

Wear diagnostics using low-energy RIBs and their γ -ray imaging

<u>A.Yoshida</u> , T.Kambara Industrial Application Team, RIKEN, Japan

- Activation method for wear test using low-energy in-flight RI-beam separator
- γ -ray Inspection for Rotating Object (GIRO) system
- Irradiation test of space-use semiconductors using "stable" HI-beams in atomsphere

RIKEN RIBF : acceleration diagram

On-line & Real-time wear test using RI tracers

- long-life RI
 - $T_{1/2}$: month~year = test period RIs near the stable line
- concentrated at near surface with high density

constraints

- X produced RI depends on the material
- X strong Heat & Radiation damage
- X depth-profile determined by the reaction energy and cross section

1990's~

RI-beam implantation Indirect activation

1990's~ Beam Fragmentation

Mask

E(7Be) = 0 - 10 MeVRange in P.E. 20 μ m Scattered 3He contaminant

E(7Be) = 1 – 8 MeV pure beam, mono-energy Range in steel \sim 10 μ m Beam line activation

Pipe

Target :

C 130 μ m

Wear : R I B implantation (in-flight R I B separator)

LN2 Level Meter N2 out LN2 in Oxygen bypass to density the chamber meter isolation vacuum *** **** *** *** heat exchanger (coiled pipe) evacuation ::: ::: ::: ::: port cooled pump for H2-gas gas flow circulation (30 l/min) target gas in havar foil window beam 520

H.Yamaguchi et.al. NIM A589(2008)150-156

Cryogenic Gas-Target system H2 gas (90K L=8cm max.1atm) Vac. foil Havor 2.5 μ m ϕ 2cm

etarget gas cell

7Be Beam spot (ZnS) $\sim \phi$ 5mm

5

RIbeam		7Be4+	22Na11+				
	reaction	p(7Li,7Be)n	p(22Ne,22Na)n	unit			
	Eγ(branch)	477(10%)	1275(100%)	keV			
			511(200%)				
	Energy	4.16	3.67	MeV/u			
	E fwhm	0.39	0.41	MeV/u			
	Purity	80%	78%				
	contaminants	7Li3+	22Ne10+,19F9+				
*1	Beam spot x/y	4.8 / 8.1	4.7 / 4.3	mm fwhm			
	Intensity	(2.3 [~] 3.7)x10 [^] 8	3.1x10^7	particl/sec			
	Activation rate	(126~200)	0.9	kBq/1hr			
	max.Range in Al	~60	~35	μm			
Primary beam		7Li2+	22Ne7+				
	Energy	5.7	6.1	MeV/u			
	Intensity (avr.)	(1.7~2.0)	~0.3	рμА			
Production target		H2 @ 90K, L=8cm					
	Pressure	760	400	Torr			
	circulation	~30	~20	slm			
	⊿E gas	5.9	5.4	Watt			
*2	⊿E vac.foil	1.4	2.5	Watt			
	*1) when F1 mom. sli						
	*2) at exit vacuum foil : Havar 2.5 μ m thick ϕ 2cm						

R I B parameters (CRIB)

NIM B317(2013)785-788, RIKEN Acc.PR 48(2015)240, 47(2014)171 CNS Ann.Rep (2013)76-77, (2012)65-66

- 7Be intensity is similar to <u>RI-accelerator method</u> 60 kBq/hr, 1.1x 10[°]8 pps (particle/sec)
- Constraint : heat loss at Gas-target

Vacuum foil broken Effective gas density reduction

7

Wear : RIB separator (middle- vs low-energy)

- Using middle-energy R I B separator (RIPS)
 - ✓ 22Na purity & intensity were better

✗ RIB energy was too high for implantation at near surface → depth profile became low-density

