陽子/クラスターKnockout反応による原子核構造の研究

(P051)

小林俊雄、大津秀暁、氏家徹、奥田貴志、関口昌嗣、大関和貴、田澤信也(東北大理) 吉田敦(理研)、松山芳孝(KEK田無)、沖花彰(京教大教)、

福田直樹(東大理)、高田栄一(放医研)

- 「1」目的
- 「2」研究経過
- 「3」実験方法とSETUP
- 「4」結果

p(⁹C,2p)⁸B反応による**陽子過剰核⁹C**の構造

p(^{4,6}He,2p)^{3,5}H反応による水素同位体⁵Hの探索

³He-knockout反応の予備実験

p(^{3,4}He,p^{3,4}He) 弾性散乱

p(⁴He,p³He)x ⁴Heからの³He knockout反応

p(⁹Li,p³He)x反応の予備測定

p(⁹Li,p³He)⁶H反応による水素同位体⁶Hの探索

「5」その他の開発

「6」今後の予定

「2」目的

「2-1」不安定核と陽子標的をInverse Kinematicsで用いた陽子・クラスターノックアウト反応

●陽子過剰核側

Hole状態を通じて、陽子過剰核中の陽子単一粒子波動関数 $\Psi=(\Phi_{A-1}|\Phi_A)$ に関する情報: 主に弱束縛された外殻陽子について 運動量分布 q、分離エネルギー Es、角運動量 L、占有数 ...等 E_s do/dp L=0 L=1 Pr 陽子過剰側 Ζ ¹²N ¹³N ¹⁴N ¹⁵N ¹⁶N 17N¹⁸N ¹⁹N ²⁰N ²¹N ²²N ²³N 7 $p({}^{9}C, 2p)^{8}B$ ²²C ⁹C ¹⁶C ¹⁹C ²⁰C ¹⁰C ¹¹C ¹²C ¹³C ¹⁴C 15**C** 17**C** ¹⁸C 6 8R ¹⁹B $10\mathbf{B}$ ^{11}B 12**B** $13\mathbf{B}$ $^{14}\mathbf{B}$ ^{17}B ^{15}B 5

▶中性子過剰核側 🗲

Drip Line上の中性子過剰核からの陽子・クラスターknockout反応により

Drip Line外側のExoticな共鳴状態の生成

「2-2」逆運動学での陽子・クラスターノックアウト反応

Quasi Free p-p (p-cluster) 散乱による陽子 (cluster) knockout反応:

- 反応がQuasi Free的:
 - (1)陽子(標的)のドブロイ波長 ≪ 核子間距離(~1.8 fm)
 - (2)入射エネルギー ≫ 陽子分離エネルギー Sp、Fermi運動量 Pf
 陽子過剰核のvalence proton : Sp ~ 1 MeV
 中性子過剰核中の陽子 : Sp = 20 30 MeV

● 重イオン加速器+2次ビームライン

理研 : < 80 AMeV

- 放医研: < 300 AMeV @ A/Z=3 ⇔ E_B > 10-15 x Sp
 - HIMAC施設はGSI(SIS18+FRS)同様、100 AMeV以上の2次原子核ビームが使用可能 比較的"高い"エネルギーが必要なノックアウト反応には最適な施設

● 現在の問題点

①1次ビーム強度の制限(?)

- ②逆運動学でのノックアウト反応の長所:
 - ノックアウト反応で生成された残留核/そこからの崩壊粒子が超前方に放出される
 - ⇒ 残留核の崩壊モードが高効率で測定可

現在は前方磁気分析器が無い為、(Z, A)の粒子識別が不可能で、長所を生かしきれて無い

⇒ 前方磁気分析器(電磁石+位置検出器)を準備中

「3」実験方法とSETUP

「3-1」HIMAC加速器施設

RFQ (0.8 AMeV) + Alvarez (6 AMeV) + double synchrotron (800 AMeV)

注:陽子過剰核側の粒子分離は約100AMeV(理研)領域よりはるかに良い

±2.5

1x10⁵

±2.5

5x10⁵

±2.5

4x10⁴

 ± 2.5

3x10⁴

∆p/p [%]

強度 [/spill]

「3-2」検出器系 @F3

●陽子knockout反応

●クラスター(³He)knockout反応

「4」研究経過

H9 年度

1月: 2次ビームラインの試験

- H10年度
 - 1月: p(⁹C,2p)⁸B反応による陽子過剰核⁹Cの構造
- H11年度
 - 4月: p(^{4,6}He,2p)^{3,5}H反応による水素同位体⁵Hの探索

検出器 実験室 DAQ 低圧

慗備

MWPC

系製作 整備

- 10月: ³He-knockout反応の予備実験 p(^{3,4}He,p^{3,4}He) 弾性散乱 p(⁴He,p³He)x ⁴Heからの³He knockout反応 p(⁹Li,p³He)x反応の予備測定
 - 1月: p(⁹Li,p³He)⁶H反応による水素同位体⁶Hの探索

