Kobayashi Toshio (Tohoku Univ.)

Memo on 2015 fall runs

- Standard detectors
 - upstream vacuum
 - upstream detector stand
 - SBT
 - ICB & BDC1, BDC2
 - FDC1
 - FDC2
 - ICF
 - TED

SBT

- Upstream vacuum
 - previous: F12 to STQ25, continuous → separate STQ25 vacuum, mainly for SBT
 - configuration after radiation shutter
 - VF250-VG250 (L750, to be ordered, ordered?),
 VF250-VG250 bellows (L200), VF250-VF300 (L250), STQ25:
 - rotary pump & vacuum gauge connected to upstream part
- SBT
 - T-pipe installed on STQ25
 - vacuum $\sim 5 \times 10^{-3}$ torr after 12 hours
 - connector flanges, HV, booster, signal cables connected
 - SBT
 - 2 SBT's assembled on the platform after slight modification
 - 0.2mm-t plastic scintillators delivered, to be set
 - not yet in T-pipe
 - to be done
 - HV, signal cables in T-pipe : ordered
 - booster cables in T-pipe: to be made
 - 2 vacuum windows on VF250-VF250 flanges : 125 um-thick Kapton
 - signal test in vacuum
 - source?

- Upstream stand configuration
 - easy configuration change between Impact & Kondo exp.

- Upstream floor
 - additional channels inserted for less deformation (by Otsu & Chiga)

- Upstream stand
 - distance (STQ25-Stand) = 432mm
 - configuration for Kondo exp. were checked using VF150-VG150 (L465)
 - H & V centers of BDC's were aligned to laser markers within 0.25mm
 - ICB: installed, P10 gas being flowed.
 - CAEN HV crate changed to small one, for more space
 - add 2nd NIM bin
 - gas panel for ICB
- works left
 - remote HV control
 - remote ICB SA control
 - (rotary pumps for BDC's \rightarrow mechanical pumps)

5

- set back to standard condition
 - AC power, signal, HV cables connected
 - ACC for DAQ + Lupo
- works left
 - (rotary pump → mechanical pump)
 - DAQ program + pulser test with new DAQ

FDC2

- modifications
 - 2 NIM bins \rightarrow 2 high-power NIM bins (Wiener)
- gas replacement
 - purge using N₂ gas (standard grade) : 8-Aug-2015 ~ 29-Aug-2015 (19 days)
 - flow rate ~ 0.28 L/min
 - $V \sim 8600 L \leftrightarrow 5$ exchanges (>99.33% exchanged, ~0.7% left)
 - purge using N₂ gas (G3 grade) : 29-Aug-2015 ~
- works left
 - When FDC2 can be set back to the original position?
 - need to check noise after connecting all signal & HV cables
 - effect of high-power NIM bins?
 - Position of FDC2 ?
 - related to cabling to patch panel
 - DAQ program + Pulser test using new DAQ
 - flow He+60%CH₄

ICF

- gas replacement
 - purge using N2 gas (standard grade): 8-Aug-2015 ~ 29-Aug-2015 (19 days)
 - flow rate ~ 0.12 L/min
 - V ~ 3700 L \leftrightarrow 10 exchange (>99.99% exchanged, ~0.01% left)
- works left
 - ICF position ?
 - guide rail necessary for different beam energy?
 - need to connect 3 17-pair TW cables to MADC32 (x2)
 - location: ADC's in FDC2 VME crates or in HODS VME crates
 - cable length enough?
 - remote SA control
 - DAQ program + pulser / pedestal check using DAQ
 - flow He+60% CH₄:
 - 1.5 worse resolution expected compared to P10. really OK?

8

- necessary ?
- TED position ?
 - position change between 2 beam energy?
 - guide rail necessary?
- 32ch Q-ADC location ?
- camac discriminators installed
 - trigger (or) available
 - TDC information necessary ?
 - 32ch logic delays (>500nsec), 32ch TDC's location, cables