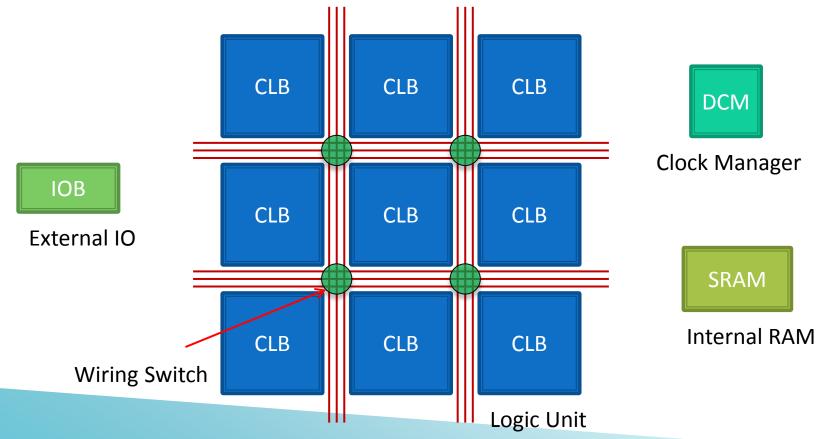
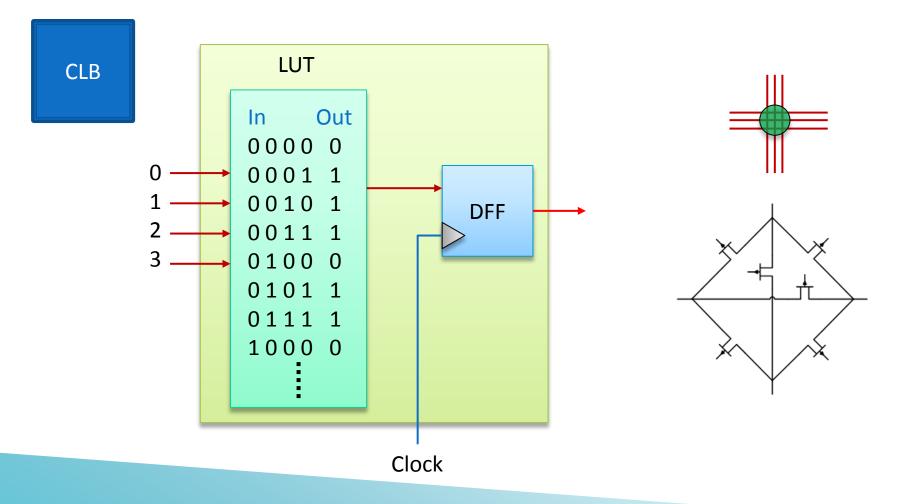
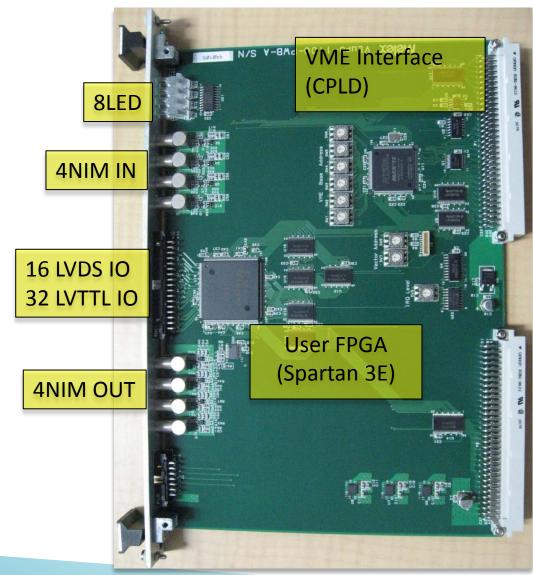
FPGA Lecture for LUPO and GTO Vol. 1 2010, 31 August (revised 2013, 19 November) H. Baba


Contents

- Basic feature of FPGA
- Basic usage for LUPO
 - New project
 - Read and Write
- Basic behavioral VHDL simulation
- Download firmware


What is FPGA ?

