx	Tot								E beam [M	eV/A]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	41		10.00	3.584.E+01	2.133.E-02	3.586.E+01	1.731.E+05	5.584 E+03	1.338.E+03	["	Ψ			-0.0	001	E beam LMe	LAVA	0	20	40	60	80
43 12.00 3.2861401 15815-02 3.2871401 2.1871400 1.4414400 1500-02 3.1451401 1.5805-02 3.1451401 1.5805-02 3.1451401 1.5805-02 3.1451401 1.5805-02 3.1451401 1.5805-02 2.881401 1.4805-02 2.881401 1.3805-02 2.881401 1.3805-02 2.881401 1.3805-02 2.881401 1.3805-02 2.881401 1.3805-02 2.881401 1.3805-02 2.881401 1.3805-02 2.881401 1.3805-02 2.681401 1.3885-02 2.681401 1.3885-02 2.681401 1.3885-02 2.681401 1.3885-02 2.681401 1.3885-02 2.681401 1.3885-02 2.681401 1.3885-02 2.681401 1.3885-02 2.881401 1.3885-02 2.881401 1.3815-02 2.3855+01 1.3851+04 2.0005+03 3.1856+01 1.3856+02 2.1006+03 3.881405 1.3861+04 2.0005+03 3.1856+01 1.2866+02 2.1705+03 3.1856+01 1.1852+04 2.1006+03 3.1856+01 1.1852+04 2.1006+03 3.1856+01 1.1852+04 2.1006+03 3.1856+01 1.1852+04 2.1006+03 3.1856+01 1.1006+02 <td< td=""><td>42</td><td></td><td>11.00</td><td>3.433.E+01</td><td>1.960.E-02</td><td>3.435.E+01</td><td>1.930.E+05</td><td>6.378.E+03</td><td>1.394.E+03</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></td<>	42		11.00	3.433.E+01	1.960.E-02	3.435.E+01	1.930.E+05	6.378.E+03	1.394.E+03									-				
Image: Non-Weil And Construction Constru	43		12.00	3.286.E+01	1.813.E-02	3.287.E+01	2.137.E+05	7.141.E+03	1.446.E+03	- 6	a leri	mQ/l/r	ir	IE	+09	Log-Log 表:	示 -	3.E+6			Lin Lin 3	E=
11:00 2:00:100 2:00:100 1:00:100:100 1:00:100:100 1:0:1:0:0:1:0:0:1:0:0:0:0:0:0:0:0:0:0:0	45		14.00	3.145.£401 3.013.E401	1.583 E-02	3.147.E+01 3.014 E+01	2.304.E+05	7.889.E+03 8.629.E+03	1.504,E+03	- 12	3 51		10	00000	000		/		srim84K	r_Air	Lini-Lin a	~//~
47 16:00 2.771E+01 1407E+02 2.73E+01 3064E+05 101E+04 1.700E+03 48 17:00 2.688E+01 1.338E+02 2.684E+01 327E+05 1006E+04 1.702E+03 49 18:00 2.5862E+01 1.207E+02 2.5862E+01 1.207E+02 2.5862E+01 1.102E+02 2.5862E+01 1.102E+02 2.5862E+01 1.105E+02 2.3861E+01 1.101E+02 2.3861E+01 1.101E+02 <td>46</td> <td></td> <td>15.00</td> <td>2.888.E+01</td> <td>1.489.E-02</td> <td>2.889.E+01</td> <td>2.818.E+05</td> <td>9.368 E+03</td> <td>1.632.E+03</td> <td></td> <td>2</td> <td></td> <td></td> <td>10000</td> <td>000</td> <td></td> <td>/ -</td> <td></td> <td></td> <td></td> <td>1</td> <td>-</td>	46		15.00	2.888.E+01	1.489.E-02	2.889.E+01	2.818.E+05	9.368 E+03	1.632.E+03		2			10000	000		/ -				1	-
48 17:00 2883E+01 1333E+02 2864E+01 321E+05 1006E+04 1772E+03 49 18:00 2562E+01 1266E+02 2563E+01 3597E+05 1162E+04 1141E+03 50 19:00 2368E+01 11507E+02 2368E+01 1152E+05 1316E+04 2000E+03 51 20:00 2368E+01 1150E+02 2368E+01 1152E+05 1316E+04 2000E+03 52 21:00 2368E+01 1001E+02 2369E+01 4405E+05 1384E+04 2400E+03 53 22:00 22:38E+01 100E+02 2369E+01 100E+02 2369E+01 100E+02 2369E+01 100E+02 2369E+01 100E+02 2369E+03 2175E+03 1062E+04 2359E+03 1185E+04 230E+03 1185E+04 2369E+03 1895E+04 2346E+03 1100 100 100 5E+5 6E+024 236E+03 236E+03 236E+03 236E+03 57 200E+01 193E+07 1262E+02	47		16.00	2.771.E+01	1.407.E-02	2.773E+01	3.064.E+05	1.011.E+04	1.700.E+03		.=			10000	000	1	/	2.E+6			1	-
49 18:00 2:502:Er01 12:06E-02 2:508:Er01 3:507:Er05 1:02E+04 13:81E+03 13:81E+03 13:81E+03 13:81E+03 13:81E+04 2:80E+03 13:81E+04 2:80E+04 13:81E+04 2:80E+04 13:81E+04 2:80E+04 13:81E+04 2:80E+04 19:8E+04 2:84E+03 19:8E+04 19:8E+04 2:84E+03 19:8E+04 19:8E+04 2:84E+03 19:8E+04 2:84E+03 19:8E+04 19:8E+04 19:8E+04	48		17.00	2.663.E+01	1.333.E-02	2.664.E+01	3.321.E+05	1.086.E+04	1.772.E+03		3g			-1000	000		<u> </u>		17			+
50 19.00 2488.H01 1207E-02 2470.F01 3894.H05 1238E404 1916E403 51 20.00 2384.E401 1153E-02 2386.E401 1152E403 1316E404 200E403 52 21.00 2386.E401 1164E-02 2386.E401 1152E403 1316E404 200E403 53 22.00 2386.E401 104E-02 2386.E401 104E-02 2386.E401 1040E40 200E4103 53 22.00 2388.E401 1061E-02 2388.E401 1052E404 2170E403 507E404 2588.E403 1856.02 2177.E401 1856.E404 2258.E403 1860.00 1862.E404 2548.E403 56 25.00 2080.E401 9.144.E403 2002.E401 1958.E403 1858.E404 2548.E403 248.E403 58 27.00 1978.E401 6.782.E405 2478.E404 2548.E403 248.E403 59 28.00 1944.E401 8588.E-03 1945.E401 2478.E404 2548.E403 0.00001 0.001 0.01 0.1 1 0 0 20 40 60 80	49		18.00	2.562.E+01	1.266.E-02	2.563.E+01	3.587.E+05	1.162.E+04	1.841.E+03	ā	ಹ 🗕	Range		100	000	/ /	/ -	2.E+6	·		(2)	b
