Table of Contents

1 General 1
  1.1 Function ................................................................. 1
  1.2 Output register ......................................................... 1
  1.3 Interrupt register ...................................................... 1
  1.4 Input register .......................................................... 1
  1.5 Scaler ................................................................. 1
  1.6 Connector ............................................................... 1

2 Interface 3
  2.1 Register Map ............................................................ 3
    2.1.1 Pulse Width ......................................................... 3
    2.1.2 Interrupt Delay ..................................................... 3
    2.1.3 Level Output ......................................................... 3
    2.1.4 Pulse Output ........................................................ 3
    2.1.5 Trigger source ....................................................... 5
    2.1.6 Through input ...................................................... 5
    2.1.7 Latch input .......................................................... 6
    2.1.8 Output Configuration 0–3 .......................................... 6
    2.1.9 AND/OR Logic 0–3 ................................................... 7
    2.1.10 Trigger Configuration ............................................. 7
    2.1.11 Trigger Activation ................................................ 7
    2.1.12 Delay Logic Delay time .......................................... 8
    2.1.13 Delay Logic source ................................................ 8
    2.1.14 Delay Logic clear .................................................. 8
    2.1.15 Clear Aux Scaler ................................................... 8
    2.1.16 Delay logic soft clear .......................................... 8
    2.1.17 Disable Interrupt ................................................. 9
    2.1.18 Enable Interrupt .................................................. 9
    2.1.19 Version ............................................................... 9

3 Appendix 11
  3.1 Version Information ................................................... 11
1 General

1.1 Function

1.2 Output register

As a output register, NIM outputs ch0–1 can fire pulse and level signals. The width of
NIM pulse is variable, and it can be changed 20ns–1.3ms with 20 ns step.

1.3 Interrupt register

As a interrupt register, this module can generate the interrupt signal to VME/CAMAC.
The delay time between trigger signal and interrupt generation is variable, and it can be
changed 20ns–1.3ms with 20ns step. By the clear command, this interrupt signal is
cleared.

1.4 Input register

There are three types of input register (trigger source, through input, latched input).
The trigger source input register is that input pattern is hold by the trigger. The through
input is just a condition of trigger logic signals and inputs. The latched input is when
trigger logic or input comes, its bit is latched. And it is cleared by clear command.

1.5 Scaler

There are several types of scaler (counter) registers. Scaler 0–3ch are the counter of
input channel 0–3ch. Internal ungated and gated triggers could be obtained. Clock 1,
10K, 1KHz are the internal clock counters. Clock 10KHz Aux is a special clock counter
of 10KHz. The clear function or Aux Scaler is independent of other scalers. The read
access of Clear all scaler clean up all scaler values except for this Aux Scaler. To clear
the Aux Scaler, read access of Clear Aux Scaler or Clear All is required.

1.6 Connector
Input 0 : 0
Input 1 : 2
Input 2 : 4
Input 3 : 6

Output 0ch
Output 1ch

1 : Module access
3 : Interrupt
5 : Trigger
7 : Accepted
2 Interface

2.1 Register Map

Command list.(Tab.2.1).

2.1.1 Pulse Width
F(4)A(0) F(20)A(0) / Base+%40 D16RW

Set the pulse width of the output register. 1 point corresponds to 20ns, and default value is 10 = 200ns. The maximum value is 65536 ≃ 1.3 ms.

2.1.2 Interrupt Delay
F(4)A(1) F(20)A(1) / Base+%42 D16RW

Set the delay time from trigger generation timing to interrupt generation timing. 1 point corresponds to 20ns, and default value is 10 = 200ns. The maximum value is 65536 ≃ 1.3 ms.

2.1.3 Level Output
F(16)A(0) / Base+%00 D16W

Output NIM Level signal. 1=on, 0=off.