Field Programmable Gate Array


CLB and wiring

About LUPO

- NIM signals are converted to LVTTL
 - NIM->LVTTL->FPGA
 - FPGA->LVTTL->NIM
- LVDS ports are direct connection
 - Because of this IOB is 2.5V, this port can be accept 2.5V
 IO signals

New Project for LUPO

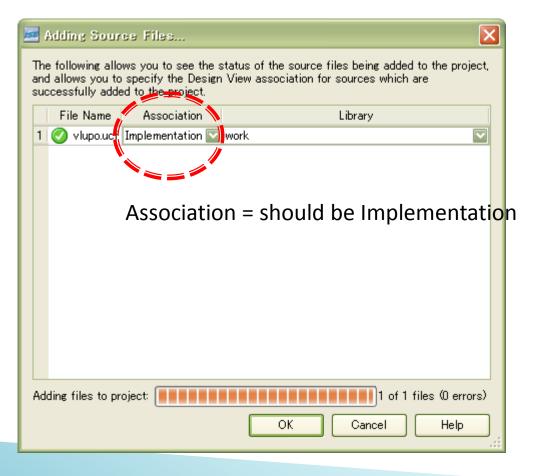
Device and Design flow

Property Name	Value						
Product Category	All						
Family	Spartan3E						
Device	XC3S500E	~					
Package	PQ208	~					
Speed	-4	~					
Top-Level Source Type	HDL	V					
Synthesis Tool	XST (VHDL/Verilog)	~					
Simulator	ISim (VHDL/Verilog)	~					
Preferred Language	VHDL	~					
Property Specification in Project File	Store all values	~					
Manual Compile Order							
VHDL Source Analysis Standard	VHDL-93	~					
Enable Message Filtering							

Design property for GTO

<u>P</u> roject Settings	
Property Name	Value
Top-Level Source Type	HDL
Evaluation Development Board	None Specified
Product Category	All
Family	Spartan3A and Spartan3AN
Device	XC3S200A
Package	VQ100
Speed	-4
Synthesis Tool	XST (VHDL/Verilog)
Simulator	ISim (VHDL/Verilog)
Preferred Language	VHDL
Property Specification in Project File	Store all values
Manual Compile Order	
VHDL Source Analysis Standard	VHDL-93
Enable Message Filtering	
	OK Cancel Help

The definition of IO (LUPO)


- LED : LED
- A : CAMAC/VME address
- CLOCK : 50MHz clock
- ▶ INIT : CAMAC Z/C, VME Init?
- IP : NIM Input 0-3
 IP0 : IP0 to GCLK
- OP : NIM Output 0-3
- LVDSn/LVDSp : LVDS IO 0-15
 - LVDS_CLKn/p : LVDS0 to GCLK
- RD : Data Read
- WR : Data Write
- RD_STRB : Read strobe
- WR_STRB : Write strobe

```
entity HOGE is
 port (
              : out STD LOGIC VECTOR (7 downto 0);
    LED
      LVDS CLKn : in
                     STD LOGIC;
     LVDS CLKp : in
                      STD LOGIC;
     LVDSn
                : in STD LOGIC VECTOR (15 downto 0);
                : in STD LOGIC VECTOR (15 downto 0);
     LVDSp
                : out STD LOGIC VECTOR (15 downto 0);
     LVDSn
                : out STD LOGIC VECTOR (15 downto 0);
     LVDSp
              : in STD LOGIC VECTOR (7 downto 0);
   А
    CLOCK
                    STD LOGIC;
              : in
    INIT
              : in
                    STD LOGIC;
      IPO
                : in STD LOGIC;
                   STD LOGIC VECTOR (3 downto 0);
    IΡ
              : in
                : in STD LOGIC VECTOR (3 downto 0);
     UDI
      UDO
                : out STD LOGIC VECTOR (3 downto 0);
              : out STD LOGIC;
    IRQ
              : out STD LOGIC VECTOR (3 downto 0);
   OP
    RD
              : out STD LOGIC VECTOR (31 downto 0);
                    STD LOGIC VECTOR (31 downto 0);
    WR
              : in
              : in
                    STD LOGIC;
    RD STRB
    WR STRB
              : in
                    STD LOGIC);
end HOGE;
```


Copy the Constraint file (UCF)

- vlupo.ucf
- gto.ucf
- Write constraints for IO and others

Without CAMAC/VME Buses (LUPO)

This is enough

```
entity HOGE is
port (
   LED : out STD_LOGIC_VECTOR (7 downto 0);
   CLOCK : in STD_LOGIC;
   IP : in STD_LOGIC_VECTOR (3 downto 0);
   OP : out STD_LOGIC_VECTOR (3 downto 0));
end HOGE;
```

NETs written in UCF are must be written in "entity" also

Edit vlupo.ucf by "Edit Constraints(Text)"

