Large-Acceptance Multi-Particle Spectrometer

Kobayashi T. (Tohoku Univ.)

Working Group	Contents
Contact person Kobayashi T. (Tohoku Univ.) Physics Nakamura T. (Tokyo Inst. Tech.) Uesaka T. (Univ. of Tokyo) Kawabata T. (Univ. of Tokyo) Iwasa N. (Tohoku Univ) Murakami T. (Kyoto Univ.)	 Physics Subjects Specifications Current Design
Magnet Design Okuno H. (RIKEN) Yano Y. Ichihara T. Ohnishi J. Kubo T. Ikegami K. Kusaka K.	Samurai(7) Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power

Physics Subjects

(1) Electromagnetic Dissociation

(γ,n) : softGDR, GDR: non resonant excitation:(γ,p) : Nuclear Astrophysics collective motion single-particle orbit

 $E_{rel} \downarrow E_{x}$ E_{x} $E_$

Invariant-Mass method

$$E_{X} = \underline{\sqrt{\left(\sum E_{i}\right)^{2} - \left(\sum P_{i}\right)^{2}}} - \sum M_{i} + E_{s}$$

4-momenta of decay particles from excited nucleus

 (p,γ) cross section via inverse reaction

Projectile-rapidity heavy fragment proton / neutron

Required Resolution

Excitation energy: $\sigma(E_{rel}) = (0.1 - 0.2)\sqrt{E_{rel}}$ [MeV]

Required solid angle / momentum

(p,p), (p,p'), (p,n) (p,d), (p,pp), (p,pn), (α,α), (α,α')

Nuclear structure of ground/excited states

(3) Polarized deuteron-induced Reaction

(d,d), (d,p)

Nucleon force:2-body/3-body force Shore-range correlation

different experimental requirements

Solid angle: $\theta_{H,V} \leq \pm 50 mrad$

Momentum resolution: $\sigma_p / p \leq 1/1000$

Beam dump for primary beam

(4) Multi Fragmentation & Equation Of State

multiple particles

need 4π -type measurement

Particle Identification (PID)

PID: mass A, charge(atomic number) Z

charge:	Ζ		energy loss:	$dE/dx \propto (Z/\beta)^2$
momentum (Magnetic Rigidity):	R=P/Z	◄	magnetic analysis:	$P/Z \propto B\rho$
velocity:	β		Time of Flight:	$T \propto 1/\beta$

+additional limitation: Q=Z + primary beam energy RI beam energy: <250 - 300 MeV/A Mass number: <250 - 100

Mass identification

$$\frac{\sigma_{A}}{A} = \sqrt{\left(\frac{\sigma_{R}}{R}\right)^{2} + \left(\gamma^{2} \frac{\sigma_{\beta}}{\beta}\right)^{2} + \left(\frac{\sigma_{z}}{Z}\right)^{2}}$$

$$\frac{\sigma_{A}}{A} = \frac{0.2}{100} \approx \frac{1}{500} \longrightarrow \text{ magnetic rigidity} \qquad \frac{\sigma_{R}}{R} \approx \frac{1}{700} \quad @R = 2.2 \text{ GeV/c } (A/Z = 3, 250 \text{ MeV/A})$$

$$\text{velocity} \qquad \frac{\sigma_{\beta}}{\beta} \approx 9 \times 10^{-4} @ \beta = 0.62 \implies \sigma_{T} \approx 50 \text{ psec} @ L = 10 \text{ m}$$

$$\text{charge} \qquad \sigma_{z} \approx 0.2$$

Relative-energy resolution

$$\sigma_{rel} \approx \sqrt{2 \frac{E}{A} \frac{A_1 A_2}{A_1 + A_2} E_{rel}} \sqrt{\left(\frac{1}{\gamma_1^3} \frac{\sigma(p_1)}{p_1}\right)^2 + \left(\frac{\sigma(\beta_2)}{\gamma_2 \beta_2}\right)^2 + \left(\sigma(\theta_{12})\right)^2}$$