51 2000 2388±40 1782±70 1376±70 2006±701 376±70 2386±70 1376±70 2006±703 52 2100 2386±701 104E=70 2386±70 1376±70 2008±703 376±70 376±70 2008±703 53 2200 2388±701 1061E=70 2389±70 1376±704 2008±703 376±704 2008±703 54 2300 2.175±701 1020E=702 2176±701 507±7050 1682±704 2389±703 158±704 2389±703 2386±703 858±703 815±704 2389±703 2480±703 858±703 915±704 2489±703 2380±704 2489±703 2480±703 827±703 977±705 1662±704 2489±703 2489±703 2480±703 915±704 2489±703 2489±703 2489±703 2489±703 2489±703 915±705 2478±704 2489±703 2489±703 916±704 827±703 977±705 607±640 2448±703 2478±704 2478±704 2478±704 2478±704 2478±704 2478±704 2478±704 2478±704 2478±704 2478±704 2478±704 2678±704 0.000001 0.001 0.01 0.01	50		19.00	2.468.E+01	1.207.E-02	2.470.E+01	3.864.E+05	1.238.E+04	1.916.E+03	_	ŝ.	Stragg.	Long		000	1/1/	/		.=			- 1
Construction Construction <th< td=""><td>52</td><td></td><td>20.00</td><td>2.384.E+01 2.306.E+01</td><td>1.153E-02</td><td>2.385 E+01 2.308 E+01</td><td>4.152.E+05 4.450 E+05</td><td>1.316.E+04</td><td>2.000 E+03</td><td></td><td>Ę.</td><td>ot ragg.</td><td>Lateral</td><td></td><td>000</td><td>//</td><td></td><td> #</td><td>Lag</td><td>1</td><td></td><td>-</td></th<>	52		20.00	2.384.E+01 2.306.E+01	1.153E-02	2.385 E+01 2.308 E+01	4.152.E+05 4.450 E+05	1.316.E+04	2.000 E+03		Ę.	ot ragg.	Lateral		000	//		#	Lag	1		-
54 2000 2175 E+01 1000 E+02 2176 E+01 5077 E+05 1662 E+04 2259 E+03 55 24.00 2.115 E+01 9.805 E+03 2116 E+01 5398 E+05 11815 E+04 2259 E+03 56 25.00 2.036 E+01 9.474 E+03 2068 E+01 5185 E+04 2248 E+03 100 100 5.E+5 5.E+5 E beam [MeV/A] 0.E+0 0.00001 0.0001 0.001 0.01 0.01 0.1 1 10 100 0.0 20 40 60 80	53		21.00	2.238.E+01	1.061.E-02	2.239 E+01	4.760.E+05	1.512E+04	2.170.E+03	- 1			/		000		-	1.E+6	ಹ	1	Pango	
55 2400 2115E+01 9805E-03 2116E+01 538E+05 1815E+04 2349E+03 56 2500 2008E+01 9474E-03 2009E+01 5738E+05 1815E+04 2349E+03 57 26.00 2008E+01 9474E-03 2012H+01 0782E+05 2158E+03 2542E+03 58 27.00 1976E+01 8827E-03 1977E+01 6422E+03 2302E+04 2542E+03 59 28.00 1944E+01 8558E-03 1945E+00 6782E+05 230E+04 2442E+03 60 29.00 1942E+01 8520E-03 1913E+01 7143E+00 2542E+03 0.000010.0001 0.01 0.1 1 10 100 0 20 40 60 80	54		23.00	2.175.E+01	1.020.E-02	2.176E+01	5.077.E+05	1.662.E+04	2.259.E+03					-	000		-		ູ່ ຍູ	/ =	-nange Stragg. Lo	ng -
56 2500 2088E+01 9.474E-03 2089E+01 5738E+03 1985E+04 2446E+03 57 26.00 2000E+01 9.144E-03 2021E+01 6078E+05 2154E+04 2542E+03 58 27.00 1976E+01 8827E-03 1977E+01 6422E+05 2202E+04 2642E+03 59 28.00 1944E+01 8558E-03 1943E+01 6732E+05 2736E+04 2642E+03 60 29.00 1912E+01 6322E+03 1913E+01 7/38E+05 2736E+04 2651E+04 0.000010.0001 0.01 0.1 1 10 100 00 20 40 60 80	55		24.00	2.115.E+01	9.805.E-03	2.116.E+01	5.398.E+05	1.815.E+04	2.349.E+03				/		100	·		5.F+5	. E		St ragg.La	eral
b1 26.00 2000 E+01 9.144 E+03 2021 E+01 6/078 E+05 2542 E+03 2542 E+03 58 27.00 1.976 E+01 8827 E+03 1.977 E+01 6.422 E+03 220 E+04 2642 E+03 E beam [MeV/A] E beam [MeV/A] 59 28.00 1.944 E+01 858 E+03 1.978 E+01 6.732 E+03 2.746 E+03 0.00001 0.001 0.01 0.1 1 10 100 1000 0 20 40 60 80	56		25.00	2.068.E+01	9.474.E-03	2.069.E+01	5.738.E+05	1.985.E+04	2.446.E+03	_	-				10		_		-/		Lang FM-V/	
OD 27.00 1972etri 1 5827etri 2 2320etri 2 262etri 2 262etr	57		26.00	2.020.E+01	9.144.E-03	2.021 E+01	6.078.E+05	2.154 E+04	2.543.E+03	- 1				1	-10	E hoom FM	V/AT		-	E	Deam LMeV7	*J
0 29 00 1912E+01 8280E-03 1913E+01 7148E+05 2627E+04 2551E+03	50		27.00	1.976.E+01	8.827.E-03 8.558.E-09	1.977.E+01	6.782 E+05	2.320.E+04	2.642.E+03					illij -				0.E+0		40	60	
	60		29.00	1.912.E+01	8.290.E-03	1.913E+01	7.143.E+05	2.627.E+04	2.851.E+03	0.000	JULO.000	0.001	0.01	0.1	1	IU 100	1000 -	U	20	40	ου	80