NET	"CLOCK"	LOC = "P177" IOSTANDARD = LVTTL ;	
NET	"IP[0]"	LOC = "P202" IOSTANDARD = LVTTL ;	
NET	"IP[1]"	LOC = "P203" IOSTANDARD = LVTTL ;	
NET	"IP[2]"	LOC = "P204" IOSTANDARD = LVTTL ;	
NET	"IP[3]"	LOC = "P205" IOSTANDARD = LVTTL ;	
NET	"IRQ" LO	OC = "P64" IOSTANDARD = LVCMOS25 ;	
NET	"LED[0]"	LOC = "P189" IOSTANDARD = LVTTL ;	
NET	"LED[1]"	LOC = "P190" IOSTANDARD = LVTTL ;	
NET	"LED[2]"	LOC = "P192" IOSTANDARD = LVTTL ;	
NET	"LED[3]"	LOC = "P193" IOSTANDARD = LVTTL ;	
NET	"LED[4]"	LOC = "P196" IOSTANDARD = LVTTL ;	
NET	"LED[5]"	LOC = "P197" IOSTANDARD = LVTTL ;	
NET	"LED[6]"	LOC = "P199" IOSTANDARD = LVTTL ;	
NET	"LED[7]"	LOC = "P200" IOSTANDARD = LVTTL ;	
NET	"OP[0]"	LOC = "P63" IOSTANDARD = LVCMOS25 ;	
NET	"OP[1]"	LOC = "P62" IOSTANDARD = LVCMOS25 ;	
NET	"OP[2]"	LOC = "P61" IOSTANDARD = LVCMOS25 ;	
NET	"OP[3]"	LOC = "P60" IOSTANDARD = LVCMOS25 ;	
NET	"CLOCK"	<pre>TNM_NET = CLOCK;</pre>	
TIME	ESPEC "TS	_CLOCK" = PERIOD "CLOCK" 20 ns HIGH 50 %;	;

Simple case (LUPO)

Like this

```
architecture Behavioral of HOGE is
begin
OP(0) <= IP(0) and IP(1);
OP(1) <= IP(2) or IP(3);
OP(2) <= IP(0) and not IP(1);
OP(3) <= CLOCK;
LED(3 downto 0) <= IP(3 downto 0);
LED(7 downto 4) <= (others => '1');
```

```
architecture Behavioral of HOGE is
signal a, b, c : std_logic;
begin
a <= IP(0) and IP(1);
b <= IP(2) or IP(3);
c <= a and not b;
OP(0) <= a;
OP(1) <= b;
OP(2) <= c;
OP(3) <= CLOCK;
LED(3 downto 0) <= IP(3 downto 0);
LED(7 downto 4) <= (others => '1');
```

If Synthesize -> Implement Design are passed, it will work

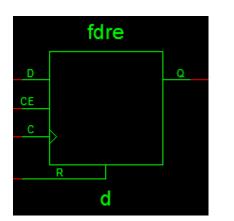
To make the synchronous circuit

- When you use "if, else", you should put values into all signals explicitly
 - Check Warning

		ldc			
D				٩	
G					
C	LR				
d					

In this case, created circuit will be asynchronous circuit

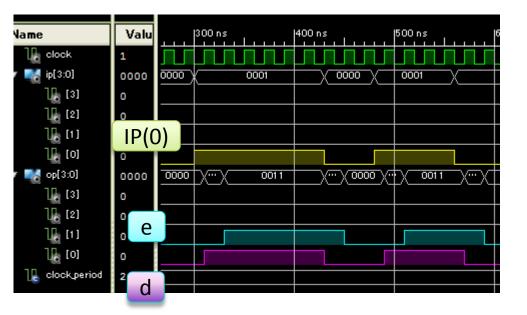
```
process(IP(0), IP(1))
begin
  if(IP(0) = '1') then
    d <= '0';
    e <= '1';
  elsif(IP(1) = '1') then
    d <= '1';
    e <= '0';
                     Should write
    else
      d <= '0';
                     values in "else"
      e <= '0';
  end if:
                     explicitly
end process;
```



Xst:737 - Found 1-bit latch for signal <d>. Latches may be generated from incomplete case or if statements. We do not recommend the use of latches in FPGA/CPLD designs, as they may lead to timing problems.

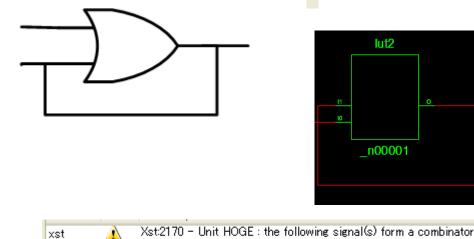
This type works well, usually

By using "event process", DFF will be used, and values are kept as you had expected


Values are changed at the Clock timing

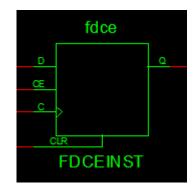
```
signal d, e : std_logic := '0';
begin
    process(CLOCK)
    begin
    if(CLOCK'event and CLOCK='1') then
        if(IP(0) = '1') then
            d <= '1';
            e <= '1';
            e <= '1';
            else
            d <= '0';
--            e <= '0';
            end if;
            end if;
            end process;
```


