Progress in HIRFL-CSR

Guoqing Xiao for CSR team xiaogq@impcas.ac.cn

Institute of Modern Physics (IMP), Chinese Academy of Science (CAS) National Laboratory of Heavy Ion Accelerator in Lanzhou

Introduction to HIRFL

What is HIRFL-CSR

Injection Mode of CSR

SECRAL: Superconducting ECR-source At Lanzhou

Ions	Q	SECRAL 18 GHZ (µA)	VENUS 28 GHz (µA)
¹⁶ O	6+	2300	2860
	7+	810	850
⁴⁰ Ar	16+	73	270
	17+	8.5	36
¹²⁹ Xe	20+	505	320
	27+	306	270
	28+	260	222
	34+	21	40
	39+	5	
	42+	1.5	0.5
	43+	1	
²⁰⁹ Bi	41+	22	15
	44+	15	7.7
	46+	10	3.6
	48+	4.2	1.4
	50+	1.5	0.5

SECRAL is being tested at 24+18GHz.

SECRAL operated from 2008 and delivered • Xe²⁷⁺, Kr¹⁹⁺, Bi³¹⁺, Ni¹⁹⁺ for >2000 hrs

Reverse conventional structure

SFC: Sector Focusing Cyclotron

loMev

- **Built in 1960s;1st modification in** • 1970s; 2nd modification around 2000
- K=69, R~0.75 m •

SSC: Separated Sector Cyclotron

CSRm: Main Ring of CSR System

CSRe: Experimental Ring of CSR System

RIBLL2: 2nd Radioactive Ion Beam Line in Laznhou

- Beam transport line between CSRm and CSRe
- Producing RIBs and HCI ٠

$\Delta P/P = \pm 1\%$, $\varepsilon = 25 \pi$ mm·mrad

History of CSR

1993 Original idea
1996 Proposal
1998 Approved
2000-2005 Construction
2006-2007 Commissioning
2008-2009 Operation & Experiments

CSR Commissioning

Milestones

• 1st stored beam at CSRm (¹²C⁶⁺) **Jan. 23, 2006** • ¹²C⁶⁺ ramping: 7 MeV/u- 1 GeV/u Oct. 24, 2006 • 1st cooling beam Dec. 27, 2006 • 1st Multiple Multi-turn Injection (³⁶Ar⁸⁺) Apr. 24, 2007 • Fast extraction (600 MeV/u ¹²C⁶⁺) Aug. 04, 2007 • 1st stored beam at CSRe $(600 \text{ MeV/u} {}^{12}\text{C}{}^{6+})$ **Oct. 06, 2007** • **RIB stored in CSRe & running CSRe as IMS Dec.**, 2007 Slow extraction **Jan. 10, 2008** ۲

Present CSR Beam Status

lon: ${}^{12}C^{6+}$, ${}^{36}Ar^{18+}$, ${}^{78}Kr^{28+}$, ${}^{129}Xe^{27+}$

Energy: 1GeV/u for C & Ar in CSRm

Intensity: 10mA (7×10^9) for C-600 MeV/u in CSRm 1.2mA (4×10^8) for Ar-368 MeV/u in CSRm 0.6mA (1×10^8) for Kr-480 MeV/u in CSRm 0.5mA (1×10^8) for Xe-235 MeV/u in CSRm 15mA (8×10^9) for C-660 MeV/u in CSRe

Experiment: RIBs mass-measurement, isochronous mode of CSRe , Δ M/M~10⁻⁶ **Slow-extraction:** For detector testing at external-target experiment location and cancer therapy

⁷⁸Kr Run

CSRm ⁷⁸Kr²⁸⁺ 447.8MeV/u 451.1MeV/u 458.4MeV/u 481.9MeV/u

⁷⁸Kr Run

Signal from ToF detector in CSRe

Preliminary Results of ⁷⁸Kr Run

Cancer Therapy

•	03-04, 2009:	6 patients
•	07, 2009:	2 patients

Beam Quality for Cancer Therapy

ETF: External Target Facility

Phase I

Nearly ready

ETF: External Target Facility

HIRFL-CSR Experiment Next

• CSRe:

- > As IMS for mass measurement
- As SMS for mass & decay measurement
- Atomic physics at cluster-jet target location
- Atomic Physics at electron cooler location

• ETF:

- Experiments on weakly bound nuclei
- EoS of asymmetric nuclear matter

• Cancer Therapy:

Try different beam delivery modes

Example 1: Mass & Decay Measurement at CSRe

• New isomer states, new isotopes,...

2010: try to run CSRe as SMS

Example 2: *Dielectronic Experiment at CSR*

Aim to study:

- Cross sections and rate coefficients
- DR for highly charged ions to reveal the dynamical aspects of atomic process
- Hyperfine structure of atomic structure to extract the information on charge radii of nuclei

Example 3: EoS of Asymmetric Nuclear Matter

$$E(\rho_n, \rho_p) = E_0(\rho_n = \rho_p) + E_{sym}(\rho) \left(\frac{\rho_n - \rho_p}{\rho}\right)^2 + O(\delta^4)$$

ρ/ρ_0 : 2~3 at CSR

- n/p ratios, π^+/π^- ratios
- Nucleon differential flow
- Hard photons
- IMFs: isospin transport / diffusion / isoscaling

HIRFL-CSR Upgrade (Planning)

Introduction of Nuclear Physics and Technology at Peking University

Yanlin Ye State Key Lab. Of Nucl. Phys. & Tech. School of Physics, Peking University 2010.01.18

Organizations

- Department of Technical Physics
- Institute of Theoretical Physics
- Institute of Heavy Ion Physics
 Forming a State Key Laboratory of Nuclear Physics and Technology (since 2007)

4.5MV static

2x1.7MV tandem

2x6MV tandem

a new AMS

RF supercontacting accelerator Lab.

Particle detection Lab.

Feb.2006, PKU-RPC installed on CMS

Moving Forward !

YE+1 yoke equipped with CSC/RPC packages (inner ring) and RE1/3 RPC's (outer ring).

The ME1/3 CSC's now cover the RPC outer ring and hence complete the first Muon station on YE+1.

Nucl. Phys. education base

Nishina School

