ExpR測定 (1) 測定セットアップ

Edeg

● 測定量

max Eout: Edeg出口位置での最大ビームエネルギー これを、AI 相当 Range に変換した値 ExpR [µm]

Edeg 厚を変化させ、IC2の電流値を測定し、照射位置での「Range 曲線」を取得する。 加速器からの電流量をIC1でモニターし、IC2 測定値を補正する。 得られた Range 曲線を、SRIM による IC2 中の∠E計算値と比較: Fitting する。 この際、ExpR 値 (1パラメータ)を仮定して 手動でメノコFit を行う。

- ▶ 照射実施中と同じセットアップで測定する。 即ち、
 - > BeamSpot: Au膜=IN、Wob=ON で測定
 - ▶ ビームライン常設物: Au散乱膜、Kapton膜、IC1, PL1, Edeg
 - ▶ User照射位置(Lair2位置): IC2 ← この測定専用
 - ▶ 使用する検出器: IC1. IC2 PL1 は不使用。でも常設物なので置いておく。 高Flux測定なので、HV=OFFしておく事!
- [01] IC1を Kap 膜フランジにはめる。 Edeg を下流にズラし、挿入スペースを確保。 IC1の保護カバー(両面あり)を、外し忘れない事! IC1の Sig, HV ケーブルは常設のママ
- [02] PL1架台 を 設置;アルミロ穴板側 = 上流 PL1の保護カバーを、外し忘れない事! IC1. Edeg と干渉して薄膜を破かない様に注意! PL1の Sig, HV ケーブルを繋ぐ
- [03] Edeg 下流面を Lair1 に戻す Lair1 は、Edeg装置毎に異なる。C~Kr用: Laisr1=145mm Xe用:=100mm
- [04] IC2 を Xsld上に置き、Z=照射位置: Lair2 にする Xsld の Z位置設定は、スライダーに書いてある。 IC2の Sig, HV ケーブルは常設のママ IC2 X=±0 center ; Beam 軸上 を確認
- [05] 各検出器の HV=ON HV(IC1, IC2) = +400V ~ 3μ A

● 準備手順

[06] E5退出前に Edeg = 0 µ m:all OUT を確認。レーザー、照明=ON のママで良い。

1

ExpR測定

Disconed.vi フロントパネル「E5Asvr.lvproj/マイ コンピュータ」rev. 28 ファイル(F) 編集(E) 表示(V) プロジェクト(P) 操作(O) ツール(T) ウィンドウ(W) ヘルプ(H) ◇ @ ● II 14pt アブリケーションフォント マ ロマ ・ ロマ ・ ロマ ・ セマ ・ (ロマ 注) Edeg の設定、BeamON にしてからスタート ESAcli_scanED v 4.2.2 scanEdeg date 23.05/21 Layout chg ⇒setrunname/ SSDrun スキップ setrunnumber UT#5 RunStep 0 cmd全数 0 cmd実行中 **Total Thick** 0 980 0.0 ScanUZA pltRaw plt R/IC1 plt R/PL 測定data plinkログ Config 測定中:残り 测定回数 0 CmdBtn IN Out EDcmdUZH BitPattern: 01_12ch,FC [µm] Grp X軸 拡大 Deg01 000000000000 0.0 ic-min 8.0 GrpFull 000400000000 48.6 i Deg02 0.0 000050000000 100.2 i Deg03 0004500000000 148.8 j 0.0 123406000000 197.4 Deg04 0.0 000006700A000 301.7 i 0000567000000 397.4 i Deg05 シェア変数Open時 0.0 0200000800000 498.8 j ステータス コード Deg06 0000500800000 586.2 i 0.0 1234060800000 683.4 i 1 Deg07 lo 0.0 0230007800000 720.2 i 020400780A000 748.2 i Deg08 0.0 ソース (3) 0000507800000 782.6 i BmSht 0.0 1000507800000 792.8 i 1200507800000 805.6 Deg 10 0.0 1030507800000 817.8 i 123050780A000 835,1 i Deg11 0.0 1004507800000 841.4 j Deg 12 0.0 1204507800000 854.2 i シェア変数Read毎 1034507800000 866.4 i FO7A2 Thick ステータス コード 0234507800000 869.0 i 0.0 103450780A000 870.9 i 1 0 ED動作時考 **BitPtn** 023450780A000 873.5 i 023406780A000 874.1 i 0 ソース 1234507800000 879.2 1234067800000 879.8 i 0000567800000 883.4 i LogFn (4 cIC_Kr cSSD_Kr_E較正多米 CSSD Kr ENTE CSSD Kr ENT 0000000000000 0.0 ic - min 0000000000000 0.0 LETmin 0000000000000 0.0 LETmin 000400000000 48.6 i 000400000000 48.6 50stp 123406000000 197.4 st200 0030000000000 0000500000000 100.2 i 000050000000 100.2 50str 0200567000000 410.2 st200 0004000000000 Config ScanUZH pltRaw plt R/IC1 plt R/PL 測定data plink07 LogFnH scnEDssd scnEDic_or EDssd CmdL plinkexe rips@incotblm1 -ssh -pw bigrips babicon Xpos 0.0 [mm] dfa 0.0 Start時に移動させる ssd / ic2 Xpos ED動作待ち 4000 [ms] dfa >4000 BmOFF保持 2000 [ms] dfa 2000 > svr測定間隔*1 Trendを凸凹させたい場合 BmON保持 30 [sec] dfa ic: 50 ssd: 60-300 測定間隔 2000 [ms] dfa 2sec 4000 [ms] ssdRun待 dfa 4000 > svr测定間隔*2 Run開始待 2000 [ms] dfa 2000 > svr測定間隔*1 IC.PL 安定してから GrpMid 800 [um] C:18500, Ar:3300, Kr: 800, Xe:100