Basically, all lines run in parallel


```
OP(0) <= d;
OP(1) <= e;
OP(2) <= '0';
OP(3) <= '0';
  process (CLOCK)
  begin
    if(CLOCK'event and CLOCK='1') then
      if(IP(0) = '1') then
        d <= '1';
        e <= d;
      else
        d <= '0';
        e <= d;
      end if;
    end if;
  end process;
```


Be careful about the loop circuit

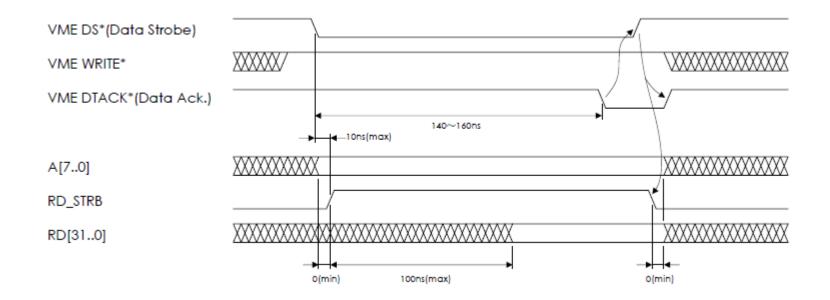
As this schematic, you can make the "Latch circuit", but... $a \ll IP(0)$ or a;


Xst:2170 - Unit HOGE : the following signal(s) form a combinatorial loop:

- Warnings of Combinational loop
 - It will not work, depending on the pulse width, line delay, jitter and so on

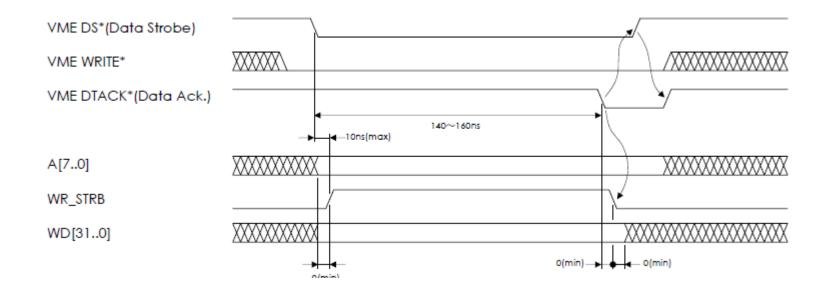
Expressly using FF is safe

- "event" in the process statement makes DFF, basically
- As a circuit component, if you use FDCE(=DFF), it will work as you expected



COMPONENT FDCE generic (INIT : bit := '1'); PORT (Q : OUT std logic; С : IN std logic; : IN std logic; CLR : IN std logic; : IN std logic); END COMPONENT: signal a : std logic; begin --a <= IP(0) or a; FDCEINST: FDCE generic map(INIT => '0') PORT MAP(=> a, => IP(0), CE => '1', CLR => '0', => '1' D); OP(0) <= a;

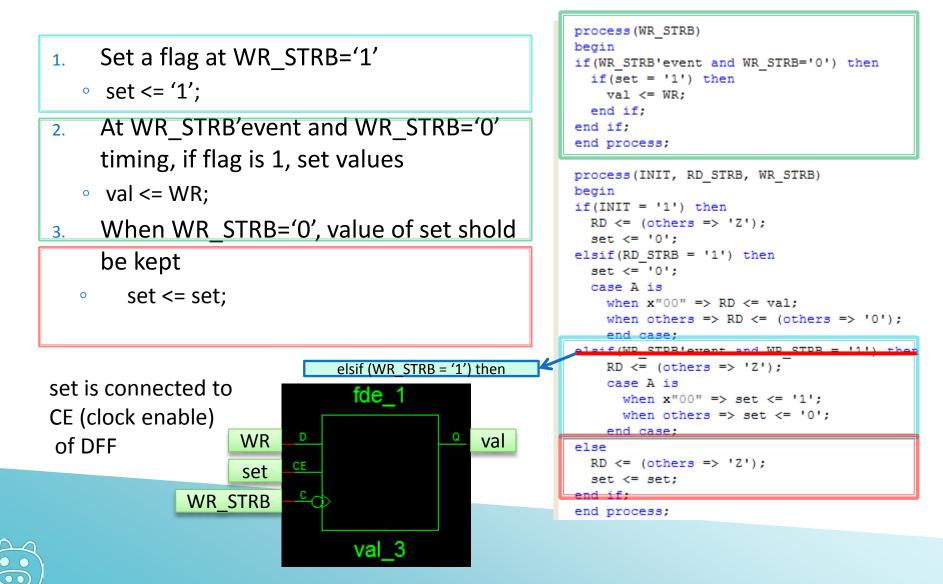
Accessing VME/CAMAC buses (Read for LUPO)


```
Latch data during RD_STRB = '1'
```