このシートは、SRIMfitが読み込んでいる MySRIMwb.xlsx の内容を表示します。(縮小図で見ずらくてすみません)

【解説】

① WS名を 青字 文字列で指定します。

ここだけを指定すると、シートのほぼ全ての内容が表示されます。

- ② 右端のグラフ ②a ②b:X,Y=Lin,Lin表示の範囲を青字で指定。 SRIMfitが行っている"内挿補間"が、デコボコになっていないかを確認するのに便利です。
- ③ ビームエネルギーを青字で指定して、LET, Range, Stragglingの値を表示させる。

(2b)基本関数の例題-2_

「SRIMfit入門_半導体照射試験用.xlsm: ex04 シート」に、SRIMfit 基本関数を用いた例題を示しました。

1	А	В	С	D	E	F	G	Н	Ι	J	K	L	М	N	0
2		SRIM	īt 解説:半潮	導体照射討	験用						青字	に「値」をĴ	እታ		
3			[ev04]	基本関	黝	の使用	目例(2)				使字	数式の結	里		
4			[0/01]	E. T. IA	120	•• ••					<u>纵</u> 之	マクロ関数	∽ か結果		
			[ex04]	F-1.	了了	1					L /BP				
0			[6401]		Æ	<i>,</i>				\land					
7			試験に田	いス面イフ	トッビ・	ーんで				1	A ANJAN				
8			PARK1~/13	v•ø <u>≖</u> ••.) <i>-</i> C	<i>ц</i> с,					A (1) +				
q		Q	試験可	能なIF	тの	節囲は?	>			-					
10		٠.	Park - J							-		Ý			
11		Α.	ワークシー	-ト名(ビ	ームを	核種+照射	材質)を推	定して、							
12			基本関数	を使ってし	ET値	を表示す	3.								
13															
14										ي 🖉					
15			WS name)		ビームA	ビームZ			3.18		\geq			
16			srim84Kr	Si	\rightarrow	84	36	(2)a		•					
17			WS			= srInfoIor	rA(WS)						? L-		
18							= srlnfolo	nZ(WS)		LET値	の単位に	ついて	30		
19						標的名	標的密度	Oh-		Uid	単位名	(変換係	\$X	
20			LET 值表	<u> 示の単位</u> -	省定	Si	2.32			0	MeV/(mg/	'cm2)	1.0	くー核物理、	半導体照射用
21		(R) -	Uid番号	里位名		= srlnfoTr	gName(WS	S),	• •	1	eV/A		23.2	<- 材料照料	TH
22		Ja	0	MeV/(mg	/cm2)	= srinto I ;	rgDens(W	<i>s)</i>	2	keV/um		232.1	<- 生物照射	TA .
23			Ula	= srLETUI	vm(Uic	<i>a)</i>				3			232.1		
24				是大厅	値と・	その時のに	イームエネ	ィルギー		5	MeV/(ug/C	.m∠) (cm2)	1.0		
26			>	mayl FT(total)	F@ mayl	<u>- 4</u> 4-4 FT	~ <i>//</i> 1		6	keV/(mg/	-m2)	1000.0		
27			,	MeV/(mg/	(cm2)	MeV/u				Ť	eV/1F15 a	atoms/cm2	46.6		
28			4 a	41.00	@	2.14	4 b			8	L.S.S.		0.1		
29				=srMaxLE	Tt(WS	, Uid)					= srLETUI	Im(Uid)	= srLET	CnvF(WS,U	lid)
30						=srMaxLE	Tt2E(WS)								
31				ビームエ	ネルギ	<u> </u>	ET値	O D	OC		LET elects	ric It.			
32				Ebeam		LET值(total)	LET	LET			「電離作用	」に寄与	する成分で	<i>t</i> .
33				_MeV/u		MeV/(mg/	<u>′cm2)</u>	electric	nuclear		LET nucle	ar II.			
34			(5)	70.0	\rightarrow	9.47		9.470	0.004			標的核の	反跳」に	寄与する成	分で、
35				2.1	$ \rightarrow$	40.93		40.848	0.080			ビーム停止	ヒサ前で	大きくなりま	<i>I</i> .
36				E		= srE2LE1	t(WS,E,Ui	d) 	T. (140 S	- ((. n					
37 20						(6)a		- srezLe	10(WS,E	,UID) ET					
38									- sreze.	EIN(N	(5,E,U (a)				

