

● 測定量

max Eout: Edeg出口位置での最大ビームエネルギー これを、AI 相当 Range に変換した値 ExpR [# m]

Edeg 厚 を変化させ、IC2 の電流値を測定し、照射位置での「Range 曲線」を取得する。 加速器からの電流量をIC1でモニターし、IC2 測定値を補正する。 得られた Range 曲線を、SRIM による IC2 中の∠E計算値と比較: Fitting する。 この際、ExpR 値 (1パラメータ) を仮定して 手動でメノコFit を行う。

▶ 照射実施中と同じセットアップで測定する。 即ち、

- ➤ BeamSpot: Au膜=IN、Wob=ON で測定
- ➤ ビームライン常設物: Au散乱膜、Kapton膜、IC1, PL1, Edeg
- ➤ User照射位置(Lair2位置): IC2 ← この測定専用
- ▶ 使用する検出器: IC1, IC2

PL1 は不使用。でも常設物なので置いておく。 高Flux測定なので、HV = OFFしておく事!

● 準備手順

[01] IC1を Kap膜フランジにはめる。

Edeg を下流にズラし、挿入スペースを確保。

IC1の保護カバー(両面あり)を、外し忘れない事!

IC1の Sig, HV ケーブルは常設のママ

[02] PL1架台 を 設置: アルミロ穴板側 = 上流

PL1の保護カバーを、外し忘れない事!

IC1、Edeg と干渉して薄膜を破かない様に注意!

PL1の Sig, HV ケーブルを繋ぐ

[03] Edeg 下流面を Lair1 に戻す

Lair1 は、Edeg装置毎に異なる。C~Kr用: Laisr1=145mm Xe用:=100mm

[04] IC2 を Xsld上に置き、Z=照射位置: Lair2 にする

Xsld の Z位置設定は、スライダーに書いてある。

IC2 の Sig, HV ケーブルは常設のママ

IC2 X=±0 center; Beam 軸上 を確認

[05] 各検出器の HV=ON

HV(IC1, IC2) = +400V $\sim 3 \mu A$

[06] E5退出前に

Edeg = 0 μ m:all OUT を確認。レーザー、照明=ON のママで良い。

ExpR測定

(2) LabViewで測定

scnEDic

● 測定手順 使用するVI: E5A_scanED.vi

[11] ビーム強度調整

再確認: HV(PL1)=OFF, HV(IC1,IC2)=ON, Edeg=0 μ m E5A_Plot.vi を見ながら、IC1, IC2 [A] ~ 前回値 ~ 1E-7[A] にする。

[12] VI 起動、パラメータ設定

通常は incotE5 上で .exe 版を起動する

タグ: Config で、

- ① 「BmON保持 = 30sec」「測定間隔=2000ms」: 2秒間隔で30秒測定
- ②「GrpMid」「GrpMax」: 核種により右端の値に設定。プロット範囲指定。

タグ: Scanリストで、

③「EDcmdリスト」を、4からコピペする 《注11》

「13] VI 測定スタート

タグ: PltRaw の グラフ **5** を見守る

IC1: Edeg 上流側の電流値は、なるべく一定であること。

少々変動しても、次頁解析の時に、IC1でIC2を normalize する

IC2: Edeg 下流側の電流値が、BG レベルまで落ちきったら測定終了

[14] VI の測定Log は、

~¥LabView Data¥ scnEDic_yyyymmddhhmm.dat に保存される。

- ※ IC2 の測定曲線が、前回の同Beam調整をほぼ再現していなかったら
- → Thick 厚い方向にズレ: 保護カバーなど入っていないか?
 Thick 薄い方向にズレ: IC2 設置位置が Lair2 より短い? PL1が薄い?

《注11》EDcmdリストは、2種類ある

・ラフスキャン用: ~15点 BraggPeak 位置の確認用

・本番測定用: ~60点 BgPk付近を細かく。

更に Ebeam±2% をカバー

Excel表 ①準備_ED選_xlsm を用いて準備し[後述]、 ④ヘコピペ、若しくは③へ直接コピペする。

ExpR測定

(3) Excelで解析-1

scnEDic

《注21》[24] のコピペ作業では、 シート:3_Log選 と 2_IC解析 の2画面表示にしておくと便利 だが、⑥ Log選択ボタン のマクロ実行が有効なのは、 1画面目([1]マークあり)のみです。これはExcelの仕様。

● データ読込み 使用するExcel: ②実験_scnEDic_*.xlsm

[21] 解析用 Excel を開く

このファイルは、各Bm毎に異なるので、予め用意しておく事!

