重RIビーム粒子識別用検出器の開発

16P181

参加者	松田洋平、遠藤奈津美、小林俊雄	(東北大)
	大津秀暁	(理研)
	佐藤良輝	(東工大)
	高田栄一	(放医研)

- 実験期間 2005年7月,2005年12月
- ビーム ⁴⁰Ar (Z=18), ⁸⁴Kr (Z=36) 1次ビーム @400 MeV/A 2次ビーム(Z<34) @250-300 MeV/A

検出器 位置検出器: Drift Chamber (6角セル) 低圧力Drift Chamber

> 低圧力Cathode読出型Drift Chamber 全エネルギー検出器: Si + HP-Ge, Nal(Tl), Csl(l) 電荷検出器: 多層電離箱 速度検出器: 全反射型Cherenkov検出器

目的: 200-300 MeV/A、A<100の入射核破砕片の粒子識別

(1) エネルギー(電荷) 検出器: 多層電離箱

有効領域15x15cm²の多層電離箱-試作機 2μm厚電極、これまでと異なる電極製作方式 傾斜角度=0度、電極間隔=2-3cm 前置増幅器自作 L=180mm P10-gas σ₇=0.25

⁸⁴Kr @400MeV/Aからの2次ビーム@250MeV/A

(2) 速度検出器:

(3-1) 位置検出器-1

(3-2) 位置検出器-2

低圧力 6 角セル型drift chamber 動作parameter増加: HV, Pressure (E/P) <--> gas gain, drift field 低物質量化 + 真空箱中での動作 純quench gas使用: i-C₄H₁₀ 叉は C₂H₆

⁸⁴Krからの2次ビーム@250MeV/A

(4-1) 全エネルギー検出器-1

Nal(TI) + PMT

Range 短: 3 cm (⁴⁰Ar), 1.5 cm (⁸⁴Kr) $R \propto \frac{A}{z^2}E^2$

3"φx3"厚、3"立方体:

個体差有

光量大: PMTの低電圧動作

Anode出力-電荷積分型ADC < Anode出力-電荷積分型PA-整形増幅-ピーク型ADC

ビームラインでの運動量分析(0.1%)

 $\frac{\sigma_E}{E} \approx 0.15\% @23 GeV$ 290 MeV/A ⁷⁸ Ge

A~80での質量分離可能

K

(4-2) 全エネルギー検出器-2

Csl(Tl) + PhotoDiode(PD) + 電荷積分型PreAmp

潮解性: 弱 キャリア数: 2倍 $\frac{N_{\gamma}(CsI)}{N_{\gamma}(NaI)} \frac{\varepsilon(CsI)}{\varepsilon(NaI)} \approx \frac{1}{2} \frac{80}{20} = 2$

(1) Csl(Tl)結晶

サイズ: 1.8²x4, 3²x4, 43, 5³ cm³ 表面: 鏡面/スリガラス状 反射材: テフロン、ESR(3M)

(2) ライトガイド

(3) Photo Diode

面積: 1^2 , 1.8^2 , 2.8^2 cm²

(4) PreAmp

Hybrid 3 種類 + C_f~100pF

Nal(TI)に較べ、約2倍悪い 理由: 不明

(4-3) 全エネルギー検出器-3

高純度(HP)-Ge検出器

 $\epsilon = 3eV : \sigma_E / E \approx (4-6) \times 10^{-4}\% @(10-20)GeV$

結晶: $60 \text{mm} \phi x35 \text{mmt} (\text{semi-planar})$ $60 \text{mm} \phi x10 \text{mmt} (\text{planar})$

- PreAmp: 自作 C_F=200-500pF
- 真空/冷却: 自作

結果:

リーク電流が大きい 最良: σ_E/E= 0.35% @3GeV 制限: ?

エネルギー200-300 MeV/A、質量数<100のRIビーム実験 Broad range spectrometer用検出器の開発を行った: 2年目 目標 (1) 多層電離箱 $\sigma_{\tau} \sim 0.2$ ほぼ予想通り (2) 全反射型Cherenkov検出器: 高屈折率radiator使用 σ/β~1/1000相当 @β=0.6-0.7 @300MeV/AでA~80を実際に分離できた (3) 位置検出器 低物質量 (3-1) 6角セル型drift chamber: He+C₂H₆@1気圧 +高位置分解能 +真空中動作可 位置分解能: 110-30µm(z=5-31) + dynamic range (3-2) 低圧力6角セル型drift chamber: i-C₄H₁₀@50torr 長いplateauを持ち安定動作 位置分解能: ~100 µ m (3-3) 低圧力Cathode読出型drift chamber: i-C₄H₁₀@20torr 位置分解能: ~100μm (4) 全エネルギー検出器 $\sigma_{\rm F} \sim 0.1\%$ (4-1) Nal(TI)+ PMT: 分解能~0.2% @20GeV A~80を分離可能 (4-2) Csl(Tl)+PD : Nal(TI)より約2倍悪い、理由? (4-3) HP-Ge : 同上、理由?

重RIビーム粒子識別用検出器の開発

16P181

参加者	松田洋平、	遠藤奈津美、	小林俊雄	(東北大)
	大津秀暁			(理研)
	佐藤良輝			(東工大)
	高田栄一			(放医研)

- 実験期間 2005年7月,2005年12月
- ビーム ⁴⁰Ar (Z=18), ⁸⁴Ar (Z=36) 1次ビーム @400 MeV/A 2次ビーム(Z<34) @250-300 MeV/A

検出器 位置検出器: Drift Chamber (6角セル) 低圧力Drift Chamber 低圧力Cathode読出型Drift Chamber

全エネルギー検出器: Si + HP-Ge, Nal(Tl), Csl(l) 電荷検出器: 多層電離箱 速度検出器: 全反射型Cherenkov検出器

6 角セル : L_{drift}= 6 mm, 10.5mm x x' x x'

:

:

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

角セル L_{drift}= 13 mm x x' x' x

6

4

角セル L_{drift}=9mm g= 6mm xyx'y'xyx'y'xy

Spectrometer 磁石

HIMAC 2次ビームライン Pmax= 2.4 GeV/c

title

title

title