C:19500, Ar:3800, Kr:1000, Xe:250

(2) LabViewで測定

● 測定手順 使用するVI:E5A_scanED.vi

[11] ビーム強度調整

再確認: HV(PL1)=OFF, HV(IC1,IC2)=ON, Edeg=0µm E5A_Plot.viを見ながら、IC1, IC2 [A] ~ 前回値 ~ 1E-7[A] にする。

[12] VI 起動、パラメータ設定

通常は incotE5 上で .exe 版を起動する

タグ: Config で、

①「BmON保持 = 30sec」「測定間隔=2000ms」: 2秒間隔で30秒測定

- ②「GrpMid」「GrpMax」: 核種により右端の値に設定。プロット範囲指定。
- タグ: Scanリスト で、
- ③ 「EDcmdリスト」を、④ からコピペする 《注11》

[13] VI 測定スタート

- タグ: PltRaw の グラフ 5 を見守る
 - IC1 : Edeg 上流側の電流値は、なるべく一定であること。 少々変動しても、次頁解析の時に、IC1でIC2を normalize する
 - IC2: Edeg 下流側の電流値が、BG レベルまで落ちきったら測定終了

[14] VI の測定Log は、

[~]¥LabView Data¥ scnEDic_yyyymmddhhmm.dat に保存される。

- ※ IC2 の測定曲線が、前回の同Beam調整をほぼ再現していなかったら
- → Thick 厚い方向にズレ:保護カバーなど入っていないか? Thick 薄い方向にズレ: IC2 設置位置が Lair2 より短い? PL1が薄い?

《注11》EDcmdリストは、2種類ある
 ・ラフスキャン用: ~15点 BraggPeak 位置の確認用
 ・本番測定用: ~60点 BgPk付近を細かく。
 更に Ebeam±2%をカバー
 Excel表 ①準備_ED選_xlsm を用いて準備し[後述]、
 ④ヘコピペ、若しくは③へ直接コピペする。

GrpMax

1000 [um]