[22] LVデータを読み込む

前述の scnEDic_yyyymmddhhmm.dat を CSV で開く

ファイル: 開く: から、「コンマ区切り」「区切文字=コンマ」で、

列:日付=日付、列:ED Ptn と、Att NumとPtn の3列=文字列 を指定

- [23] シート: 3_Log に CSV をコピペ
 - ①:12 行目 から「貼付け:値」でペースト表示書式が崩れない様に! 今回測定の最終行以降は「値:クリア」する[24]で読込まれない様
 - ② に、.dat の File名 と、Note を記入する
 - ③ ラベル列 は、各 Edeg 厚さのRun の集計値(Avr, StD, Sum, Min, Max)
- [24] シート: 3_Log選 で 集計値行のみを pick up:マクロ実行
 - ④ pick up 結果表示エリア を「値:クリア」 しておく
 - ⑤ の指定は Avr と StD の2通りある

先ず Avr を指定して ⑥ Log選択ボタン を押し *《注21》*

- ④ pick up 結果: EDptn, Run#, IC1[A], IC2[A], 気温[℃], 気圧[hPa] 列をシート:2_IC解析の列②a~⑦eに「貼付:値」でコピペ
- 次に StD を指定して再度 ⑥ を押し
 - ④ pick up 結果: IC1[A], IC2[A] 列を
 - シート: 2_IC解析 の 列 **8a ~ 8b** に 「貼付: 値」でコピペ
- [25] シート:2_IC解析 で、計算式記述行を調整
 - ⑨ の部分は、⑦、⑧ のデータ点行数に合わせて、上行から「貼付:数式」 or 不要行を「数式と値クリア」する。

Bm調整マニ

ExpR測定

(3)Excelで解析−2

scnEDic

● Fitting の説明

ExpR (5) ExpR

Range

①: Range曲線 X: Edeg厚[μm] Y:∠E(IC2) "計算值"

決定 1035.0 前回 2301 Kr 1050

params 1 IC計算 | 2 IC解析 | 3 Log選

ssd Ecalib

②: Fitting図 X: ∠E(IC2) [MeV] "計算值" vs Y: IC2 [A] Range曲線[MeV]で、実測vs計算を比較する為に、 先ず∠E [MeV] vs IC2 [A] を較正(Fitting) する

③a: 平均温度、気圧を

③b: Book内名前定義 AirT, AirP へ記入

[32] Fitting 範囲 を指定

(4)a: IC2[A] の peak点を探し(橙塗にする)、その「行番号」を

4b: に記入

4c: が Fit結果で、2Fit の緑線に相当

※ BgPk超え: Nuclear Stopping 優勢領域? では、Fitからズレ大きくなる

[33] ExpR値 を メノコで振る

⑤: Book内名前定義 ExpR を変化させ、

①拡大 の 赤線: ExpR±0 [μm] が良く合う値にする 《注31》

[34] ⑥ に、ExpR 決定値 を記入

シート: 2_IC解析を印刷して、Userへ提供する。以上で完了

- ▶ BgPk を超えて「/Eが半分落ちた付近」で、 赤線: ExpR±0 と重なるような ExpR値 を採用する事にしている。
- ▶ "合い具合"は、核種によって異なる。

重核:Kr. Xe では、Range曲線計算値とよく合う 軽核: C. Ar では、実測Peakが鈍り、

落ちきってからTail が伸びる。

※これは、厚いEdeg使用による、

E straggling や核反応による軽粒子放出が原因か?

▶ 尚、[33] で ExpR を振ると、当然のことながら、 4c と 2Fit の 実測点と Fit線 も変化するので、 ①図と②図の"合い具合"もにらみながら、 ExpR 値をメノコで振る事!

Bm調整マニ

ExpR測定

(4) scnEDic パラメータ (予め準備必要)

scnEDic

①準備Kr_ED選_*.xlsm を用いる。このファイルは核種毎に異なるので予め準備しておく事!