 \rightarrow low-energy in-flight R I B-separator is suitable for wear test

RIB Separator	RIPS (middle energy)		CRIB (low energy)		
R I beam	7Be	22Na	7Be	22Na	
reaction	Fragmentation	Fragmentation	p(7Li,7Be)n	p(22Ne,22Na)n	unit
Energy	73.0	26.6	4.16	3.67	MeV/u
	±3%	±3%	±3%	±3%	
Purity	~ 78%	100%	80%	78%	
contaminants	6Li3+, 8B5+,3H	-	7Li3+	22Ne10+,19F9+	
Beam spot size	~ \$ 30	~φ30	$\tilde{\phi}$ 6.5	~φ4.5	mm fwhm
Intensity	~1x10^8	1.5x10^8	(2.3 [~] 3.7)x10 [^] 8	3.1x10^7	particl/sec
max.Range in Al	~9500	~660	~60	~35	μm
Primary beam	13C6+	23Na 11+	7Li2+	22Ne7+	
Energy	100	63.4	5.7	6.1	MeV/u
Intensity (avr.)	0.3~2.0	~1.0	(1.7~2.0)	~0.3	рμА
Production Target	Be 6.0mm	Be 1.5mm	H2 @ 90K, L=8cm		
Irradiation	in atmosphere		in vaccum		
*)	7Be is not well studied				

ISHINA

 $[\]rightarrow$ need help of " γ -ray imaging"

Gamma-ray Inspection for Rotating Object (GIRO)

T.Kambara et al, NIM A 797 (2015) 1–7 Nucl. Pyhs. News 26:4, (2016)26–29 Japanese patent app. No.6278330/2018

γ -ray imaging : G I R O (3D demo)

γ -ray imaging : G I R O (PET & SPECT demo)

0

-60 -40 -20

0 20 40 60

0 20 40 60

X(mm)

-60 -40 -20

0 20 40 60

-60 -40 -20

-60 -40 -20

0 20 40 60

γ -ray imaging : Prospects of G I R O

	GIRO	PET		
Inspect. Object	Rotating / Periodic motion	stationary		
Num. of detectors	🖌 at least Two	mony depende on chiest size		
System size	🖌 scalable & portable	many, depends on object size		
Price	🖌 less expensive ~ 10 k \$	expensive ~ 1 M \$		
	✓ applicable low∼high rotation			
Measurement time	a few 10 min~10 hr / picture	🖌 a few min / picture		
Position resolution	determined by slit width			

 GIRO is not suitable for living bodies, but is applicable for slow processes on continuously rotating object.

eg.1) wear powders deposition on "Sinogram coordinates"

> eg.2) other possible rotating objects

Radiation resistance test of space use semiconductors

- Single Event Effects (SEEs) caused by High LET Cosmic Ray
- Power devices steep Elec. Field gradient

- SEEs resistance > ~ 10 year
 Examine threshold-LET of
 - SEEs (Upset, Latch-up, Rupture)
- ➢ Beam Range 20[~]100 µm ← 3D-LSI, FPGA

SEEs test : Irradiation beam line

SEEs test : Beam impurity by nuclear reactions

84Kr 70MeV/u (in Vac.)

Summary

- Activation method for wear test using low-energy in-flight RIB separator
 - Intense RIB of 7Be, 22Na (~3x10^8, ~3x10^7 pps) are available.
 - Pulse-shaped depth-profile implantation is possible.
 - > 2 trial use, a collaboration research with 2 companies. No new offer now ...
- γ -ray Inspection for Rotating Object (GIRO) system
 - Simple setup, less expensive, size scalability
 - Fundamental properties were investigated ; 3D-, SPECT-mode
 - next) portable-size system using waveform digitizer. try more practical demonstrations to develop value-added wear analysis.
- SEEs test of space-use semiconductors using stable HI-beams
 - Irradiation in atmosphere, contaminant nuclei $\leq 1\%$
 - Continuous users : 3 ~ 4 companies in Japan.
 - Request) higher-LET test using Xe, Au

Thank you for your attention.

<u>A.Yoshida</u> , T.Kambara Industrial Application Team, RIKEN, Japan <u>http://ribf.riken.jp/sisetu-kyoyo/</u>