ExpR測定

- A	(В		С	D	Е	F	G	Н	Ι	J	К	L	М	Ν	0	P	BO	BP	BQ	BR	BS
				230)5Kr																	-
				so	nED I	ic 3	则定:Lab\	/iew I	og													
		6	File	ser	EDic03	3 202	305250807 d	at	100													
			Note	大君	E		000200007.0															(\mathbf{R})
		\sim	11010	240 B		-			-									-				
	D	ato Ti	mo				Ptn	EDthk	Bm	C NUA	FloyDI	FluxIC	Pleale	~~~~	µ~000	101	10.2	ced41	cedB1	氨油	毎日	5416
		ate i i	1110			9	細合せ	[14m]	Uni		cre/cm2	cre/cm2	[crs]	200		[A]	[A]	forel	[cre]	PC1	[Pa]	2.10
								L‰ III]			oper oniz.	oper oniz.	Lobel			D-Q	PG	[ops]	[ops]	101	L ag	
s	nEDic0	3 20	230525	080	7.dat	J																
1	2 23/05	/25 0	8:07:19	R#	1.000	Edg	00000000000	0.0	On	Flx	0.00.E+0	2.98.E+7	5.85.E+8	PL	рÂ	2.02.E-07	1.89.E-07					start
	23/05	/25 0	8:07:19	R#	1.000	Edg	000000000000	0.0	On	Flx	0.00.E+0	2.98.E+7	5.85.E+8	PL	pA	2.02.E-07	1.89.E-07	0.0	0.0	24.4	1021	
	23/05	/25 0	8:07:21	R#	1.000	Edg	00000000000	0.0	On	Flx	0.00.E+0	2.92.E+7	5.73.E+8	PL	pÅ	1.98.E-07	1.89.E-07	0.0	0.0	24.4	1021	
	23/05	/25 0	8:07:23	R#	1.000	Edg	00000000000000	0.0	On	Flx	0.00.E+0	2.92.E+7	5.74.E+8	PL	рÅ	1.98.E-07	1.88.E-07	0.0	0.0	24.4	1021	
	23/05	/25 0	8:07:25	R#	1.000	Edg	00000000000000	0.0	On	Flx	0.00.E+0	2.89.E+7	5.67.E+8	PL	рÅ	1.96.E-07	1.86.E-07	0.0	0.0	24.5	1 0 2 1	
	23/05	/25 0	8:07:27	R#	1.001	Edg	00000000000000	0.0	On	Flx	0.00.E+0	2.95.E+7	5.78.E+8	PL	рA	2.00.E-07	1.89.E-07	0.0	0.0	24.5	1 0 2 1	
	23/05	/25 0	8:07:29	R#	1.001	Edg)	000000000000	0.0	On	Flx	0.00.E+0	2.89.E+7	5.68.E+8	PL	рÂ	1.96.E-07	1.85.E-07	0.0	0.0	24.4	1 0 2 1	
	23/05	/25 0	8:07:31	R#	1.001	Edg)	000000000000	0.0	On	Flx	0.00.E+0	2.96.E+7	5.81.E+8	PL	рÂ	2.01.E-07	1.89.E-07	0.0	0.0	24.4	1 0 2 1	
	23/05	/25 0	8:07:33	R#	1.001	Edg)	0000000000000	0.0	On	Flx	0.00.E+0	2.93.E+7	5.74.E+8	PL	рÂ	1.98.E-07	1.88.E-07	0.0	0.0	24.4	1 0 2 1	
_	23/05	/25 0	8:07:35	R#	1.001	Edg)	000000000000	0.0	On	Flx	0.00.E+0	2.91.E+7	5.72.E+8	PL	рÅ	1.98.E-07	1.89.E-07	0.0	0.0	24.4	1 0 2 1	
	23/05	/25 0	8:07:37	R#	1.001	Edg)	000000000000	0.0	On	Flx	0.00.E+0	2.97.E+7	5.82.E+8	PL	рÅ	2.01.E-07	1.93.E-07	0.0	0.0	24.4	1021	
_	23/05	/25 0	8:07:37	R#	1.001	Edg)	000000000000	0.0	On	Flx	0.00.E+0	2.97.E+7	5.82.E+8	PL	рA	2.01.E-07	1.93.E-07	0.0	0.0	24.4	1.02	Avr
	23/05	/25 0	8:07:37	R#	1.001	Edg)	0000000000000	0.0	On	Flx	0.00.E+0	2.97.E+7	5.82.E+8	PL	рÂ	2.01.E-07	1.93.E-07	0.0	0.0	0.04	0.05	(N=10)S
	23/05	/25 0	8:07:37	R#	1.001	Edg)	0000000000000	0.0	On	Flx	0.00.E+0	2.97.E+7	5.82.E+8	PL	pÅ	2.01.E-07	1.93.E-07	0.0	0.0	244	10210	Sum
-	23/05	/25 0	8:07:37	R#	1.001	Edg)	00000000000	0.0	On	Flx	0.00.E+0	2.97.E+7	5.82.E+8	PL	pÅ	2.01.E-07	1.93.E-07	0.0	0.0	24.4	1 0 2 1	Min
-	23/05	/25 0	8:07:37	R#	1.001	Edg)	000000000000000000000000000000000000000	0.0	Un	Fix	U.UU.E+0	2.97.E+7	5.82.E+8	PL	pÅ	2.01.E-07	1.93.E-07	0.0	0.0	24.5	1021	Max
	23/05	/25 0	18:07:51	R#	2.000	Edg)	0400000000	48.6	Un	Fix	0.00.E+0	2.93.E+7	5./5.E+8	۲L	рА	1.99.E-07	1.93.E-07					start
i	23/05	/25 (8:30:39	R#	42.001	Edg?	04567800000	955.0	On	Fb	0.00.E+0	2.57.E+7	5.05.E+8	PL	pА	1.74.E-07	2.20.E-09	0.0	0.0	245	10210	Sum
1	23/05	/25 (08:30:39	R#	42.001	Edg	04567800000	955.0	On	Fb	0.00.E+0	2.57.E+7	5.05.E+8	PL	pА	1.74.E-07	2.20.E-09	0.0	0.0	24.5	1021	Min
	23/05	/25 (08:30:39	R#	42.001	Edg?	04567800000	955.0	On	Fb	0.00.E+0	2.57.E+7	5.05.E+8	PL	pА	1.74.E-07	2.20.E-09	0.0	0.0	24.5	1 021	Max
-	_			1.4	TOPH	(máx)		1 2 1	\28	ſ	2.1							_				
1	Þ	pa	rams	11	_ICaT	异	2_10用#1/1	3_L	og速		J_LOg	(+)			•		•	•				