● ExpR "予想値" を予め計算しておく

- [41] シート: params で、
 - ① 上流からの ∠E 計算表 を用いて、
 - 以下の場合の ExpR 予想値を計算し、
 - ② に結果を記入しておく
 - 1) PL1 有り(照射実施用) の場合の ExpR
 - 2) PL1 無しの場合: PL1交換時に必ず測定する事!
 - 3) 1) と 2) それぞれの場合で更に、 加速器からの Ebm が δ Ebm = ± 2 [%] 変動した場合の ExpR も計算しておく

1	Ε	F	G	Н	I	J	К	L	М	N	О	Р	Q	R	s	AN	AO	AP	AQ	ARA	TA BA	AU	AV	AW	AX	A AZ
3			_	_		_		_		_	_		С	range		Kr					Kr					
18														オススメ											~50点	
19										Rin	nΑl(Ebn	1)=	1452.0	μm	感応層	入口で				IC2			IC)	定点数	ssd-
20			(全	sort	済)			П						ED		Device		LET in	LET in		My膜	LET	空気層		70	遮光All
21			Αŀ	-Ed	eg	組	슴-	ť	(Pt	'nХ	て字)		Th0	⊿Th	Si		Si	Si	PkUp	E10	IC2	E11	⊿ Eclc	PkUp	E10
22		1	2	3	4	5	6	7	8	9	Α	В	C	μm	μm	MeV/u	MeV			2	MeV/u	in Air	MeV/u	MeV	3	MeV/u
23														0.0		53.73	4513.1	11.37			53.60	12.62	53.56	2.948		53.7
24		0	0	0	0	0	0	0	0	0	0	0	0	0.0		53.73	4513.1	11.37	11.37	LETn	nii 53.60	12.62	53.56	2.948	min	53.7
25		0	0	0	0	0	0	0	0	0	Α	0	0	4.5	4.5	53.58	4500.4	11.39	11.39		53.43	12.65	53.40	3.179		53.6
516		1	0	3	0	5	6	7	8	0	Α	0	0	923.1	1.9	2.37	199.0	40.89	40.89		1.83	47.56	1.70	11.303	1	2.4
517		0	2	3	0	5	6	7	8	0	Α	0	0	925.7	2.6	2.03	170.6	40.81	40.81		1.49	48.24	1.35	11.457	wPLpk	2.0
518		1	2	3	0	5	6	7	8	0	0	0	0	931.4	5.7	1.28	107.4	38.38	38.38		0.73	46.88	0.60	10.939	1	1.3
519		0	0	0	4	5	6	7	8	0	0	0	0	932.0	0.6	1.20	101.0	37.98	37.98		0.66	46.07	0.53	10.719	ic50	1.2
520		1	2	3	0	5	6	7	8	0	Α	0	0	935.9	3.9	0.68	57.4	33.43	33.43		0.24	29.94	0.17	6.220	- 7	0.7
521		0	0	0	4	5	6	7	8	0	Α	0	0	936.5	0.6	0.61	51.3	32.39	32.39		0.20	25.81	0.14	5.271		0.6
522		1	0	0	4	5	6	7	8	0	0	0	0	942.2	5.7	0.10	8.8	14.63	14.63		0.00	#N/A	0.00	0.000	ic10	0.1
523		0	2	0	4	5	6	7	8	0	0	0	0	944.8	2.6	0.03	2.4	7.60	7.60		0.00	#N/A	0.00	0.000	- 7	0.0
524		1	0	0	4	5	6	7	8	0	Α	0	0	946.7	1.9	0.00	0.0	#N/A	#N/A		0.00	#N/A	0.00	0.000	i	0.0
														(A)												,

(<u>4</u>)a

4b **4**c

● 測定すべき Edeg組合せを決める

[42] シート: 1a_ED考 で、

先ず⑥列を「値:クリア」しておく

- ④a,b,c が Edeg組合せ(厚さ順でsort済)の一覧表
- ③ ExpR Book内名前定義 を [41] ② の値に順次設定
- ⑤ ∠Eclc が IC2 中での∠E値なので、 この数字一覧をにらみながら、
- ⑥ 測定点マーク欄にコメント文字を記入すると、
- ⑦ シート:1b_ED考図に、赤点が1つづつ増えるこの赤点の間隔をにらみながら、⑥を調整する※BgPk付近は密に選択する事!

