Memo for exp_samurai_2017spring(S34) on ³H detection in FDC1 & FDC2

- It is impossible to satisfy the following requirements in S34
 - FDC1 under the conditions : stable operation, $\epsilon(^{3}H) \sim 100\%$, & I(⁸He) ~ 0.25 MHz
 - ε(³He)~100% in FDC2
- Possible solution
 - not yet tested, but I think it is possible
 - add FDC0 between target & FDC1.
 - additional 229 mm necessary between GV(target) & FDC1

Problems & Proposal

- Requirements & problems for S34
 - ³H detection in FDC1 together with 0.25 MHz ⁸He beam
 - stable operation nor $\varepsilon(^{3}H) \sim 100\%$ impossible in FDC1
 - :: FDC1 : drift distance= 5 mm, half gap= 5 mm, P(i-C₄H₁₀)= 50 torr
 - ³H detection in FDC2 (⁸He is off FDC2)
 - ε(³H)~100% impossible in FDC2
 - \therefore anode diameter= 40 um ϕ
- Proposal as a possible solution
 - purpose : satisfy the requirements
 - ε(³H)~ 100%
 - (relatively) stable operation @ 0.25 MHz ⁸He beam
 - add FDC0 between target & FDC1
 - FDC0
 - drift distance= 2.5 mm
 - half gap= 2.5 mm
 - $P(i-C_4H_{10}) = 75 \sim 100 \text{ torr}$
 - effective area= 160 x 160 mm²
 - configuration : xx'yy'xx'yy'
 - material : 8um^t Al-Mylar x 9
 - #readout channels : 256 ch (64ch VME-TDC x 4)
 - need additional 229 mm between GV & FDC1. see next page