	A	В	С	D	E	F	G	н	I	J	K	L
1												
2			23	305Kr								
з				sonED I	C : PL vs I	ロビーム	強度較	IE : Lab	View Lo	g 整理		
4												
5					Title	Att scan Log	: PLIO测:	Ē			from PkU	p列
6				~	sFrWS	3_Log	fromシー	名		sFrCIPk1	D	Run#
7			0	5)	sFrMk	Avr	from 特定	マーク文字	列 Avr/StD	FrCIPk2	F	EDpt
8			1		sFrCIMk	BS	from マー	クを検索す	る列	sFrCIPk3	G	Th
9					iFrRwS	12	from その	列のStarti	Ţ	sFrCIPk4	BK	PL
10					iFrRwE	2000	fromその	列のEnd 行	r	sFrCIPk5	BL	IC1
11					sToRngS	D20	to Past	先の先頭位	置	sFrCIPk6	BM	IC2
12										sFrCIPk7	BQ	気温
13										sFrCIPk8	BR	気圧
14						Loga	741					
15												_
16					Att scan Log	:PLIC測定						
17				Run#	EDptn	Th	PL	IC1	IC2	気温	気圧	
18						μm	cps	A	A	<u>°C</u>	hPa	
19			1			-						
20		1		1.001000	000000000000000000000000000000000000000	0.0	0.00E+00	1.95E-09	2.24E-09	0.0	0.1	
21		2		2.001100	0004000000000	48.6	0.00E+00	2.21 E-09	1.80E-09	0.0	0.0	
22		3		3.001000	0000500000000	100.2	0.00E+00	2.05E-09	2.34E-09	0.0	0.1	
58		39		39.001100	0204567800000	944.8	0.00E+00	4.18E-09	1.90E-10	0.0	0.1	
59		40		40.001 000	100456780A000	946.7	0.00E+00	2.59E-09	1.83E-10	0.0	0.0	
60		41		41.001100	020456780A000	949.3	0.00E+00	4.86E-09	1.97E-10	0.0	0.0	
61		42	L	42.001000	1204567800000	955.0	0.00E+00	3.95E-09	1.41 E-10	0.0	0.0	J
62		43					6					ſ
	4	•		param	s 1 IC計算	[2 IC解	新 3	Log選	3 Log	(+)		

《注21》[24]のコピペ作業では、 シート:3_Log選と2_IC解析の2画面表示にしておくと便利 だが、⑥ Log選択ボタンのマクロ実行が有効なのは、 1画面目([1]マークあり)のみです。これはExcelの仕様。

- データ読込み 使用するExcel:②実験_scnEDic_*.xlsm
 - [21] 解析用 Excel を開く

このファイルは、各Bm毎に異なるので、予め用意しておく事!