- WS名を 青字 文字列で指定します。
- WS名 から、2a ビーム情報、2b 標的情報 を表示。
- ③ LET値の単位を③aに青字で指定。③bに、他の単位系への変換係数を表示。
- 5 次に、ビームエネルギーを青字で指定した場合の LET値を計算してみます。
- 6 LET_total ⑥a = LET_electric ⑥b + LET_nuclear ⑥c です。 半導体照射では、LET_total を用いることが多いそうです。

(3) 便利な関数: srEnew() ⇔ srEold()

SRIMfit で、私が一番便利に使っている srEnew() 関数と、その逆関数 srEold() について説明します。 これらの関数は、SRIMfit の基本関数 srE2Rng() と、その逆関数 srRng2E() から成る組合せ関数です。

(3a) srE2Rng(), srRng2E() を使って srEnew(), srEold()を記述する

ビームのエネルギーが E1 の時、物質中での Rangeが R1 だったとします。

では、上図を2つに分けて

「ある厚さ Thick を通過して」と「エネルギーが E2 に低下した時の Range は R2 」 と考えてみます。

R2 = R1 - Thick R2 = E2Rng(E2) $\therefore E2 = E2Rng^{-1}(R2) = Rng2E(R2)$

物質中の dE/dX (LET) 曲線: Bragg カーブ

R1 = E2Rng(E1)イメージが分かりやすいように、

も記載してあります

図を2つに分けても、ビーム核種とターゲット物質は同じですから、 同じ関数形 R = E2Rng(E)で議論できます。 そして E2 は、逆関数 Rng2E(R2)で求められる事がわかります。 以上まとめると、次の様な2つの拡張関数を簡単につくれる事がわかります。

※以上、まわりくどい説明でしたが、これは Range の定義式と、定積分の区間和則から明らかです。

$$R1 = \int_0^{E_1} \frac{dE}{(dE/dx)} = \int_0^{E_2} \frac{dE}{(dE/dx)} + \int_{E_2}^{E_1} \frac{dE}{(dE/dx)} = R2 + Thick$$

但し、ここで言う Range は「投影飛程:projected range」で、ビーム入射方向に沿って計った飛程です。 重イオンビームの場合、物質中のイオン経路は殆ど曲がらないので、イオンが実際に動いた距離である「経路長」と、 「投影飛程」はほぼ等しくなります。ダメな例は、物質中の電子飛程など。Ref)現代工学社放射線計測の理論と演習 上巻 § 4.7.3

(3b) srEnew(), srEold() 関数の引数について

SRIMfit「ユーザーズマニアル:関数一覧表(2a) 組合せ関数」に、 固体用: srEnew()と srEold() 関数の説明があります。以下に転記します。

≪変数名	表	2≫	≪_eq_関数	≪_eq_関数で、戻値が err: #N/A になる場合≫				
WS1,WS2	S	比較するWS名	case-1)	Eu10 > Emax	表範囲外			
Eu	D	Beam Energy [MeV/u]	case-2)	Eu11 < 0	Eu20 や Th2 が不定になる為			
Et	Et <i>D</i> Beam Energy [MeV]			Et11 > Et20	Bm1の通過後Eが、Bm2 通過前の全E より大きい			
dEu	D	Beam Energy Loss [MeV/u]	case-5)	dEt1 > Et20	Bm1のdEt が、Bm2 通過前の全E より大きい			
dEt	D	Beam Energy Loss [MeV]	case-8)		WS1 の Rng(E) 表の範囲外			
Tum,Tmm	D	Thickness [µm] [mm]	case-9)		WS2 の Rng(E) 表の範囲外			
Pa	D	Gas Pressure [Pa]	case-11)		dEpeak search error			
dgC	D	Gas Temperature [degC]	case-12)	dEu2max < dEu1	解なし			
			case-14)		dE2ixE search error			

カテゴリー						
戻値型 関数	<i>牧名</i>			関数の説明		
	引数名	型	引数の説明	戻値	戻値条件	理由など

組	合せ	<u> </u>	(2) equival	lent	E <-> Rng 計算				
	V,D	srE	new		•	Trg厚 Th[μm] 通過後の Beam E [MeV/u] ; Enew			
			WS	S	WS名	#NUM!	Eu10<=0	Th1<0も許可	
			Eu10	D	Bm 通過前 E [MeV/u]	#N∕A	−Th >Rmax		
			Th1	D	Trg 厚 [μm]	=0	Eu10=0 Th1>=Rr	ng(Eu10)	
						=Eu10	Th1=0		
					=srEolo	(Eu11,Th1)	Th1<0	Eold 計算と同等	

		通過前		通過後
		Eold	Thick	Enew
関数の		MeV/u	μm	MeV/u
引数	WS1	Eu10	Th1	Eu11
戻値	引数	引数	引数	戻値

(等価計算式)

srE	new(WS,Eu10,Th1) {
	R10= srE2Rng(WS,Eu10)
	if((R11= R10 - Th1)<=0) return(0)
	E11u= srRng2E(WS,R11)
	return(E11u)
}	

