Shanghai Synchrotron Radiation Facility (SSRF) and SLEGS-prototype

Overview

SSRF is a 3rd generation synchrotron radiation light source and aimed mainly at following research fields in present time :

- Biological Sciences
- Physical and Materials Sciences
- Earth and Environmental Sciences
- BioMedical, Chemical and Industrial Applications

Designed plots of the SSRF Buildings

Main parameters of Storage Ring

Energy	3.5GeV	
Circumference	432m	
	Double Bend Achromat (Combined)	
Number of CellsStraight Sections	20 4×12m, 16×6.5m,	
Current	200~300mA	
Emittance	3.9 nm-rad	
Life time	> 15hrs (top-up injection later)	
Beam position stability	<10% beam size	

Front-end region of beamline

Part of the 3.5GeV Booster

SSRF Construction Schedule and Milestones

- Dce.25, 2004 Ground Breaking
- Dec. 2004 ~ May 2007: Building construction

□ Jun. 2005 ~ Jun. 2008: Accelerator equipment and components manufacture and assembly

□ Dec. 2005 ~Dec. 2008: Beamline construction and assembly

□ May. 2007 - Jul. 2007: Linac commissioning

- □ Oct. 2007 ~ Dec. 2007: Booster commissioning
- □ Dec. 2007 ~ Dec. 2008: Storage ring commissioning
- > Dec. 24, 2007, First SR Light Achieved
- □ May 2008 ~ Apr. 2009: Commissioning of beamlines
- ➢ May. 2009: The user operation began

> Jan 19, 2010: National Closeout Review by the Central Government

Design specifications of accelerators and beamlines have been achieved.

Jan 17, 2010: President Hu visited SINAP-SSRF

SSRF Phase I Beamlines and User Operation

Three sources have been used for phase I beamlines: Bending Magnet, Undulator and Wiggler

SSRF Phase I Beamlines

- Macromolecular Crystallography Beamline (IVU)
- Diffraction Beamline (BM)
- ♦ XAFS Beamline (Wiggler)
- Hard X-ray Microfocusing Beamline (IVU)
- X-ray Imaging Beamline (Wiggler)
- Small Angle X-ray Scattering Beamline (BM)
- Soft X-ray Spectromicroscopy Beamline (EPU)

IUV-In-Vacuum Undulator BM –Bending Magnet EPU-Elliptically Polarized Undulator

- ➤ User operation started from May 6, 2009;
- Since then, about 1200 hours beamtime has been provided to users;
- ~200 groups and 1000 users have come for experiments so far;
- ➤ ~1600hrs user beamtime has been provided.

New Structures: Data collected on SSRF BL17U1 (MX) A bacteria oxidase One transcription factor of Arabidopsis thaliana deg5 2.0Å; (W.M. Gong) (Z.L.Cui) SARS virus; (Z.H. Rao) M1 protein of Avian Influenza C-terminal domain of Sgf29 2.6Å; J.H. Zhou ePolB Virus 1.89Å (Y.G. Shi) 1.92Å (J.Y.Zang)

的科学院上海应用物理研究的

So far, more than 40 new structures have been solved.

中國科等德上海走的物理研究所 SINAP Shanghai Institute of Applied Physics, Chinese Academy of Sciences

XRD Beamline

Diffraction of TiO₂ nano-particles embedded in Muti-wall Carbon Nanotube

High-pressure XAFS experiments reveal that the variation of Ce valence is very little, the origin of superconductingnonsuperconducting transition under applied pressure is mainly caused by Kondo screening of Ce 4f moment.

X-ray Imaging Beamline

X-ray phase contrast imaging to a live grasshopper

Sn-Bi alloy with low melting point

Dendrite in alloy

Paleontology (古生物学)

3D CT of Cambrian paleontologic embryo fossil.

中国科学院上海应用物理研究两

Left sample: Pixel size of CCD 2.25 μ m, Energy 20keV, Exposure time 2s. Right sample: Pixel size of CCD 0.65 μ m, Energy 17keV, Exposure time 7s.

M.Y. Chu, NIP

Future Beamline programs

- Three Protein crystallography beamlines
 - Large macromolecular complexes and assemblies
 Protein micro-crystals: membrane proteins etc.
 - High throughput crystal screening and structural determination
- Small angle X-ray scattering beamline(Bio-SAXS)
 - High performance(very small angle X-ray scattering) beamline for the studies of protein dynamics and interaction
- IR Beamline with two end-stations
 - Time-resolved spectroscopy for protein dynamics and interaction
 - Microspectroscopy and imaging for structural and functional studies of cell, tissue and organisms

• Detailed program is under discussion and is open for modification.