Conditions $E/A \approx 250 \text{MeV/A}$ $p \approx 730 \text{MeV/c/A}$ $\beta \approx 0.62$ $\gamma \approx 1.27$

Required Resolution

momentum (fragment):	$\sigma_{R}/R \leq 1/700$	
velocity (neutron):	$\sigma_{\beta}/\beta \approx 6 \times 10^{-3}$	TOF: $L \approx 10$ m, $\sigma_{\rm T} \approx 0.3$ nsec
angle (neutron):	$\sigma(\theta_{12}) \approx 5 \mathrm{mrad}$	$\sigma_x \approx 5 \text{ cm } @L = 10 \text{ m}$

(cf) projectile fragmentation @250MeV/A $A=50(80) \longrightarrow A-1=49(79)$ momentum distribution of (A-1) system : $\frac{\sigma_p}{p} \approx \frac{1}{290(460)}$

parameters

BL= 7 Tm: $\sim 50^{\circ}$ bend for 2.2GeV/c

- +Reduction of fringing field
 - for target detectors

position detectors for momentum analysis

Field Distribution

H-type round pole magnet w/o field cramp

Pole:	Diam 2 m, Gap 0.8 m
Field:	3 T @3.6 MAT
Stored E:	28 MJ
BL:	7 Tm
vertical F.:	650 t(w/o coil link)

plan view $Z_T=-4m$

Setup for (γ,n) reaction

side view $Z_T = -4m$

Experimental Setup : various Configurations

with maximum field for good PID

hole in the return yoke

Setup for primary deuteron beam

High resolution mode : Q3D = Beam-line triplet-Q + Dipole

Summary

(1) Detection of multiple (few) particles in the projectile rapidity

heavy fragment proton / neutron(s) in coincidence — EMD studies via Invariant-Mass measurement

- with large angular acceptance $\sim 50 \text{msr}$ momentum acceptance $\sim 300\%$ moderate momentum resolution $\sim 1/600$ (Q3D option for high resolution measurement) particle identification A < 100
 - (a) Large field integral : BL= 7 Tm

PID ($\sigma_A \approx 0.2$) + momentum resolution ($\sigma_R/R \approx 1/600 @2.2 \text{GeV/c}$)

(b) Magnet Gap : 0.8m

vertical acceptance for neutron: $\theta_V < \pm 5^{\circ}$, $\theta_H > \pm 10^{\circ}$

(c) Field Cramp

small fringing field : for detectors in the target region & tracking detectors

(d) Rotatable base + built-in vacuum chamber

for various experimental configuration

(e) Hole in the return yoke

heavy fragment & protons in coincidence : $R_{max}/R_{min} \approx 2-3$

(2) Tagging decay particles from various direct reactions: (p,p'), (p,pN), etc

decay mode of the residual excited nucleus providing enough space for detectors in the target region

(3) Large gap

 4π measurement for EOS

[1] Magnet

(1-1) Cost

still high ~1,000MY (10M\$)

(1-2) Large-area exit (vacuum) window

100-200µm Kapton/Aramid + Kevlar

(1-3) Solid angle <---> Es coverage <---> Beam energy

50 msr (±10°x±5°) <10MeV < 350 MeV/A primary

not really "large solid-angle"