[22] LVデータを読み込む

前述の scnEDic_yyyymmddhhmm.dat を CSV で開く

ファイル:開く:から、「コンマ区切り」「区切文字=コンマ」で、

列:日付=日付、	列:ED Ptn と	、Att Num と Ptn	の3列 = 文字列	を指定
----------	------------	----------------	----------------------	-----

G/標:	G/標準G/標準 (G/標3G/標準	G/標準	G/標準	G/#
3/05/25 07:32:31 R#	Edg 0000000000000	Att 1.00E+3	11000	10000100000	Chp
:3/05/25 07:32:31 R#	Edg 000000000000	Att 1.00E+3	11000	10000100000	Chp
:3/05/25 07:32:33 R#	Edg 000000000000	Att 1.00E+3	11000	10000100000	Chp
:3/05/25 07:32:35 R#	Edg 000000000000	Att 1.00E+3	11000	10000100000	Chp
3/05/25 07:32:37 R#	Edg 000000000000	Att 1.00E+3	11000	10000100000	Chp
3/05/25 07:32:39 R#	Edg 000000000000	Att 1.00E+3	11000	10000100000	Chp

- [23] シート: 3_Log に CSV をコピペ
 - ①:12 行目 から「貼付け:値」でペースト表示書式が崩れない様に! 今回測定の最終行以降は「値:クリア」する[24]で読込まれない様
 - ②に、.datの File名と、Noteを記入する
 - ③ ラベル列 は、各 Edeg 厚さのRun の集計値(Avr, StD, Sum, Min, Max)
- [24] シート:3_Log選 で 集計値行のみを pick up:マクロ実行
 - ④ pick up 結果表示エリア を「値:クリア」しておく
 - ⑤の指定は Avr と StD の2通りある
 - 先ず Avr を指定して ⑥ Log選択ボタンを押し *《注21》* ④ pick up 結果: EDptn, Run#, IC1[A], IC2[A], 気温[°C], 気圧[hPa] 列を
 - シート:2_IC解析の列⑦a~⑦eに「貼付:値」でコピペ
 - 次に StD を指定して再度 6 を押し
 - ④ pick up 結果: IC1[A], IC2[A] 列を
 - シート:2_IC解析の列 ⑧a ~ ⑧b に「貼付:値」でコピペ
- [25] シート:2_IC解析 で、計算式記述行を調整

⑨の部分は、⑦、⑧のデータ点行数に合わせて、
 上行から「貼付:数式」or 不要行を「数式と値クリア」する。

A A	В	C D	Е	F	G	Н	IJKLMNCPQRSTU	V	WX	Y	Z	AA	AB	AC	AD	AE A	L
2	2305	Kr															
3		sonED IC 解	析			Kr	<u>د</u>	⊿Eclc ÷	= e5adE	[IC_Air()	使用						
1	Mat	SRIM Fit W.S.name	11		①試算: ED選よりC	ору		ED			IC 1		IC2				
12	Si	srim84Kr_Si		Th	EDptn	Mk	Al-Edeg 組合せ	Th0		Run#	avr	stdev	avr	stdev	気温	気圧	
3	AI	srim84Kr_Al		μm			123456789ABC	μm	diff		[A]	[A]	[A]	[A]	C	hPa	
4	Air	srim84Kr_Air			Ja										_		
5	Mylar	srim84Kr_Mylar			000000000000000000000000000000000000000		00000000000000	0.0		1.0010	1.99E-07	1.95E-09	1.88E-07	2.24E-09	24.4	1021.0	Т
6					0004000000000		000400000000	48.6	48.6	2.0011	1.99E-07	2.21E-09	1.93E-07	1.80E-09	24.4	1021.0	Ľ
7					0000500000000		000050000000	100.2	51.7	3.0010	1.93E-07	2.05E-09	1.92E-07	2.84E-09	24.5	1021.0	1
18					000450000000		000450000000	148.8	48.6	4.0011	1.95E-07	3.52E-09	2.00E-07	3.12E-09	24.4	1021.0	
		params 1_	IC	算	2_IC解析	3	_Log選 3_Log]	(+)								I.
										7h	De	Ra	(T)d	Rh	C		2

Rev.230626

ExpR測定

(3) Excelで解析-2

scnEDic

ExpR測定

● ExpR "予想値" を予め計算しておく

- [41] シート: params で、
 - ① 上流からの ∠E 計算表 を用いて、 以下の場合の ExpR 予想値を計算し、
 ② に結果を記入しておく

 - PL1 有り(照射実施用)の場合の ExpR
 PL1 無しの場合: PL1交換時に必ず測定する事!
 - 3)1)と2)それぞれの場合で更に、
 - 加速器からの Ebm が δ Ebm = ± 2 [%] 変動した場合の ExpR も計算しておく

scnEDic

①準備Kr_ED選_*.xlsm を用いる。このファイルは核種毎に異なるので予め準備しておく事!

