#### ANPhA2010

K = 130

- Cyclotron RI Center: AVF cyclotron
- Elphs Lab: Electron accelerators

# University-based Accelerator Facilities for Quark Nuclear Physics at Sendai

H. Shimizu
Research Center for Electron Photon Science
Tohoku University
Sendai

#### Cyclotron and Radioisotope Center (CYRIC), Tohoku University





# Reorganization of LNS to ELPH

LNS was reorganized to ELPH.
 Laboratory of Nuclear Science (LNS)
 attached to Faculty of Science



Research Center for
Electron Photon Science (ELPH, *Elphs Lab*)
affiliated directly to Tohoku University

• Elphs Lab started operation from Dec.1, 2009.

# **Experimental apparatus at Elphs Lab**

layout of beam lines founded in 1966



## **Experimental apparatus at Elphs Lab**





## Researches conducted at Elphs Lab

Nuclear Physics

 Quark Nuclear Physics
 Penta-quark baryons
 QCD vacuum
 Condensed-matter Science

Very low-energy nuclear phenomena

- Accelerator Science
   Beam Physics
   Free Electron Laser
   Super coherent light source
- Radio Chemistry
   Radio activity in fullerene



No other labs employ this method for Brems photons.

# Single $\eta$ photoproduction

obtained in previous experiments



# **previous** Experimental setup



 $(1.57 \text{ str} = 12.5\% \text{ of } 4\pi)$ 

16.2 X<sub>0</sub> for Forward 148 crystals 13.5 X<sub>0</sub> for Backward 58 crystals



Hydrogen/Deuterium

Solid Target

 $t = 8 \text{ cm} (N_T \sim 4 \times 10^{23}/\text{cm}^2)$ 

$$\gamma + N \rightarrow \eta + X$$

**Identification of η meson** 

$$\Gamma_{\eta - \gamma \gamma} = (39.43 \pm 0.26)\%$$

→ γγ Decay Channel



γγ Invariant Mass Analysis

$$M_{\gamma\gamma}^2 = 2E_{\gamma_1}E_{\gamma_2}(1 - \cos\Phi_{\gamma\gamma})$$

Energy : $E = \sum E_i$ 

Position : $R = \sum R_i E_i / \sum E_i$ 

# Demonstration for multi photon detection



 $2\pi^0$  production:  $\pi^0 \to \gamma\gamma \atop \pi^0 \to \gamma\gamma$  + single  $\pi^0$ , single  $\eta$ 









## EM Calorimeter FOREST assembly of detectors







# 2y invariant mass distribution

Experiments restarted in 2009, equipped with full



~100k events/day

 $\eta$ ~20k events/day

> detected with BG for Eγ>700MeV

**Fast DAQ system** efficiency of 76% trigger rate: 2kHz average data size:

2.6kB/event

BG: 2 neutrals, S3: 0 or 1 particle, Raf: 0, Missing mass: nucleon Data obtained in a 3 week run with a H2 target

# Assignment of chiral partners in the baryon sector: naïve or mirror

### mirror assignment

D. Jido et al. / Nuclear Physics A 671 (2000) 471–480

479



Fig. 2. Dominant diagrams for the  $\gamma N \to \pi \eta N$ , (a), (b) for the Born terms, and (c) for the Kuroll–Ruderman type term. The  $\pi N^* N^*$  coupling is in (a), and the  $\pi NN$  coupling is in (b).

# transformation of chiral partners

$$[iQ_A^a, \psi_1] = -i\frac{\tau_a}{2}\gamma_5\psi_1$$
$$[iQ_A^a, \psi_2] = +i\frac{\tau_a}{2}\gamma_5\psi_2$$

$$\mathcal{L}_{mirror} = \bar{\psi}_1 i \gamma^{\mu} \partial_{\mu} \psi_1 - g_1 \bar{\psi}_1 (\sigma + i \gamma_5 \boldsymbol{\tau} \cdot \boldsymbol{\pi}) \psi_1$$

$$+ \bar{\psi}_2 i \gamma^{\mu} \partial_{\mu} \psi_2 - g_2 \bar{\psi}_2 (\sigma - i \gamma_5 \boldsymbol{\tau} \cdot \boldsymbol{\pi}) \psi_2$$

$$- m_0 (\bar{\psi}_2 \psi_1 + \bar{\psi}_1 \psi_2) + \cdots$$

### experiments to find out the favor assignment

$$\gamma p \to \pi^0 \eta p \qquad \qquad \begin{array}{c} \pi^0 \to \gamma \gamma \\ \eta \to \gamma \gamma \end{array}$$

### naïve or mirror assignment in the baryon sector



# On going project (2<sup>nd</sup> stage)

New detector construction

<requirements for the detector>

To be made of single material of detector devices with good energy and position resolutions

γ detector

To have no dead region

To have fine granularity

good for neutron detection as well

Experiments at Sendai and SPring-8

<at Sendai>

 $\gamma p \rightarrow \pi^0 \eta p$  at the threshold region with the new

<at SPring-8>

 $\gamma N' \rightarrow \eta' p$  in the nucleus





# **Summary**

### up to now

We observed a narrow baryon resonance N\*(1670) in the total cross section for the  $\gamma d \rightarrow \eta np$  reaction. N\* shows up on the neutron, but not on the proton. N\* would be the first candidate for a pentaquark with hidden strangeness in the anti-decuplet.

### research projects at ELPH

We aim to determine the spin and parity of N\*(1670).

We started taking data with FOREST.

We also look into the coupling of  $N^*$  with the proton with high statistics.

Chiral symmetry in the baryon sector will be investigated through the  $\gamma p \rightarrow \pi^0 \eta p$  reaction.

### Does $\chi S$ restoration affect the UA(1) problem?



### Does chiral restoration affect $U_A(1)$ restoration?

- Search for the effect in nuclei
- In the experiment detecting  $\eta'$  mesons, particles decaying from  $\eta'$  have to be weak interacting ones in the final state.
- Plan to measure  $\eta' \text{ at rest in the nucleus}$  via process  $\eta' \to \gamma \gamma$

| η' decay modes                        | branching<br>ratio |
|---------------------------------------|--------------------|
| $\eta$ ' $\rightarrow \pi^+\pi^-\eta$ | 44.3%              |
| $\eta' \rightarrow \rho^0 \gamma$     | 29.5%              |
| $\eta' \rightarrow \pi^0 \pi^0 \eta$  | 20.9%              |
| :                                     |                    |
| η' → γγ                               | 2.1%               |

# U-spin conservation

**EM** interaction

I-spin multiplet U-spin have the same have the same Q.

"pentaquark nucleons"

$$N_5^0$$

$$N_{5}^{+}$$

$$Y = S + B$$

$$U-spin$$
 1

Triplet

Members of

hidden-strangeness



Doublet