Accessing VME/CAMAC buses (for LUPO)

 Data are read from WD at the transition timing of WE_STRB '1' to '0'

Example of data readout (LUPO)


elsif (WR STRB = '1') then

- By using when statement, VME
 Address (CAMAC AF) is selected
- During RD_STRB='1', data must be latched on RD
 - RD <= val;
 </pre>
- Other cases, RD is unconnected
 - o RD <= (others => 'z');

```
process(WR STRB)
begin
if (WR STRB'event and WR STRB='0') then
  if(set = '1') then
    val <= WR:
  end if:
end if:
end process;
process(INIT, RD STRB, WR STRB)
begin
if(INIT = '1') then
  RD \ll (others => 'Z');
  set <= '0';</pre>
elsif(RD STRB = '1') then
  set <= '0':
  case A is
    when x"00" => RD <= val;</pre>
    when others => RD <= (others => '0');
    end case;
   if (WD_STDR!event and WD_STDR = 11
    RD \ll (others => 'Z');
    case A is
      when x"00" => set <= '1';
      when others => set <= '0';
    end case;
else
  RD \ll (others => 'Z');
  set <= set;
end if;
end process;
```


Example of data write (LUPO)

Make a scaler (counter)

- By using event, make a synchronous circuit
 - cnt <= cnt + 1
- When data readout, data must be latched at the RD_STRB, otherwise you get invalid values, sometimes
 - If cnt value is changed during readout, it is bad
 - There are skew (- 20ps) between all bits

```
entity SCRWORK is
    Port ( c : in STD LOGIC;
           rst : in STD LOGIC;
           q : out STD LOGIC VECTOR (3 downto 0));
end SCRWORK;
architecture Behavioral of SCRWORK is
signal cnt : std logic vector(3 downto 0) := "0000";
begin
q \leq cnt;
  process(rst, c)
  begin
    if(rst = '1') then
      cnt <= (others => '0');
    elsif(c'event and c='1') then
      cnt <= cnt + 1;
    end if:
  end process;
end Behavioral:
```


Latching the value of Scaler (Counter)

 Prepare the vector for readout

```
elsif(c'event and c='1') then
  cnt <= cnt + 1;
  if(f = '0') then
    iq <= cnt + 1;
  else
    iq <= iq;
  end if;
end if;
  lt is not "iq <= cnt;"
  If you this, you get value
  of cnt - 1</pre>
```

```
entity SCRWORK is
    Port ( c : in STD LOGIC;
           f : in STD LOGIC;
           rst : in STD LOGIC;
           q : out STD LOGIC VECTOR (31 downto 0));
end SCRWORK:
architecture Behavioral of SCRWORK is
signal cnt : std logic vector(31 downto 0) := x"00000000";
signal iq : std logic vector(31 downto 0) := x"00000000";
begin
q <= iq;
 process(rst, c)
 begin
   if(rst = '1') then
     cnt <= (others => '0');
      iq <= (others => '0');
   elsif(c'event and c='1') then
     cnt <= cnt + 1;
     if(f = '0') then
        iq <= cnt + 1;
      else
        iq <= iq;
     end if;
    end if:
  end process;
```

end Behavioral;

Declare usuful libraries

- library IEEE;
- use IEEE.STD_LOGIC_1164.ALL;