「5」結果

- 「5-1」p(⁹C,2p)⁸B反応による陽子過剰核⁹Cの構造
- 「5-2」p(^{4,6}He,2p)^{3,5}H反応による水素同位体⁵Hの探索
- 「5-3」³He-knockout反応の予備実験

p(^{3,4}He,p^{3,4}He) 弾性散乱

p(⁴He,p³He)x ⁴Heからの³He knockout反応

p(⁹Li,p³He)x反応の予備測定

「5-4」p(⁹Li,p³He)⁶H反応による水素同位体⁶Hの探索:解析中

「5-1」p(⁹C,2p)⁸B反応による陽子過剰核⁹Cの構造

- [5-1-1] 目的
 - (1) 弱く束縛されたvalence proton(πp_{3/2})を持つ陽子過剰核⁹Cの構造

(2)高エネルギー(255 AMeV)2次原子核ビームを用いた
 逆運動学での陽子knockout反応の方法論の確立

「3-1」p-p散乱によるNal(TI)のエネルギー較正

p(p,2p)反応: 230MeV 1 次陽子ビーム + 0.2 g/cm² CH₂

Drift Chamber : He 50% + C_2H_6 50%

面当りの位置分解能~100μm (rms)

[5-1-2] 陽子knockout反応の解析

(1) p-p散乱によるNal(Tl)のエネルギー較正

p(p,2p)反応: 230MeV 1 次陽子ビーム + 0.2 g/cm² CH₂

Drift Chamber : He 50% + C_2H_6 50%

面当りの位置分解能~100μm (rms)

 $\gamma E_s = T_0 - \gamma (T_1 + T_2) - 2(\gamma - 1)m_p + \beta \gamma (\vec{p}_1 + \vec{p}_2)_{//} - \frac{q^2}{2M_{A-1}}$

[5-1-3] p(⁹C,2p)反応の分離エネルギー分布

[5-1-5] ⁹Cのvalence proton運動量分布

分離エネルギー1.3MeVが合う様に作った波動関数の(全空間での)フーリエ変換よりも巾が狭い。

「5-2」p(^{4,6}He,2p)^{3,5}H反応による水素同位体⁵Hの探索

[5-2-1] 目的・動機

- (1) Drip Line上の中性子過剰核からの(p,2p)陽子knockout反応
 - ➡ Drip Line外側のExoticな共鳴状態

(2)水素同位体(共鳴状態)の安定性 : Pa

Pairingと角運動量バリアの競合?

(3) 高い入射エネルギーでの角度acceptanceの増加

[5-2-2] p(^{4,6}He,2p)反応の分離エネルギー分布

● この構造が⁵Hによるのであれば、

「5-3」³He-Knockout反応の予備実験

[5-3-1] 陽子、³Heに対するNal(TI)の応答関数

230MeV陽子ビームによるp(p,2p)散乱: E(p) = 40 - 180 MeV を用いたエネルギー較正 2次³He ビーム : E(³He)= 90 - 242 AMeV

ほぼ全エネルギーでscaleする

Offsetの問題はあるが弾性散乱を分離

[5-3-3] 逆運動学での³He-p弾性散乱 2次³Heビーム@208 AMeV

逆運動学での⁴Heビームからの³He knockoutが観測できた。 予備実験に使った△E検出器の厚さ(5mm)の為、³He-⁴He分離が不完全だった。 2度目の実験では10mm厚を使用。

予備実験の結果:

●△E検出器の厚さ(5mm)の為、³He-⁴He分離が不完全

●CH₂-Cで有為な差は得られなかった

●⁹Li入射エネルギー250AMeVでは、³Heのエネルギーが高すぎ、Nal(TI)を部分的に 突き抜けている。

2000年1月の実験では、改良点として

- (1)入射エネルギーを 196AMeVに下げた \Rightarrow ³HeはNal(TI)中で止まる
- (2) ΔE 検出器の厚さを10mmに増やした \Rightarrow ³He-⁴He分離可

(1)陽子過剰核⁹Cからの(p,2p)反応による弱束縛核の構造

中性子過剰核⁶Heからの(p,2p)反応でexoticな共鳴状態⁵Hの探索

という初期の目的は一応達成できた。

- (2)³He-knockout反応の予備実験を行い、
 - p(^{3,4}He,p^{3,4}He) 弾性散乱
 - p(⁴He,p³He) ³He-knockout反応

p(⁹Li,p³He)⁶H反応に関して色々の問題点を改良し、1月に再測定を行った。

が観測できた

(3) 逆運動学でのKnockout反応の長所である残留核の崩壊モード測定に関して

現在 Z(原子番号)のみ識別可で、質量数はわからない

^{5,6}H測定でS/Nを上げる為に必要な^{5,6}H⇒³H+xnでの³H識別には成功していない

(250AMeVの³Hのrangeは鉄20cm!)

(4) 前方magnetic Spectrometerを準備中