	Е	F	G	Н	Ι	J	K	L	M	N	0	P	Q	R	S	AN	AO	AP	AQ	AR	AS .	AT	AU	AV	AW	AX	A AZ
3	ExpR推定、SSDdynamic range													range		Kr Kr											
18														オススメ												~50 <i>点</i>	
19										RinAl(Ebm)=				1452.0	μm	感応層	入口で				I	C2			IC淵	定点数	ssd-
20			(全	sort	湇)									ED		Device		LET in	LET in		N	∿ly膜	LET	空気層		70	遮光AII
21			Al-	Ed	eg	組	e	ť	(Pt	:n⊅	て字)		Th0	⊿Th	Si		Si	Si	PkU	p I	E10	IC2	E11	⊿Eclc	PkUp	E10
22		1	2	3	4	5	6	7	8	9	Α	В	С	μm	μm	MeV/u	Me∨			2	M	leV/u	in Air	MeV/u	MeV	3	MeV/u
23														0.0		53.73	4513.1	11.37			3	53.60	12.62	53.56	2.949		53.7
24		0	0	0	0	0	0	0	0	0	0	0	0	0.0		53.73	4513.1	11.37	11.37	LET	mii t	53.60	12.62	53.56	2.948	min	53.7
25		0	0	0	0	0	0	0	0	0	А	0	0	4.5	4.5	53.58	4500.4	11.39	11.39		1	53.43	12.65	53.40	3.179		53.6
516		1	0	З	0	5	6	7	8	0	А	0	0	923.1	1.9	2.37	199.0	40.89	40.89			1.83	47.56	1.70	11.303	11	2.4
517		0	2	З	0	5	6	7	8	0	А	0	0	925.7	2.6	2.03	170.6	40.81	40.81	1		1.49	48.24	1.85	11.457	wPLpk	2.0
518		1	2	З	0	5	6	7	8	0	0	0	0	931.4	5.7	1.28	107.4	38.38	38.38			0.73	46.88	0.60	10.939	11	1.3
519		0	0	0	4	5	6	7	8	0	0	0	0	932.0	0.6	1.20	101.0	37.98	37.98			0.66	46.07	0.53	10.719	ic50	1.2
520		1	2	З	0	5	6	7	8	0	А	0	0	935.9	3.9	0.68	57.4	33.43	33.43			0.24	29.94	0.17	6.220	11	0.7
521		0	0	0	4	5	6	7	8	0	А	0	0	936.5	0.6	0.61	51.3	32.39	32.39			0.20	25.81	0.14	5.271		0.6
522		1	0	0	4	5	6	7	8	0	0	0	0	942.2	5.7	0.10	8.8	14.63	14.63			0.00	#N∕A	0.00	0.000	ic10	0.1
523		0	2	0	4	5	6	7	8	0	0	0	0	944.8	2.6	0.03	2.4	7.60	7.60			0.00	#N∕A	0.00	0.000	- i -	0.0
524		1	0	0	4	5	6	7	8	0	А	0	0	946.7	1.9	0.00	0.0	#N∕A	#N∕A			0.00	#N∕A	0.00	0.000	- i -	0.0

④a ④b ④c ● 測定すべき Edeg組合せを決める [42] シート:1a_ED考 で、 先ず ⑥列を「値:クリア」しておく ④a,b,c が Edeg組合せ(厚さ順でsort済)の一覧表 ③ ExpR Book内名前定義を[41] ② の値に順次設定 ⑤ △Eclc が IC2 中での △E値なので、 この数字一覧をにらみながら、 ⑥ 測定点マーク欄 に コメント文字を記入すると、 ⑦ シート:1b_ED考図 に、赤点が1つづつ増える この赤点の間隔をにらみながら、⑥を調整する ※ BgPk付近は密に選択する事! 以上の操作を[41] 1)~3) の ExpR 全てについて繰返す