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
```

- use IEEE.STD_LOGIC_ARITH.ALL;
- use IEEE.STD_LOGIC_UNSIGNED.ALL;

cnt <= cnt + 1 requires ARITH

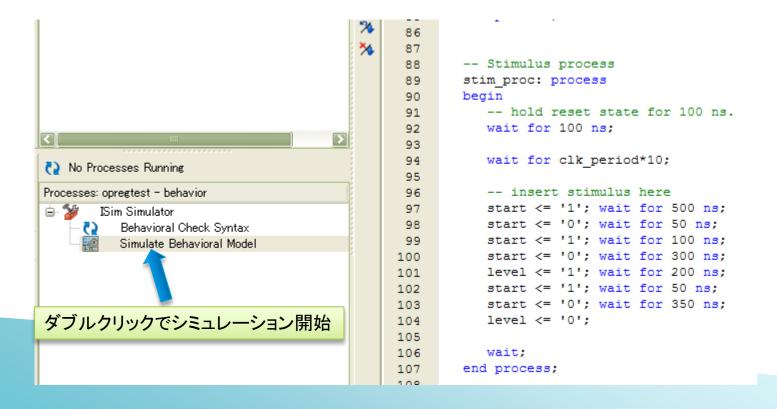
If you simulate with built in libraries such as FDCE, you have to uncomment like this

-- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. library UNISIM; use UNISIM.VComponents.all;

Do simulation

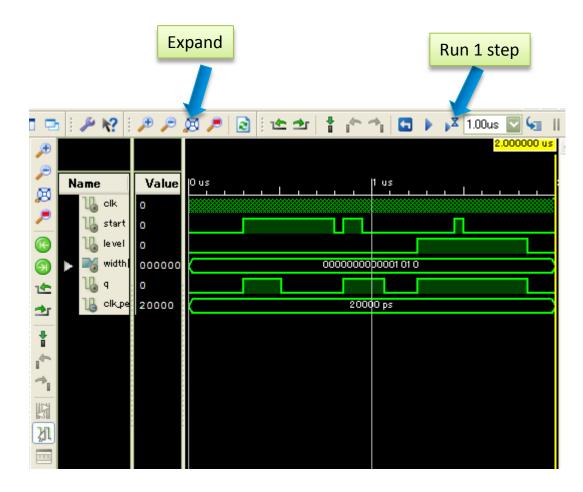
Create the Test Bench

📑 View: 💿 🄯 Implementation 🔿 🎆 Simulat	🚾 New Source Wizard	
Hierarchy VLUPODAQMaster Carteria xc3s500e-4pq208 Carteria Correctional (OPREG.vho	Select Source Type Select source type, file name and its location.	
OPREG - Behavioral (OPREG.vhd VLUPODAQMaster - Behavior div10mmap - DIVIDER - Behavior div10kmap - DIVIDER - Behavior div10kmap - DIVIDER - Behavior div1kmap - DIVIDER - Behavior STRBMAP - DIVIM - Behavior FVALPWID - FVAL - Behavior FVALINTDL - FVAL - Behavior FVALINTEC - FVAL - Behavior SCRMAP0 - SCALER - Behavior SCRMAP1 - SCALER - Behavior SCRMAP2 - SCALER - Behavior	 ChipScope Definition and Connection File Implementation Constraints File IP (CORE Generator & Architecture Wizard) MEM File Schematic User Document Verilog Module Verilog Test Fixture VHDL Module VHDL Library VHDL Package 	File name: Lo <u>c</u> ation: s¥DAQ¥FPGA¥LUPO¥Project¥VLUPODAQMaster
		Add to project
	More Info	Next > Cancel


Set initial values