組合せ関数の説明では、参考の為、〈等価計算式〉を C言語 like に示しました。 VBA エディタで、それぞれの関数スクリプトをご覧になるとわかるように、 この等価計算式と同様な処理+エラーハンドリング が記述されています。

V,D	srEold		•	Trg厚 Th[µm] 通過前の Beam E [MeV/u] ; Eold			
	WS	S	WS名	#NUM!	Eu11<=0 Th1<0 不許可		
	Eu11	D	Bm 通過後 E [MeV/u]	#N/A	E1>=Emax		
	Th1	D	Trg 厚 [=Eu11	Th1=0		
			=sr	Rng2E(Th1)) Th1=0 & E11=0		

	通過前		通過後
	Eold	Thick	Enew
	MeV/u	μ m	MeV/u
WS1	Eu10	Th1	Eu11
引数	戻値	引数	引数

Eold(WS,Eu11,Th1) {								
R11= srE2Rng(WS,Eu11)								
R10= R11 + Th1								
Eu10= srRng2E(WS,R10)								
return(Eu10)								

標的のある厚さを《通過後》のエネルギー値《 Enew 》
 逆に
 標的のある厚さを《通過前》のエネルギー値《 Eold 》
 を計算する関数です。後述の様に
 Gas標的版(温度、気圧を指定)もあります。

(3c) srEnewGas(), srEoldGas() 関数の引数について

SRIMfit「ユーザーズマニアル: 関数一覧表(2b) 組合せ関数 Gas用」に、 気体用: srEnewGas()と srEoldGas() 関数の説明があります。以下に転記します。

≪変数名	表記	2≫	≪_eq_関数で、戻値が err: #N/A になる場合≫				
Tmm	D	Thickness [mm]	#NUM!	WS<	⇔Gas	WSがGasTrgでない	
Pa	D	Gas Pressure [Pa]	その他は	_eq_())関数と同じ。		
dgC	D	Gas Temperature [degC]					
その他は	その他は eg()関数と同じ。						

Gas用関数の場合、

厚さ Th は [mm] 単位で指定します。 更に、それぞれの気体の気温 [degC] と気圧 [Pa] も指定してください。

それ以外は、Gas 用でない関数と、計算方法・結果は同じです。

źЯ	組合++問数(2) equivalent F <-> Pog 計算										
110	<u> </u>	<i>天 </i>	(Z) equival	en							
	V,D srEnewGas						GasTrg厚 Th[mm] 通過後の Beam E [MeV/u] ; Enew				
			WS	S	WS(Gas)名	#NUM!	WS<>Gas	WSがGasTrgでない			
			Eu10	D	Bm 通過前 E [MeV/u]	#NUM!	Eu10<=0	Th1<0も許可			
			Tmm1	D	GasTrg 厚 [mm]	#N/A	−Th >Rmax				
			Pa1	D	GasTrg 気圧 [Pa]	=0	Eu10=0 Th1>=Rr	ng(Eu10)			
			dgC1	D	GasTrg 気温 [℃]	=Eu10	Th1=0				
					=srEc	ld(Eu11.Th1)	Th1<0	Eold 計算と同等			

		通過前				通過後
		Eold	Thick			Enew
関数の		MeV/u	mm	Pa	°C	MeV/u
引数	WS1	Eu10	Tmm1	Pa1	dgC1	Eu11
戻値	引数	引数	引数	引数	引数	戻値

(等価計算式)	
---------	--

srE	EnewGas(WS,Eu10,Tmm1,Pa1,dgC1) {
	Th1= Tmm1 * 1000 * srThkStd(WS,Pa,dgC)
	R10= srE2Rng(WS,Eu10)
	if((R11= R10 - Th1)<=0) return(0)
	E11u= srRng2E(WS,R11)
	return(E11u)
}	

V,D	srEoldGas		•	GasTrg厚	፤ Th[mm] 通過前の Beam E [MeV/u] ; Eold						
	WS	S	WS(Gas)名	#NUM!	WS<>Gas	WSがGasTrgでない					
	Eu11	D	Bm 通過後 E [MeV/u]	#NUM!	Eu11<=0 Th1<0	不許可					
	Tmm1	D	GasTrg 厚 [mm]	#N/A	E1>=Emax						
	Pa1	D	GasTrg 気圧 [Pa]	=Eu11	Th1=0						
	dgC1	D	GasTrg 気温 [℃]								
			=srRng2E(Th1*srThkStd	(Pa1.dgC1))	Th1=0 & E11=0						

	通過前				通過後
	Eold	Thick			Enew
	MeV/u	mm	Pa	°C	MeV/u
WS1	Eu10	Th1	Pa1	dgC1	Eu11
引数	戻値	引数	引数	引数	引数

srE	oldGas(WS,Eu10,Tmm1,Pa1,dgC1) {
	Th1= Tmm1 * 1000 * srThkStd(WS,Pa,dgC)
	R11= srE2Rng(WS,Eu11)
	R10= R11 + Th1
	Eu10= srRng2E(WS,R10)
	return(Eu10)
}	