以上の操作を[41] 1)~3) の ExpR 全てについて繰返す

● 測定点の抽出

[43] シート: 2a_ED選 で、

先ず (8)b 表を「値:クリア」しておく

- 8a ボタンを押す と、
- ⑥ でコメント文字を記入した行だけを抽出して、
- 8bに pick up してくれる

4	Α	В	С	D	Е	F						
3	Edeg 選択											
18												
19 20			8a	EDeg選択	: IC用	< E この行						
21						e5aLo						
22	scnEDic:IC2測定用											
23			EDstr	Th	Mk	⊿Th						
24	- 1		000000000000	0.0	min							
25	2	П	000400000000	48.6	ic 50	48.5						
26	3	П	000050000000	100.2	ic50	51.7						
27	4		000450000000	148.8	ic50	48.5						
28	5		000000700000	196.4	ic50	47.6						
		٠,٦	(8	b		,						

Bm調整マニ

ExpR測定

(参考) ExpR fit でやっている事-1

scnEDic

- [81] ① Edeg 組合せ -> total 厚 Th0 に変換
- [82] ②a Th1 = ExpR Th0: Edeg 出口位置での「残りRange」
 ExpR の定義 = "Eout = 0 となる AI 相当Range" より明らか。
 「残りRange」は、単位: AI 厚 の次元に於ける引き算で求まる。
 ※ コレが、ExpR という「1パラメータ量」を導入した理由である《注81》
- [83a] ②b Eout [MeV/u] = srRng2E(Th1): Edeg 出口での Beam E: Ebm Range ←→ Energy は、一意な関数で変換可能なので、 残りRange [μm] → Eout [MeV/u] へ変換する。SRIMfit関数:srRng2E() 使用 その後は、SRIMfitで各物質厚を通過後の Ebm を計算する。
- [83b] ②c E00 = srEnewGas(Eout, Lair2, Tair, Pair): 照射位置での Ebm
- [83c] ②d ∠EcIc = e5adE_IC(E00, Tair, Pair, IC2各種膜厚): IC2中での ∠E IC2 の構造 《注82》を考慮して、各層の膜厚通過後の Ebm を計算し、 最終的に、収集電極両側の空気層での∠E [MeV] を求める。
- [84a] **③a** IC1 [A] 測定値: Edeg 上流側の Bm電流測定値 について、 **③b** IC1avr [A] 測定中の平均値を求め、
 - ※一連の測定中に、加速器からのBm量が変動する場合もあるので、
- [84b] **4a** IC2 [A] 測定値: 照射位置の Bm電流測定値 を、
 - ④b IC2norm [A] = IC1avr / IC1 * IC2 で normalize 補正する
 - 4cは、4bと同値だが、5a BraggPk手前の範囲外(Pk超え)の値のみ
- [84c] ⑤a 直線Fit範囲指定を考慮して、
 - (5)b 直線近似 Excel LINEST()関数を用いて、
 - ②d ∠Eclc [MeV] vs ④b IC2norm [A] の補間式を求め、
 - (5)c 緑線でプロット。同図中に、実測点も表示。

《注82》IC2 の内部構造

《注81》"ExpR 計算方式"で考慮しているのは、

⊿E IC2 計算値 [MeV] ⊿Eckc

- ▶ Edeg出口より下流にある物質(空気とIC2膜)を通過する際の∠Eだけである
- ▶ それより上流の物質(Au膜, Kap, PL1中の構造物)の"厚さ測定誤差"には影響しない
- ▶ 但し、ExpR実測値は次の要因で変動する。
- 加速器からの Ebm の変動 や 上流物質厚の変動(PL1を交換した時、他に邪魔モノがある時)

IC2_Elc_My

IC2_Elc_Al

Elc Mylar

▶ 更に、Edeg Al板の厚さ測定精度が、このRange測定の精度を決める。

[μm] 電極膜 Mylar Gapは片方のみ

um] 雷極膜 AI > ExpR を指定

[85] シート: 1_IC計算 で ExpR± 5,10 µmの Range 曲線 を別途計算している

①a: Edeg厚さ [μm] 方向の計算 step 指定

※ BgPk付近は、細かい step で計算が必要

①b: ExpR ± 偏差 [μm] 方向の計算 step 指定

※ ビーム核種によって 偏差step を変える。軽粒子は step大きく

②a: Th0 [μm]: 計算する Edeg厚さ

②b:Erng [MeV/u] = srRng2E([ExpR±偏差] - Th0)Edeg出口の Ebm

②c: ∠Eclc [MeV] = e5adE_IC(E00, Tair, Pair, IC2各種膜厚): IC2中での ∠E

③ : 計算結果をプロット

[86] シート: 2_IC解析 で

④ :上述の計算値と、実測点を比較表示する