```
--Inputs
signal clk : std logic := '0';
signal start : std logic := '0';
                                                                              Implementation
signal level : std logic := '0';
   signal width : std logic vector(15 downto 0) := (others => '0');
                                                                              Simulation
signal width : std logic vector(15 downto 0) := x"000a";
                                                                              Switch
--Outputs
signal q : std logic;
-- Clock period definitions
                                                            Design
                                                                                                  ↔ □ ♬
 constant clk period : time := 10 ns;
                                                                View: 🔘 🔯 Implementation 💿 🎆 Simulation
constant clk period : time := 20 ns;
                                                                Behavioral.
                                                            æ
                                                                Hierarchy.
                                                            6
                                                                   🝯 VLUPODAQMaster
                                                            🖮 🋄 xc3s500e-4pq208
                                                                     🐘 VLUPODAQMaster - Behavioral (VLUPODAQMa
                                                                   ÷
                                                                                                           2
                                                            a
                                                                   🖮 😘 opregtest - behavior (opregtest.vhd)
                                                                        🐘 uut - OPREG - Behavioral (OPREG.vhd)
                                                                                                           A
                                                            23
                                                                                                           %
                                                             1
                                                                                                           3
                                                             ×
```

Write like this


clock part are generated automatically

wait for 100ns; means 100ns passing

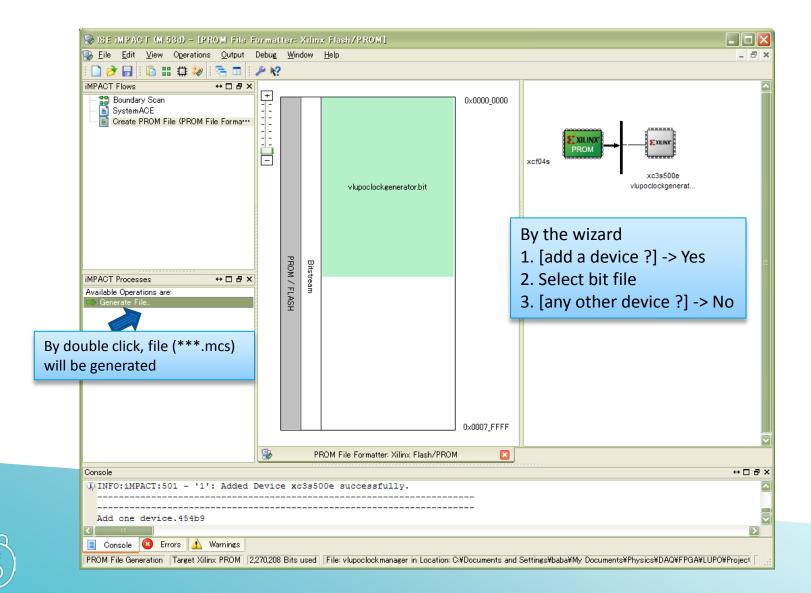
ISim

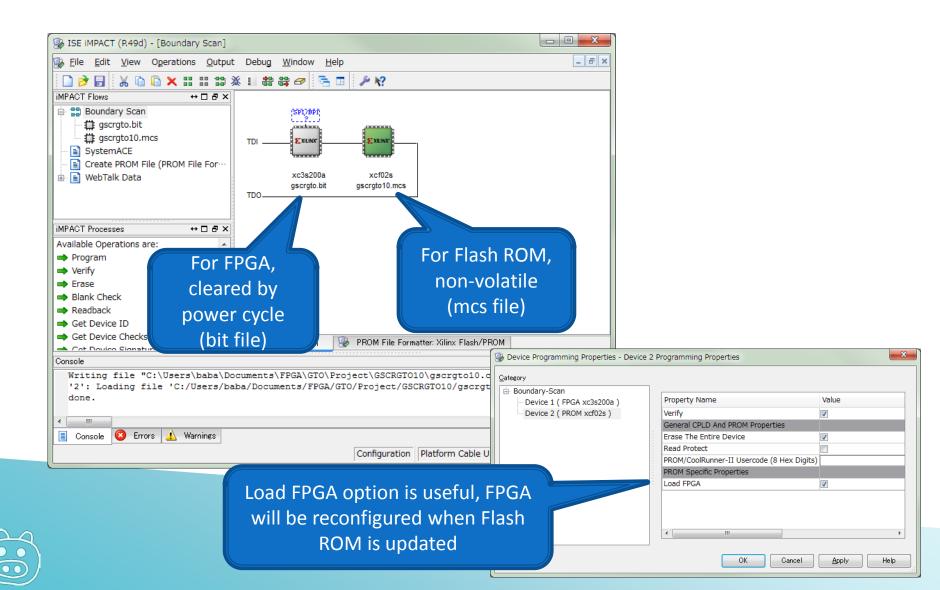
Download firmware to LUPO/GTO

Generate Programming File

- bit file is generated
- Configure Target Device
 - Launch iMPACT
 - Make file for the flash memory from bit file
 - Load into FPGA

First step, PROM = Flash Memory file


😺 Welcome to IMPACT 🛛 🔀							
Please select an action from the list below							
O Configure devices using Boundary-Scan (JTAG)							
Automatically connect to a cable and identify Boundary-Scan chain 💌							
Prepare a PROM File							
O Prepare a System ACE File							
O Prepare a Boundary-Scan File							
SVF 🔍							
OK							


Setting of PROM file

		GTO case	, it is xcf02s						
😵 PROM File Formatter			,	-					×
Step 1. Selec	t Storage T	arget	St 2.	Ado	d Storage Device(s)		Step 3.		Enter Data
Storage Device Type :		Choose	xcf04s and A	Add	Platform Flash		ieneral File Detai		Value
Xilinx Flash/PROM			Dey (bits)	-	xct04s [4 M]		Checksum Fill Value	FF	
Grim Spartan3AN Grim SPI Flash			Add Storage	Device	Remove Storage Device		Output File Name	vlupoclockman	ager
Configure Single FPGA Configure MultiBoot FP	GA		xcf04s	[4 M]			Output File Location	O/Project/VLUP	OClockGenerator 📂
Configure Single FPGA	GA						Flash/PROM F	ile Property	Value
Configure from Parallel	ed PROMs						File Format		MCS 🔽
Generier araller Koh							Add Non-Configura	tion Data Files	No
	Choose	Xilinx Flash	n/PROM						
	and pres	SS							
			Auto Selec	t PROM					
Description:									
In this step, you will enter information to assist in setting up and generating a PROM file for the targeted storage device and mode. • Checksum Fill Value: When data is insufficient to fill the entire memory of a PROM, the value specified here is used to calculate the checksum of the unused portions.									
• Output File Name: T • Output File Location	his allows you to sp	ecify the base n	ame of the file to v	which your	PROM data will be written	to calcu	iate the checkSUM o	r are unused por	
 File Format: PROM file 	es can be generate	ed in an yn umber	of industry standa	rd formats.	Depending on the PROM file fo hat utilize IEEE Std 1532. Third				
							Ōĸ	<u>C</u> an c	el Help

Generate PROM file

Download firmware

Ex. mistake case, conv_std_logic_vector

- Converting to the numerical value of 5000000 to the 24bits vector
- conv_std_logic_vector(5000000, 24)

• Good

- conv_std_logic_vector(24, 500000)
 - Converting the numerical value of 24 to the 500000bits vector
 - Synthesize take so long time

"downto" and "to"

- signal a : std_logic_vector(3 downto 0) := "3210"
 - Using vector, downto is usual
 - Writing initial value with "bit", it is common that the most right position is 0-th bit
- type ARINT is array(3 downto 0) of integer;
 - constant b : ARINT := (0,1,2,3);
 - It will be b(0)=3, b(1)=2, b(2)=1,b(3)=0
- type ARINT is array(0 to 3) of integer;
 - constant b : ARINT := (0,1,2,3);
 - b(0)=0, b(1)=1, b(2)=2,b(3)=3
 - Depending on custom,,, when array, to is easier to understand

If you find a warning of black box

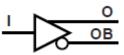
- attribute box_type : string;
- attribute box_type of FDCE : component is "black_box";
- Warning will be solved

