RENO and Related Physics

Yeongduk Kim Sejong University

First ANPHA Symposium Jan. 19, 2010

Outline

- Neutrino sources.
- Reactor neutrinos.
- Θ₁₃
- Asian reactor neutrino exp.
- Future reactor experiment.

Neutrinos

Probability of flavor oscillation depends on mixing angle & mass difference square, neutrino energy, baseline.

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^{2}2\theta \sin^{2}\Delta_{\alpha\beta} \qquad \Delta_{ij} \equiv \frac{\Delta m_{ij}^{2}L}{4E_{\nu}} = 1.27 \frac{\Delta m^{2}(eV^{2})L(km)}{E_{\nu}(GeV)}$$

Neutrino mass

(2) Double Beta Decay experiment is sensitivie to neutrino mass ; m_{BB}

$$m_{\beta\beta} = c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 e^{2i\lambda_2} m_2 + s_{13}^2 e^{2i(\lambda_3 - \delta_{13})} m_3$$

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G_{0\nu} \left|M_{0\nu}\right|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

Still we don't know about v in

- 1. Majorana or Dirac Double beta decay(DBD) exp.
- 2. Absolute mass DBD or Beta
- 3. Mass ordering(Hierarchy) LBL or Reactor
- **4**. Θ_{13} Reactor or LBL
- 5. CP Phase LBL

Possibilities for θ_{13} measurement

- Reactor \overline{v}_e disappearance while traveling L ~ 1.5 km.
 - look for small v_e disappearance from large isotropic flux $P(\overline{v}_e \rightarrow \overline{v}_e) \approx 1 \frac{\sin^2(2\theta_{13})\sin^2(1.27\Delta m_{atm}^2 L/E)}{2}$

L/E ~ 500km/GeV. This process depends on θ_{13} alone. A relatively modest-scale reactor experiment can cleanly determine whether $sin^22\theta_{13} > 0.01$

• Accelerator $v_{\mu} \rightarrow v_{e}$ while traveling L > several hundred km.

- look for small v_e appearance in v_{μ} beam $P(v_{\mu} \rightarrow v_e) \approx \sin^2(2\theta_{13}) \sin^2(\theta_{23}) \sin^2(1.27 \Delta m_{atm}^2 L/E)$

L/E ~ 400 km/GeV. This process depends on θ_{13} , θ_{23} , the CP phase δ , and on whether the spectrum is normal or inverted. (T2K experiment)

Neutrino Production in Reactor

v are produced in β -decays of fission products.

 $7 \times 10^{20} \overline{v}_e$ / sec/ 3GW

Nakajima et al., NIM A569, 837(2006)

4 isotopes contributes more than 99.9%

Reactor Neutrino Experiment at a Glance

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \sin^2 (2\theta_{13}) \sin^2 \Delta_{31} - \cos^4 \theta_{13} \sin^2 (2\theta_{12}) \sin^2 \Delta_{21}$$
 10

Comparison of Reactor Neutrino Experiments

Experiments	Locati on	Therm al Power (GW)	Distances Near/Far (m)	Depth Near/Far (mwe)	Target Mass (tons)
Double- CHOOZ	France	8.7	280/1050	60/300	10/10
RENO	Korea	17.3	290/1380	120/450	16/16
Daya Bay	China	11.6	360(500)/1985(16 13)	260/910	40×2/80

Critical points for $sin^2(2\theta_{13})$

- Low background:
 - 3 main sources : cosmogenic(⁹Li), fast neutron, accidental coincidence
 - Deep underground for reducing cosmogenic background
 - Purer materials for low background at E<10 MeV to reduce accidentals
 - Reduce systematic uncertainties:
 - Reactor-related:
 - near and far detectors configuration canceling reactor uncertainties
 - Ramaining uncertainties due to multiple reactors
 - Detector-related:
 - Identical detectors should be confirmed by precise calibration
 - Long-term stability of detectors should be confirmed.

Neutrino Laboratories in Asia

SK Θ₁₃ exp RENO DAYA BAY Double Beta CANDLES(⁴⁸Ca) CaMoO4 (¹⁰⁰Mo) CDUL : New Lab.

Total tunnel length ~ 3000 m

DAYA BAY

٠

٠

Resolution (%)

Antineutrino Detectors

Three-zone cylindrical detector design Calibration system Target: 20 t (0.1% Gd LAB-based LS) Gamma catcher: 20 t (LAB-based LS) ----- Buffer : 40 t (mineral oil) PMT Low-background 8" PMT: 192 Mineral oil Reflectors at top and bottom Liquid Scint. χ^2/ndf 335.0 / 7 Pl 11.77 12 20-t Gd-LS $\sim 12\%$ / $E^{1/2}$ 10 3.1m acrylic tank 8 4.0m acrylic tank 6 4 5m 2 OCPA Workshop on Underground Science Energy (MeV)

Status: Experimental Components

Stainless Steal Vessel

Detector Transporter

Link, Neutrino Champagne 2009

4 m Acrylic Vessel

RENO

Yonggwang Nuclear Power Plant

- Six ~ 1 GW_e class PWRs
- Total average thermal power of
- 16.4 GW (max 17.3 GW)
- Started operation in 1986~2002.
- Operational factor > 90%

RENO Detector Structure (near & far)

Near & far tunnels are completed

(2008.6~2009.3)

by Daewoo Eng. Co. Korea

Acrylic vessels will be ready in Nov. 2009

A half of target

Sensitivities & discovery potential

Huber et al., hep-ph/0907.1896

Determination of Mass Hierarchy@50km

Summary

- Neutrino mixing parameter θ_{13} is important for lepton sector CP violation, neutrino mass .
- O nu Double beta decay depends neutrino mass hierarchy.
- sin²(20₁₃) = 0.01 0.02 sensitivity can be reached with 3 year data of Double Chooz, RENO, DAYA BAY
- Mass hierarchy may be accessible with kTon detector
 © 50km base line.