Memo on Proton Drift Chamber (PDC)

Kobayashi Toshio (Tohoku Univ.)

Proton Drift Chamber (PDC)

- Purpose : momentum reconstruction of projectile-rapidity protons combined with Si-strips
 - 2 identical chambers for 2 dim. position (vector) information : (u1,v1), (u2,v2)
 - with multi-particle capability : u,v + x
- Effective area : 1.7 m x 0.8 m (1680mm x 780mm)
- Cathode readout : Ku1, Kx1, Kv1, Ku2, Kx2, Kv2, ~820 channels
- Gas : He+60% CH₄ or P10 (Ar+10%CH₄)

PDC Parameters

- Anode
 - Walenta-type drift chamber
 - drift distance= 8mm
 - half gap= 8mm
 - wire
 - anode : $30\mu m\phi Au-W/Re (+HV)$
 - potential : 80µm¢ Au-Al (-HV)
- Cathode
 - wire : 80μmφ Au-Al (ground level)
 - wire pitch= 3mm
 - strip pitch= 12mm (4 wires)
- Configuration :
 - $Ku(+45^{\circ})$ - $Av(-45^{\circ})$ - $Kx(0^{\circ})$ - $Au(+45^{\circ})$ - $Kv(-45^{\circ})$
 - for 2-dim. information + multi-particle capability
- Readout
 - cathode readout : DC coupled
 - 136 (144) ch / plane \rightarrow 816 (864) ch / 2 PDC's
 - ASD (16ch x 54 modules)
 - ASD-PS (10ch x 6 modules)
 - TDC (64ch x 14 modules)

Cathode readout

- Position determination
 - 2 dim. info with only 2 sense planes
 - induced charge on the strip
 - \rightarrow avalanche position
 - "analog" readout needed, ~ 1000 ch
 - standard : analog readout
 - charge-sensitive PreAmp + Amp/Shaper
 - + Peak-sensitive ADC
 - no experience before the contract in 2008
 - charge division (initial plan)

 - poor two particle separation
- Readout method : "digital" method
 - ASD discriminator (time over threshold)
 - + TDC (width encoding)
 - common to BPC, BDC1,2 & FDC1,2
 - logic signal width (w) \rightarrow charge Q
 - $Q \approx C_f V_{th} \exp(w/\tau)$ $\tau = 80$ nsec
 - additional drift time information

Prototype & Readout-Method Test

- Prototype Chamber : modify existing cathode MWPC
 - configuration : Kx Ay Ku Ax Ky
 - slightly different parameters
 - drift distance = 7.5 (8) mm, half gap= 8.0 (8) mm
 - cathode pitch= 2.5 (3) mm, strip pitch= 12.5 (12)mm
 - 3 cathode chambers

PreAmp

G = 0.8 V/pC

 $\tau = 80$ nsec

• Readout : Analog & Digital

-20

-10

10

incident angle [deg]

20

- Result for cosmic rays (MIP)
 - Gas : He+60%CH₄, V_{th} =+0.4V
 - Position resolution

ASD

- $\sigma_{\text{analog}} \sim 0.25 \text{ mm}$
- $\sigma_{\text{digital}} \sim 0.47 \text{ mm}$: probably OK

PostAmp (G=7)

/Discriminator

- necessary improvement
 - large incident-angle dep.

• Charge Distribution

- Efficiency : HV-dep.
 - V_{th} = +0.8V(fixed)
- Position resolution
 - HV-dep
 - incident angle-dep.

- drift chamber with field shaping
- drift length=25mm
- $\sigma < 100 \ \mu m$
- PDC : u-x-v, 64 strips/plane
- Gas : He+60%CH₄

• Incident-angle dependence @+2.70 kV

- stable plateau
- position resolution
 - σ ~ 300 µm @0° by adjusting $D_{\rm eff}$
 - σ ~ 450 µm @15°, large angle dependence

avalanche : point \rightarrow distributed

Installation

• Detector stand & 2 PDC's

• Electronics

no dedicated TDC, Crate, SBS etc

- interference with other experiment
 - ASD \times 54 : ok
 - ASD-PS $\times 6$:
 - using 3 BDC/FDC spares
 - 3 short
 - VME-TDC ×14 :
 - using 7 BDC/FDC spares
 - 7 short
 - VME Crate : 1 short
 - SBS : 1 short

- Full test on site
 - noise etc

- to be solved or improved
 - lower threshold (noise)
 - angle dependence (avalanche distribution)
 - uniformity (*D*_{eff}?)
 - prepare dedicated electronics + faster readout scheme
 - calibration procedure : reference chambers needed

