Total Energy Detector (TED) for RI-beam experiments

Invariant mass spectroscopy : one example of RI beam experiment

- Goal / Purpose
 - $\sigma_A/A \sim 0.2/100$ for PID $\leftrightarrow \sigma_T/T 0.1 \sim 0.2\%$ @T=20~30GeV
- Scintillators tested
 - **NaI(Tl)** : 3" cube + 3"φPMT
 - $\sigma_T/T \sim 0.15\%$ @23GeV (290 MeV/A ⁷⁸Ge) OK
 - rate?(τ~200nsec), non-uniformity?, PMT at low HV?, hydroscopic: casing(MgO+Al), radiation damage?
 - CsI(Tl) : 5cm-cube + PD + charge-sensitive PA
 - PD : 1x1, 1.8x1.8, 2.8x2.8 cm²
 - $C_{\rm f}$ of hybrid PA~100pF (low gain), oscillation
 - $\sigma_T/T \sim 0.4\%$ for $T=7\sim 20$ GeV (@250MeV/A) X
 - rate?(τ~1usec), worse resolution, PD for larger crystals?
 - HP Ge : 60mm (semi planar)
 - PreAmp ($C_f=200-500$ pF), self made, oscillation
 - HV bias : large leak
 - $\sigma_{\rm T}/T \sim 0.35\%$ @ 3GeV X

10

Total Energy [GeV]

15

20

25

0

3

CsI(pure) ?

- CsI(pure) + PMT ?
 - less light, fast decay time
 - small radiation damage
 - UV light
 - large temperature dependence : ~% / deg
- Beam test using CsI(pure) $100x100x50mm^3 + 3"\phi$ -PMT (HPK-R6233)
 - large saturation effect observed
 - pulse shape of heavy ion is different from γ , e, & proton
 - UV / non-UV window tested : no difference in resolution \rightarrow PMT w non-UV window
 - PMT breeder : taper-type w high breeder current
 - $\sigma_T/T=0.1 \sim 0.2\%$ was not achieved. THEN...
- enlarge total-energy difference using energy-loss for fragment with the same rigidity

- NaI(Tl)+PMT, CsI(Tl)+PD, HP-Ge
 - may be OK

 \leftarrow

• relatively slow, radiation damage?

prototype test @HIMAC

CsI(pure, $100x100x50 \text{ mm}^2$) + 3" ϕ PMT

Total Energy Detector (TED)

* Purpose : $\sigma_A \sim 0.2$ @A~100, *E*tot=25~30GeV

* Configuration

CsI(pure) :	100x100x50mm ³ x32
effective area :	800mm(H) x 400mm(V)
PMT :	R6233HA (3"φ, non-UV)

in light / magnetic shield box

• Pulse Height Distribution for ²²Na

• Energy resolution ($\sigma/\langle E \rangle$) at $E_{\gamma}=1.27$ MeV

• Setup @HIMAC SB2

- Pulse height + position dependence for all 32 crystals
- RI beam : ~290 MeV/A, A~70

Pulse height : degrader thickness dependence @crystal center

• ${}^{69}Cu(z=29)$ 294 MeV/A, Al thickness = 0~17mm

Mass separation : degrader-thickness dependence @crystal center

• position dependence by extrapolating drift chamber track

- strange position dependence
 - data taken for all crystals
 - calibration procedure ?

100mm

TED & detector stand

TED @SAMURAI

• p(¹³²Sn,n) exp. April-2014

