1

Memo

on Setup for proton in (γ,p) -type exp

Proton detection setup

- Setup (mostly from Panin's proposal)
 - B= 2.9 T
 - $E_B = 250 \text{ MeV/u}$
 - Z_T = -4250 mm
- Resolution estimated from simple transfer matrix

PDC target

$$\begin{pmatrix} x_2 \\ a_2 \\ \delta_2 \end{pmatrix} = \begin{pmatrix} (x \mid x) & (x \mid a) & (x \mid \delta) \\ (a \mid x) & (a \mid a) & (a \mid \delta) \\ 0 & 0 & (\delta \mid \delta) \end{pmatrix} \begin{pmatrix} x_1 \\ a_1 \\ \delta_1 \end{pmatrix}$$

$$\begin{pmatrix} -1.86 & -5.37 & -21.42 \\ 1.15 & 3.84 & 8.71 \\ 0 & 0 & 1 \end{pmatrix} x \text{ [mm], } a \text{ [mrad], } \delta \text{ [\%]}$$

• BDC, SS	SD & PDC : (x	(x_1, a_1, x_2)	$\rightarrow \delta$		 assumed resolution 		
	$\delta = -\frac{(x \mid x)}{(x \mid \delta)} x_1 -$	$\frac{(x \mid a)}{(x \mid \delta)} a_1$	$+\frac{1}{(x \delta)}x_2$		• $\sigma(x_1) \sim 0.3 \text{ mm}$ • $\sigma(a_1) \sim 1.2 \text{ mrad}$; BDC's	
coef:	0.087	0.25	(x 0) -0.047		• $\sigma(x_2) \sim 0.5 \text{ mm}$ • $\sigma(a_2) \sim 2 \text{ mrad}$; PDC's ; PDC's	
σ(δ):	0.03	0.30	0.02	$\rightarrow \sigma(\delta) = 0.30$ %			

• BDC & PDC w/o SSD : $(x_1, x_2, a_2) \rightarrow (\delta, a_1)$

 $\delta = -\frac{(x \mid a)(a \mid x) - (a \mid a)(x \mid x)}{D_{eff}} x_1 + \frac{(a \mid a)}{D_{eff}} x_2 - \frac{(x \mid a)}{D_{eff}} a_2 \qquad D_{eff} = (a \mid a)(x \mid \delta) - (x \mid a)(a \mid \delta)$ coef: -0.03 -0.11 0.15 -35.6 [mm/%] $\sigma(\delta):$ $a_1 = \frac{(x \mid x)(a \mid \delta) - (a \mid x)(x \mid \delta)}{D_{eff}} x_1 - \frac{(a \mid \delta)}{D_{eff}} x_2 + \frac{(x \mid \delta)}{D_{eff}} a_2$ coef: 0.24 -0.24 -0.24 -0.60 $\sigma(a_2):$ 0.07 0.12 1.20 $\rightarrow \sigma(a_2) = 1.21$ [mrad]

Tentative summary

- momentum (δ) & emission angle (a_1) resolution of proton in (γ ,p)-typw experiment
 - estimated using simple transfer matrix : geometry shown in page 2
 - w/o multiple scattering effect in target, SSD's, He in gap chamber, & PDC's
- 2 possible setups
 - original setup (setup1) : using BDC, SSD, & PDC's
 - x_1 (from BDC's), a_1 (from SSD's), x_2 (from PDC's) $\rightarrow \delta$

- alternative setup (setup2) : using BDC & PDC's without using SSD's
 - x_1 (from BDC's), $x_2 \& a_2$ (from PDC's) $\rightarrow a_1, \delta$

$$\delta \approx -\frac{(x \mid a)}{D_{eff}} a_2 \qquad \sigma(\delta) = 0.3 \%$$
$$a_1 \approx \frac{(x \mid \delta)}{D_{eff}} a_2 \qquad \sigma(a_2) = 1.2 \text{ [mrad]}$$

- momentum resolution for proton is comparable between setup1 & setup2
- proton emission angle (a_1) resolution, important for relative energy analysis, in setup2 without using SSD's is comparable to the direct measurement using SSD's
- From those simple estimate, (γ, p) -type experiment can be performed without SSD's
- Is conclusion different from full simulation?

: BDC's

• assumed resolution • $\sigma(x_1) \sim 0.3 \text{ mm}$

• $\sigma(a_1) \sim 1.2 \text{ mrad} \rightarrow SSD's$