<u>(3d) srEnew(), srEnewGas()の例題</u>

「SRIMfit入門_半導体照射試験用.xlsm: ex05 シート」に、srEnew(), srEnewGas()を用いた例題を示しました。

A	В	С	D	Е	F	G	Н	Ι	J	Κ	L	М	N	0	Р	Q	R	
1																		
2	SRI	Mfit 入門	: 半導体	照射詞	试験用				青字	に値	訂を入力							
З		[ex05]	srEne	w()	使用例				紫字	数式(刀結果							
4									録字	マクロ	関数の結	果						
5		[ex05]	物質	涌淌	『後"のエオ	Ł,	ルギー				La	ir1	Lair	2 🗸				
6			113222			1								-				
7		空生中	昭射で き	北北山	三面の1 戸値を調	敕	1.7-1.5			真	空膜	Ede	eg板					
8		±×(T)	17. 19. 17. 19. 17. 19.	417-22	ᄯᄪᄵᅸᆮᇊᄪᇎᇔᆿ	TE	0/201											
9	Q.	Edeg	反の厚さ	きはし	いくらにすべき	t	<u>، ۲</u>			2	1							
10	Α.	srEnew)を使い	下法	流方向に順次Eを語	H	算。]	真空	o^{-}								
11		目標のし	_ET値にな	こるよ	うに													
12		Edeg板	厚を "手	助で"	変化させる。						空気	中	Ħ	〔 射	式料			
13		(1							4 a		4 b		<mark>(4)</mark> c		4 d			
14		U	a						Kapton		Air		Al		Air			
15		ビーム	材質		WSname				真空膜		空気層1		Edeg板		空気層2			
16		84Kr	Kapton	膜	srim84Kr_Kapton				[µm]		[mm]		[µm]		[mm]			
17		Bm	Air	空気	srim84Kr_Air		3		50.0		145.0		123.0		200.0			
18			Al	Edeg	srim84Kr_Al		E真空中		Tkap		Lairt		Tal		Lair2	Si		
19			Si	試料	srim84Kr_Si		[MeV/u]		通過後		通過後		通過後		通過後	=試料表面		
20			Trg		WS		70.0	\Rightarrow	69.07	\Rightarrow	66.85	\Rightarrow	62.93	\Rightarrow	59.70	10.57	= LET	値
21		(2)	=″srin	n" & Bm & "_" Trg		Ebm	(5)	E1		E2		E3		E4	LET	6	
22		気圧	気温						E1= srEr	ew(WS.膜, Ebr	n, Tka	ap)					
23		[hPa]	[°C]						E2= srEr	ewG	as(WS空:	氣, E .	1, Lair1, F	Pair*i	100, Tair)			
24		1020.5	21.0						E3= srEr	ew(WSEdeg, E	2, Ta	al)					
25		Pair	Tair						E4= srEr	ewG	as(WS空:	氣, E:	3, Lair2, F	air*i	100, Tair)			
26									LET= srE	2LE	Tt(WS試料	🛱, E4	(, Uid=0)					

(1) ビーム核種とビームが通過する材質名を ①a に指定し、それぞれのWS名 ①b を用意しておきます。

2 ビームが通過する 空気の 気温 と 気圧 を入力。

③ 真空中でのビームエネルギー(加速器からのエネルギー)を入力。

4 各ビーム通過物の 厚さを 4 a ~ 4 d に入力。

 5 各通過物を"通過後"のビームエネルギーを、 srEnew()とsrEnewGas()関数を用いて計算し、結果を表示しています。 通過物が固体の場合はsrEnew()を、気体の場合はsrEnewGas()を使います。 表下側に、各セル中に記述した式を書いてありますので、よく見て下さい。 Ebm → E1 → E2 → E3 → E4 の順でエネルギーの変化を計算しています。簡単でしょう?! 通過する材質によって、WS名の参照値 ()bを変えている事にも注意して下さい。 最後の E4 が、空気層2(Lair2)通過後つまり、照射試料表面位置でのエネルギーになります。
 6 試料表面での LET値を、srE2LETt()を用いて算出しています。

では、"手動"で Edeg板の厚さ ④c をいじってみて下さい。

Edeg板の厚さ 4c	vs	試料表面LET值 ⑥
$0.0 \ \mu \mathrm{m}$	\rightarrow	10.12 = これが Edeg無しの 最小LET値 です。
1220.0 μ m	\rightarrow	40.79 = Kr vs Si材の maxLET=41 Bragg Peak 近傍です。
1235.0 μ m	\rightarrow	19.05 = Bragg Peak を超えて、LETが減少する領域です。
1250.0 μ m	\rightarrow	#N/A = 計算エラー E4=0.0 となり、ビームが試料手前で停止しています。