```
COMPONENT FDCE
generic (INIT : bit := '1');
PORT(
    Q : OUT std_logic;
    C : IN std_logic;
    CE : IN std_logic;
    CLR : IN std_logic;
    D : IN std_logic;;
    END COMPONENT;
attribute box_type : string;
attribute box_type of FDCE : component is "black box";
```

 Or, you don't need to declare COMPONENT that are defined in Xilinx Library, simply uncomment these lines

> -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. library UNISIM; use UNISIM.VComponents.all;

Using LVDS


IBUFDS Input

- For input case, write DIFF_TERM = TRUE
- Terminator is installed

```
INST "LVDSn*" DIFF_TERM = "TRUE";
INST "LVDSp*" DIFF_TERM = "TRUE";
```

OBUFDS Output


```
component OBUFDS
port (
    I : in STD_LOGIC;
    O : out STD_LOGIC;
    OB : out STD_LOGIC);
end component;
```

```
LVDSOUT_MAPgene : for i in 0 to 15 generate
LVDSOUT_MAP : OBUFDS
   port map (
        I => LVDSio(i),
        0 => LVDSp(i),
        OB => LVDSn(i));
end generate;
```

signal LVDSio : std logic vector(15 downto 0);

GCLK and BUFG

- Inputs assigned to GCLK can be used as a Clock (having small Skew and Delay)
 - IPO and LVDSClockp/n
- By connecting BUFG, other inputs are also can be used as a Clock (it will be the Clock of many other circuit components)
 - Basically, it is automatically connected at the Place & Route
 - Following declaration is necessary in UCF

NET "WR_STRB" CLOCK_DEDICATED_ROUTE = FALSE;

- With larger circuit, please check "Place & Route Report"
 - In case of Local (not BUFGMUX) and Skew is large, the wiring tuning with PlanAhead is necessary

+	+	+	+	++	+	+
Ļ	Clock Net	Resource	Locked	Fanout	Net Skew(ns)	Max Delay(ns)
į	IP_2_IBUF	BUFGMUX_X1Y1	No	32	0.023	0.168
ļ	div1kmap/iq	BUFGMUX_X2Y0	No	32	0.017	0.165
i	trg	BUFGMUX_X2Y1	No	48	0.043	0.165
I	CLOCK_BUFGP	BUFGMUX_X2Y11	No	180	0.086	0.203
i	div10kmap/iq	BUFGMUX_X1Y0	No	32	0.019	0.164
ļ	IP_1_IBUF	BUFGMUX_X1Y11	No	32	0.018	0.168
l	rawtrg	BUFGMUX_X3Y8	No	33	0.033	0.092
ļ	IP_3_IBUF	BUFGMUX_X0Y8	No	32	0.021	0.113
į	div10mmap/iq	BUFGMUX_X3Y4	No	32	0.013	0.085
ļ	IP_0_IBUF	BUFGMUX_X1Y10	No	32	0.018	0.168
ļ	wrstrbg	BUFGMUX_X3Y9	No	76	0.063	0.122
i	Inst_TRGVET0/q1	Local		5	0.000	1.744
+						+