SLEGS-prototype and the future plan

Bird View of SINAP in Jiading

▶ 中國科学院上海运的物理研究所 Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Shanghai Laser Electron Gamma Source (SLEGS)-prototype experiments

Electron and Laser Parameter	SINAP II	SINAP I
Electron Beam Energy	108.1MeV	108.1MeV
Beam Emittance	~50 π mm-mrad	~50 πmm-mrad
Electron Beam Spot size (rms)	3.1×3.4mm ²	$2.5 \times 3.1 \text{mm}^2$
Beam Charge	~30pC	~100pC
Bunch Length (rms)	0.85ns	0.95ns
Macrobunch repetition	5Hz	5Hz
Laser Beam size at IP (rms)	0.3 ×0.3mm ²	<0.5 × < 0.5mm ²
Nd:YAG laser wavelength	1064nm	1064nm
Nd:YAG laser power	200MW	15MW
Nd:YAG laser pulse length	7.8ns	15.3ns
Nd:YAG laser repetition	2.5Hz	2.5Hz

Experimental results

Space overlap

Synchronization

SINAP I: X-ray spectrum of calibrated ¹²⁵I 派 中國科学法上海法副新语 radioactive source (top-left) and its calibration result (top-right); LCS Xray spectrum after background subtraction (bottom-left)

SINAP II: experimental results

Parameter	SINAP I	SINAP II
Energy (keV)	$31.73 \pm 0.12_{stat} \pm 1.64_{syst}$	$29.12 \pm 4.39 _{stat} \pm 2.06 _{syst}$
FWHM (keV)	$1.74 \pm 0.61_{stat} \pm 0.07_{syst}$	$18.25 \pm 6.50 _{\text{stat}} \pm 0.87 _{\text{syst}}$
Net counts	278±44	81±32
S/N	1/780	1/420
Count rate(cps)	0.0078±0.0026	0.0125±0.0050

Electron beam intensity of 100 MeV Linac ~ 1.0 nC/pulse, frequency of laser and electron ~ 20Hz, and we got the intensity of LCS X-ray: $(5.2 \pm 2.0) \times 10^2$ photons/s (SINAP-I), $(1.7 \pm 0.3) \times 10^3$ photons/s (SINAP-II)

中国科学院上海运用物理研究所

(4) Shanghai Laser Electron Source (SLEGS) at SSRF

Physics Goals

- Astro-nuclear physics (e.g. 3α process)
- Spin-physics
- Hadron & Nuclear physics
 - Photo-disintegration
 - (γ,n) reactions
- Nuclear Fluorescence
- Application for material science
- New photon sources with quantum technologies

$^{12}C(\alpha,\gamma)^{16}O$ reaction rate

Samples of Nuclear Giant Resonances

Study Three Body force

 3 He(γ , d)p at different photon energies E_{γ} . Curves show results of calculations with the AV18 NN and Urbana IX 3NF forces (solid) and with the AV18 NN force alone (dashed). The current is treated in the Siegert approach.

Nuclear Instruments and Methods in Physics Research A 599 (2009) 118-123 A potential photo-transmutation of fission products triggered by Compton backscattering photons J.G. Chen^{a,*}, W. Xu^a, H.W. Wang^a, W. Guo^a, Y.G. Ma^a, X.Z. Cai^a, G.C. Lu^a, Y. Xu^{a,b}, Q.Y. Pan^a, G.T. Fan^{a,b}, W.O. Shen^a 10^{10} 350 300 10⁸ 128_T 250 10⁶ Scattered gamma photons 200 104 129₁ ¹²⁸Xe 150 ¹³⁵Cs Number of Photons (/MeV) 10² 100 Cross section (mbarn) 3.5 GeV electrons 100 50 Scattered electrons 10^{10} 350 Laser photons 300 10⁸ Fig. 1. The Compton scattering process between a laser photon and a relativistic 250 electron as well as the transmutation of ¹²⁹I via the (γ, n) reaction. 106 200 104 ¹⁰⁷Pd By the SLEGS photons, it is · 150 ¹³⁷Cs 10^{2} possible to the transmutation of 100 905 some long-lived fission product 100 50 nuclides 129I, 135Cs, 126Sn, 93Zr,

107Pd, 137Cs and 90Sr.

E_v (MeV)

16

20

28

24

12

8

Research Activities of Nuclear Physics in SINAP

Radioactive beam physics and HIC (around ~100MeV/u; HIRF-CSR, RIKEN, TAMU etc)

total cross section & momentum distribution nucleon-nucleon momentum correlation isospin physics: EOS & symmetric energy multifrgamentation and liquid gas phase transition collective flow

RHIC Physics @ STAR, BNL (~200GeV/c Au+Au)

STAR barrel Time-of-Flight Project Project Strange hadron and quark dynamics jet-medium interaction anti-matter hyperon

Shanghai Laser Electron Gamma Source (with <20MeV Photons) based on SSRF

future physics: nuclear astrophysics with photons

Neutrinoless Double Beta Program and Dark Matter Program [CUORE Collaboration (Gran Sasso Nat Lab, Italy)] [Xenon, JinPin Mountain, China]

Advanced Nuclear Energy Program (MSR based on Th-U loop)

Acknowledgements: 字 学 会 科 学 法 上海 走 创 物 速 研 索 形 Shanghai Institute of Applied Physics, Chinese Academy of Sciences Profs. Hongjie Xu, Zhentang Zhao (Directors of SSRF) **Prof. Jianhua He et al. (Beamlines) Profs. Wang Xu, Xiangzhou Cai et al. (SLEGS prototype)**