(3e) srEold(), srEoldGas()の例題

「SRIMfit入門_半導体照射試験用.xlsm: ex06 シート」に、srEold(), srEoldGas()を用いた例題を示しました。

A	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	0	Ρ	Q	R	S	Т	U
2	SPI	እለ£+ ጊ₽¶	・ 坐道休	旧名創業	光 略 田				青空	171	└ 「値 I を λ ナ	1								
2	onu		or E ala	1() 	市田内							,								
3		[exnp]	STEOR	ו טע	史用例				紫子	数:	式の結果							-		
4			41 -						緑字	7:	クロ関数の	結界		La	ir1 \rightarrow			-		
5		[ex06]	物質」	創造	『前"のエネ	x)	ルキー	-				-	一一		M	old	材 📃			
6												7	、主族		1	, 2,	3			
7		空気中見	照射で、讀	式料表	面のLET値を指	定	したい。						1							
8		試料表i	面にはモ	ールド	層がある。							5								
9	Q.	必要な	;加速器	₩Ľ-	-ムエネルギ-	_	は?			盲	空	7	_				1			
10	Α.	srEold()	を使い、	目標	のLET値から					~	<u> </u>					ш				
11		"上流に	遡って"、	真空	中のエネルギー	E	計算する	•					空	気中	1	照	射試料	ł	Si	
12																			maxLET	
13		1		1	h				(3)a		(3)b		(3)c		(3)d		(3)e		40.998	(4)b
14		U	/a	U					Kapton		Air		Ероху		Si02		Cu		maxLET	
15		ビーム	材質		WSname				真空膜		空気層1		Mold1		Mold2		Mold3		試料表面	i
16		84Kr	Kapton	膜	srim84Kr_Kapton				[µm]		[mm]		[µm]		[µm]		[µm]		LET 指定	(4)a
17		Bm	Air	空気	srim84Kr_Air				50.0		145.0		100.0		50.0		10.0		10.00	~ ~
18			Epoxy	Mold1	srim84Kr_Epoxy		E真空中		Tkap		Lair1		Tmt		Tm2		Tm3		LET	
19			Si02	Mold2	srim84Kr_SiO2		[MeV/u]	=	通過前	_	通過前		通過前		通過前		通過前		E試料表	Toole
20			Cu	Mo Id3	srim84Kr_Cu		72.70	¢	72.70	¢	71.82	¢	69.62	¢	67.03	¢	65.61	¢	64.73	(4)C
21			Si	試料	srim84Kr_Si		Fhm	ļ	E6		E5		<i>E4</i>		E3		E2	J	Et	
22		0	Trg		WS		6	_	maxLET=	- sr	MaxLETt	(WS	試料,0)				5			
23				="srin	n" & Bm & "_" Trg				E1= srLE	Tt.	2E(WS詞	<i>#4,</i>	LET, 0, 1	2				_		
24		気生	気温						E2= srEc	old(WSMold	3, E.	(, Tm3)							
25		[hPa]						_	E3= srEc	>ld(WSMoldz	2, E2	2, 1 <i>m2</i>)					_		
26		1020.5	21.0						E4= srEc	vid(WSMoldi	1, E3	3, 1m1)			<u> </u>	,			
27		Pair	Tair					-	Eb= srEc	old(ias(WS <u>4</u> 	т. Т.	E4, Lair	1, P	air*100,	Tair	·)	-		+
28								-	E6= srEc	vid(a	₩S膑, El	o, 1)	(ap)							
29									Ebm = E	6										

①,② ビーム核種、材質名を ①a に、空気の気圧、気温を ② に指定。WS名 ①b が用意されます。

- 3 各ビーム通過物の厚さを 3a ~ 3e に入力。
- ④ 試料表面での LET値 を ④a に指定。指定値は、最大LET値 ④b 以下である事。 srLETt2E() 関数を用いて、そのLET値になるビームエネルギー E1 ④c が計算されます。
- ⑤ 各通過物を "通過前"の ビームエネルギーを、
 srEold()と srEoldGas() 関数を用いて計算し、結果を表示しています。
 最後の E6 が、真空膜 通過前 つまり、加速器からのビームエネルギー Ebm ⑥ になります。

では、"手動"で LET指定 ④a をいじってみて下さい。

LET指定 ④a vs 真空中 Ebm ⑥ 10.0 → 72.70 MeV/u LET値指定が小さいと、Ebmは高くなります。 40.0 → 25.40 MeV/u maxLET近傍(少し手前)にするには、このエネルギーで可能です。 41.0 → #N/A = 計算エラー maxLET = 40.998 なので、 このビームと照射試料では、このLET値を指定できません。

(3f) srEnew(), srEold()の総合例題

「SRIMfit入門 半導体照射試験用.xlsm: ex07 シート」に、本コースのまとめとなる例題を示しました。

	A	В	С	D	E	F	G	Н	Ι	J	K	L	М	N	0	P	Q	R	S T
2		SRI	Mfit 入門	: 半導体	照射調	式験用				青字	に「値	訂を入力							
3			[ex07]	srEne	w()	srEold() 0	ま	とめ		姕字	教式の	刀結果			Lai	1_ _ L	air2	1	
4			[0/10.1]							録字	マクロ	1閏数の結	果					1	
-			[0+07]	Edag	同 +	"白馚"封	一台	-						真空膜		Edeg板			
5	_		[GYO1]	Lueg	₹C	日刻 司	Ħ	•											
7	-		是上海/	か 古穴の	ከ//	バームエネルギー	-743	ユキュア	1.7				68						
8			取工/加い 是下法/	か、呉王。 か、討判3	ものし	- ムエネルコ FT値も指定した	いり	747(7	ເພ	•		古元	93				~		
0		0		うく たき	计省	さるにけっ						릇도						•	
9		Q.	Edeg	7 С 2 1 п Ф	ロチ ロにも	り るにーは: A(+ス "Powgo":	たЦ	はホオス	BNZ					3	空気	+ -	照	射試料	_
10	-	А.	Litation	χυ, ші Ггі - 1		ミリン Nange · Mintyo F - ハヨ	с ц (Ф)	ヸ゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚	, ph.	、一方協正	+ 1	t Di k						0.	
12	_		上元かり	DEdeg人 SEdeg出	니죠 (C順次 Enew()計 M版宏 Fala()計	昇し	ノこ ヒ で た こ た	Dan	nge变换u 亦摘l	ノに11 ナー 佑	<u>=</u> :RI と、 .co の						S/	
12			11/11/17 美・R1-	JEUegill -R2 が E	님요.	「頑人」していません。	异し	CLC	i vari;	5032.1950	に世	.112 0)							
14			<u>д.</u> П		ucgr	- (0) 0.				Kanton	(1)c	Air		Al	C	Dd _{Air}		maxl FT	
15		Ī	ビーム	Ja 材質		WSname				直空膜	1	空気層1		Fdeg板		空気層2		試料表面	
16			84Kr	Kapton	膜	srim84Kr_Kapton				[um]		[mm]		[um]		[mm]		LET指定	(2)b
17			Bm	Air	空気	srim84Kr_Air		(2)a		50.0		145.0		742.4		200.0		15.00	1
18				AI	Edeg	srim84Kr_Al		E真空中		Tkap		Lairt		Tal		Lair2		LET	
19				Si	試料	srim84Kr_Si	[MeV/u]		通過後		通過後	ון	= R02-I	R12	通過前		E試料表面	וו
20				Trg		WS		70.0	\Rightarrow	69.07	\Rightarrow	66.85		7 1	5	40.33	¢	35.74	
21			()b	=″srin	1″ & Bm & ″_″ Trg		Ebm		E01		E02	1/		\mathbf{X}	E12		E11	
22	_		「気圧」	気温						Ede;	g入口"	での Range	1			Edeg出口(?のR	ange	
23	_		[hPa]							(3)a		1346.1				603.67		(3)b	
24	_		1020.5	Z1.0			(5)	长哲				R02	J			RIZ	主日	5. (丁(拾答)	/
20	-		Pair	Tair			ň	(快早	-	60.07	-	66.95	-	40.22		25.74	衣山	<u>1500</u>	
27	-							= Ehm	-	E01	-	E02	-	F03	-	50.14 E04	_	15.00	
28	-		FO1= ort	ENAW WS	(草 F b	m Tkan)	-	- Lom		RO2= crt	- 2Rn	WSE dec	7 E0	2)		mayl FT=	: crl4	avl FTt/WS	清 <i>始(0</i>)
29	-		F02=srt	newGas(ws₽	気 F01. Lair1. Pair	*10	0. Tair)		R12= srl	-2Rn	(WSEde	, 20 2. F1	2)		F11=srl	FTt	DECWS試料	IFT. 0. 1)
30			E03= srE	Enew(WSI	Edeg.	E02. Tal)		-,		Tal = R0	2 - R	12	,			E12= srE	old	WS空気.E1	1. Lair2)
31			E04= srt	newGas(WS₽	気, E03, Lair2, Pair	*10	0, Tair)											
32			LET= srt	EZLETt(W	/S試業	, E04, Uid=0)													