(1-4) Field map measurement

nightmare

[2] Detectors

(2-1) Velocity measurement for PID required : $\sigma_{\beta}/\beta = 10^{-3} @\beta = 0.6$ TOF (50ps @L=10m) marginal TIR (total internal reflection) Cherenkov? (2-2) Neutron detector (a) 12x12x170 cm³ x 30 elements/layer x 8 layers, cost ~ 200 MY (2M\$) (b) Detection efficiency ε~ 70% (1n) $\epsilon \sim 30\%$ (2n), but need cross-talk rejection γ detector (c) γ -decay after neutron decay neutror **PPAC** need high-efficiency segmented γ detector IC (2-3) Charge measurement by Ion Chamber hod small dead region

neutron

detector

eavy

fragment

Magnetic Spectrometers so far considered

Туре	Q + C-magnet	H-type window frame	H-type round pole
B _{max} [T], BL[Tm]	3 T, 7 Tm	1.5 T, 2.3 Tm	3 T, 7 Tm
pole⪆[m], weight[t]	1.6x2.8x <u>1.0</u> m, 620 t	1.5x1.0x <u>1.0</u> m, 140 t	2.0m diam.x <u>0.8 m</u> , 650 t
AT & Stored Energy	4.4 MAT, 36 MJ	1.4 MAT, 36 MJ	3.6 MAT, 28 MJ
cost	1500 MY	100 MY(transfer+mod.)	<1000 MY
angle for 2.2GeV/c	55°	18°	53°
angular focussing	yes	no	no
drawbacks	force, cost, fringing field	low field	no angular focus, focal plane

QD mode : C-magnet + Q

pole: $1.6(W) \times 2.8 (D) \times 1.0m(G)$ field: 3.0 T @4.4MATweight: 620 t (585 t + 35 t)stored energy: 36 MJmax field on coil: 4.0 T

	SKS	BENKEI	HISS	DAIMAJIN
Bmax [T]	3	1.5	3	3
Stored Energy [MJ]	10	3.2	55	28
Pole [m]	sector	1.5x1	2.1	2
Gap [m]	0.5	1	1	0.8
AT [MAT]	2.2	1.4	5.1	3.6
Current [A]	500	610	2200	4600
Weight [t]	250	140	570	650

HISS@LBL

Drift chamber efficiency & resolution

Momentum resolution

 $\frac{\sigma_R}{R} = \frac{1}{200}$

Mass resolution

Figure of merit = virtual photon intensity x beam intensity x target thickness

Cost Estimate

[1] Magnetic Spectrometer		[2] Additional detectors	
(1-1) Superconducting magnet: \sim	<u>1,000 MY</u>	(2-1) Neutron Hodoscope	<u>200 MY</u>
+rotatable base,		30 x 8 elements, with electronics	
build-in vacuum chamber,		(2-2) Si-strip for upstream tracking	13 MY
cooling system		for (γ,p)	
(1-2) Beam detectors, upstream detectors	5 MY	(2-3) TPC	350 MY
PPAC $x(3-4)$			
(1-3) Downstream drift chambers	<u>100 MY</u>	sub total	570 MY
+ electronics, stand			
2 sets for heavy fragment, 2 sets for pr	rotons		
(1-4) Plastic Scintillator hodoscope	30 MY		
2 sets			
(1-5) Ion Chamber (?)	5 MY		
(1-6) Velocity detector (?)	?		
(1-7) Beam dump for primary deuteron	50 MY		
sub total	1.200 MY		

backgrounds from gas-cell materials (16O, 28Si)

E_{rel} resolution

Downstream drift chamber

Helium Cooling System without Liquid nitrogen for the Daimajin Magnet

Helium Cooling System with Liquid Nitrogen for the Daimajin Magnet

	ZDS	SHARAQ	
Rmax [GeV/c]	2.2 - 2.7	2.04	
Angle [mrad] H x V	±45 x ±30	$\pm 30 \text{ x} \pm 100 (12 \text{msr})$	
Mom. Acceptance [%]	±3	±3	
$\Delta p/p$	1/1240 - 1/4130	1/15000	
Mom. dispersion [cm/%]	2.24 - 4.13	10.2	
Total length [m]	36	19	
Weight [t]		>400	

$$L/L_{R} \approx 10^{-3}, 250 \text{MeV/A} \rightarrow \sigma_{mcs} \approx 0.7 \frac{Z}{A} \text{[mrad]}$$