● 測定点の抽出

- [43] シート:2a_ED選 で、
- 先ず ⑧b 表を「値:クリア」しておく
- 8a ボタンを押す と、
- ⑥ でコメント文字を記入した行だけを抽出して、
- (8)b に pick up してくれる

A B С Edeg 選択 3 18 19 **(8)**a EDeg選択: IC用 この行 20 21 5al o scnEDic:IC2測定用 22 23 FDstr Th Mk 1Th 24 25 0.0 min ic50 48.6 48.6 2 040000000000 26 27 0000500000000 0004500000000 51.7 3 100.2 ic.50 48.6 4 148.8 ic50 28 5 0000007000000 ic50 47.6 196.4 (8)b

ExpR測定

(参考) ExpR fit でやっている事-1

scnEDic

- [81] ① Edeg 組合せ -> total 厚 Th0 に変換
- [82] ②a Th1 = ExpR Th0: Edeg 出口位置での「残りRange」
 ExpR の定義 = "Eout = 0 となる AI 相当Range "より明らか。
 「残りRange」は、単位: AI 厚 の次元に於ける引き算で求まる。
 ※ コレが、ExpR という「1パラメータ量」を導入した理由である《注81》
- [83a] ②b Eout [MeV/u] = srRng2E(Th1): Edeg 出口での Beam E: Ebm Range ←→ Energy は、一意な関数で変換可能なので、 残りRange [µm] → Eout [MeV/u] へ変換する。SRIMfit関数:srRng2E()使用 その後は、SRIMfitで各物質厚を通過後の Ebm を計算する。
- [83b] ②c E00 = srEnewGas(Eout, Lair2, Tair, Pair): 照射位置での Ebm
- [83c] ②d ∠Eclc = e5adE_IC(E00, Tair, Pair, IC2各種膜厚): IC2中での ∠E IC2 の構造《注82》を考慮して、各層の膜厚通過後のEbmを計算し、 最終的に、収集電極両側の空気層での∠E [MeV]を求める。
- [84a] ③a IC1 [A] 測定値: Edeg 上流側の Bm電流測定値 について、 ③b IC1avr [A] 測定中の平均値を求め、
 - ※ 一連の測定中に、加速器からのBm量が変動する場合もあるので、
- [84b] ④a IC2 [A] 測定値:照射位置の Bm電流測定値を、 ④b IC2norm [A] = IC1avr / IC1 * IC2 で normalize 補正する ④c は、④b と同値だが、⑤a BraggPk手前の範囲外(Pk超え)の値のみ
- [84c] **⑤**a 直線Fit範囲指定を考慮して、
 - (5)b 直線近似 Excel LINEST()関数を用いて、
 - ②d ∠Eclc [MeV] vs ④b IC2norm [A] の補間式を求め、
 - ⑤c 緑線でプロット。同図中に、実測点も表示。

- 《注81》"ExpR 計算方式"で考慮しているのは、
- ▶ Edeg出口より下流にある物質(空気とIC2膜)を通過する際の∠IE だけである
- ▶ それより上流の物質(Au膜, Kap, PL1中の構造物)の"厚さ測定誤差"には影響しない
- ▶ 但し、ExpR実測値は次の要因で変動する。
- 加速器からの Ebm の変動 や 上流物質厚の変動(PL1を交換した時、他に邪魔モノがある時) > 更に、Edeg Al板の厚さ測定精度 が、このRange測定の精度を決める。

ExpR測定

(参考) ExpR fit でやっている事-2

scnEDic

-IC2(norm_Ecal)

(2)a (2)b (2)c

[85] シート: 1 IC計算 で ExpR± 5.10 µmの Range 曲線を別途計算している

- (**1**a: Edeg厚さ [µm] 方向の計算 step 指定
- ※ BgPk付近は、細かい step で計算が必要
- (1)b: ExpR ± 偏差 [µm] 方向の計算 step 指定
- ※ ビーム核種によって 偏差step を変える。軽粒子は step大きく
- **②a**: Th0 [µm]: 計算する Edeg厚さ
- ②b: Erng [MeV/u] = srRng2E([ExpR±偏差] Th0) Edeg出口の Ebm
- ②c: △Eclc [MeV] = e5adE IC(E00, Tair, Pair, IC2各種膜厚): IC2中での △E
- 計算結果をプロット
- [86] シート:2 IC解析 で
 - (4):上述の計算値と、実測点を比較表示する