- 1) 照射環境パラメータを (1)a~(1)d に記入。
- ② 上流拘束:真空中のビームエネルギーを ②a に、下流側高速:表面LET値を ②b に記入。

3 上流~Edeg入口までの計算が ③a、下流~Edeg出口までが ③b です。 Edeg入口でのエネルギー E02 を、"Edeg材質中"での Range R02 に変換、出口では E12 と R12 です。

④ 求めるべき Edegの厚さは、上記 R02 と R12 の Rangeの差 です。 つまり、Tal = R02 - R12 です。 ←(3a)項の説明を見直してください。

(5) 求まった Tal を用いて、再度上流から srEnew() 計算をして検算を行っています。 表面LET(検算)が、2b で指定した表面LET値と同じ値になっている事を確認して下さい。

では、LET指定 2b の値をいじってみて下さい。

LET指定 (2)b	VS	Edeg板厚さ Tal ④
15.0	\rightarrow	742.4 μm
40.0	``	10000 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

- → 1206.0 µm maxLET近傍(ギリギリ手前)にするには、この厚さです。 40.0 10.0
 - → $-33.1 \mu m$ 厚さがマイナス値になるのは、「Edeg使用不可」です。

E真空中を上げる or ビーム通過物を薄くする 必要があります。

<u>(4) おわりに</u>

本コースは以上で終わりです。 SRIMfitが、半導体照射試験用の計算ツールとして便利な事を 理解して頂けたでしょうか。 SRIM2013は業界標準コードですが、この計算結果を用いて Excelマクロ関数化したことにより、より便利な計算ツールとなりました。特に、Enew() Eold()は 便利で、これが欲しかったので、私はSRIMfitを作りました。

掲載してある例題:パーツを利用して、自分なりの「照射試験用チェックシート」を構築して頂けると 幸甚です。 その時に、「計算式を間違えない様に!」指定してくださいね。 このコースで紹介した 例題をよく見直し、自分で理解してから改造してみてください。

(注意)

SRIMfitは、ビーム調整用の「単なる計算ツール」「目安」である事を忘れずに!

実際のビーム調整や半導体試験では、この計算通りになるとは限りません。

その理由は沢山あります。

(実験的誤差)

- ▶ ビーム通過物の「厚さ」と「密度」の測定誤差。照射物、通過物の設置精度。
- ▶ 加速器からの真空中エネルギーの測定誤差
- ▶ 当チーム担当のエネルギー検出器の較正誤差 ··· etc ···

(計算誤差)

- SRIM2013計算において標的が化合物の場合、その元素組成比や、密度、混合の不均一性などによって 誤差が生じます。また、「Bragg補正項」の指定方法が、私も良く理解していません。
- ➢ SRIMfit に入力する MySRIMwb の内挿補間に於ける計算誤差。 ・・・ etc ・・・

(物理誤差)

そもそも SRIM2013の「理論計算」にも、ビーム核種、標的核種によって数%の誤差があります。 ref) <u>http://www.srim.org/SRIM/History/HISTORY.htm</u> Historical Review: Theories for Stopping & Ranges of Heavy Ions; Stopping powers in 2003 (the date of this chapter) can now be calculated with an average accuracy of

about 5% overall, 6% for heavy ions and better than 2% for high velocity light ions.

またビームの Range Straggling効果により、Range は幅を持った量です。つまりLET値にも幅が生じます。 SRIM計算結果の"値"は、幅を持った分布の"中心値"である事に注意して下さい。

これら諸々の誤差を十分考慮の上で、

「安全方向に考えたLET値調整」をするように心掛けて下さい。

理研仁科・産業チーム:あ吉田