2.1.4 Pulse Output
F(17)A(0) / Base+%10 D16W

Output NIM pulse with given width.
<table>
<thead>
<tr>
<th>CAMAC (R/W)</th>
<th>VME</th>
<th>Register</th>
<th>Data</th>
<th>VME R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(0)A(0)</td>
<td></td>
<td>Base + %00 Clock 1MHz</td>
<td>D32</td>
<td>read</td>
</tr>
<tr>
<td>F(0)A(2)</td>
<td></td>
<td>Base + %04 Clock 10KHz</td>
<td>D32</td>
<td>read</td>
</tr>
<tr>
<td>F(0)A(4)</td>
<td></td>
<td>Base + %08 Clock 1KHz</td>
<td>D32</td>
<td>read</td>
</tr>
<tr>
<td>F(0)A(6)</td>
<td></td>
<td>Base + %0c Clock 10KHz Aux</td>
<td>D32</td>
<td>read</td>
</tr>
<tr>
<td>F(16)A(0)</td>
<td></td>
<td>Base + %00 Level Output</td>
<td>D16</td>
<td>write</td>
</tr>
<tr>
<td>F(17)A(0)</td>
<td></td>
<td>Base + %10 Pulse Output</td>
<td>D16</td>
<td>write</td>
</tr>
<tr>
<td>F(1)A(0)</td>
<td></td>
<td>Base + %10 Ungated trigger</td>
<td>D32</td>
<td>read</td>
</tr>
<tr>
<td>F(1)A(2)</td>
<td></td>
<td>Base + %14 Gated trigger</td>
<td>D32</td>
<td>read</td>
</tr>
<tr>
<td>F(2)A(0)</td>
<td></td>
<td>Base + %20 Scaler 0ch</td>
<td>D32</td>
<td>read</td>
</tr>
<tr>
<td>F(2)A(2)</td>
<td></td>
<td>Base + %24 Scaler 1ch</td>
<td>D32</td>
<td>read</td>
</tr>
<tr>
<td>F(2)A(4)</td>
<td></td>
<td>Base + %28 Scaler 2ch</td>
<td>D32</td>
<td>read</td>
</tr>
<tr>
<td>F(2)A(8)</td>
<td></td>
<td>Base + %2c Scaler 3ch</td>
<td>D32</td>
<td>read</td>
</tr>
<tr>
<td>F(3)A(0)</td>
<td></td>
<td>Base + %30 Trigger source</td>
<td>D16</td>
<td>read</td>
</tr>
<tr>
<td>F(3)A(1)</td>
<td></td>
<td>Base + %32 Through input</td>
<td>D16</td>
<td>read</td>
</tr>
<tr>
<td>F(3)A(2)</td>
<td></td>
<td>Base + %34 Latch input</td>
<td>D16</td>
<td>read</td>
</tr>
<tr>
<td>F(4)A(0)</td>
<td>F(20)A(0)</td>
<td>Base + %40 Pulse Width</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(4)A(1)</td>
<td>F(20)A(1)</td>
<td>Base + %42 Interrupt Delay</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(4)A(3)</td>
<td>F(20)A(3)</td>
<td>Base + %46 Delay logic Delay</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(4)A(4)</td>
<td>F(20)A(4)</td>
<td>Base + %48 Delay logic Source</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(4)A(5)</td>
<td>F(20)A(5)</td>
<td>Base + %4a Delay logic Clear</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(5)A(0)</td>
<td>F(21)A(0)</td>
<td>Base + %50 Output 0ch Config</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(5)A(1)</td>
<td>F(21)A(1)</td>
<td>Base + %52 Output 1ch Config</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(5)A(2)</td>
<td>F(21)A(2)</td>
<td>Base + %54 Output 2ch Config</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(5)A(3)</td>
<td>F(21)A(3)</td>
<td>Base + %56 Output 3ch Config</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(6)A(0)</td>
<td>F(22)A(0)</td>
<td>Base + %60 AND/OR Register 0</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(6)A(1)</td>
<td>F(22)A(1)</td>
<td>Base + %62 AND/OR Register 1</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(6)A(2)</td>
<td>F(22)A(2)</td>
<td>Base + %64 AND/OR Register 2</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(6)A(3)</td>
<td>F(22)A(3)</td>
<td>Base + %66 AND/OR Register 3</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(6)A(4)</td>
<td>F(22)A(4)</td>
<td>Base + %68 Trigger Configuration</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(6)A(5)</td>
<td>F(22)A(5)</td>
<td>Base + %6a Trigger Activation</td>
<td>D16</td>
<td>read/write</td>
</tr>
<tr>
<td>F(7)A(0)</td>
<td></td>
<td>Base + %70 Version</td>
<td>D16</td>
<td>read</td>
</tr>
<tr>
<td>F(9)A(0)</td>
<td></td>
<td>Base + %90 Clear interrupt &amp; busy</td>
<td>D16</td>
<td>read</td>
</tr>
<tr>
<td>F(9)A(1)</td>
<td></td>
<td>Base + %92 Clear all scaler</td>
<td>D16</td>
<td>read</td>
</tr>
<tr>
<td>F(9)A(2)</td>
<td></td>
<td>Base + %94 Clear trigger scaler</td>
<td>D16</td>
<td>read</td>
</tr>
<tr>
<td>F(9)A(3)</td>
<td></td>
<td>Base + %96 Clear all</td>
<td>D16</td>
<td>read</td>
</tr>
<tr>
<td>F(9)A(4)</td>
<td></td>
<td>Base + %98 Clear Aux Scaler</td>
<td>D16</td>
<td>read</td>
</tr>
<tr>
<td>F(9)A(5)</td>
<td></td>
<td>Base + %9a Delay Logic Soft Clear</td>
<td>D16</td>
<td>read</td>
</tr>
<tr>
<td>F(24)A(0)</td>
<td></td>
<td>Base + %80 Disable Interrupt</td>
<td>D16</td>
<td>write</td>
</tr>
<tr>
<td>F(26)A(0)</td>
<td></td>
<td>Base + %A0 Enable Interrupt</td>
<td>D16</td>
<td>write</td>
</tr>
</tbody>
</table>
2.1.5 Trigger source
F(3)A(0) / Base+\%30 D16R

This register returns the hit pattern of AND/OR Logic and Input channels. The hit pattern is latched by the trigger timing. This register can be used as the coincidence/input register. By accessing the Clear interrupt or Clear all register, this register is cleared.

2.1.6 Through input
F(3)A(1) / Base+\%32 D16R

This register returns the current hit pattern of AND/OR Logic and Input channels.
2.1.7  Latch input  
F(3)A(0) / Base+%34 D16R  

This register returns the hit pattern of AND/OR Logic and Input channels. The hit pattern is hold when input comes. By accessing the Clear interrupt or Clear all register, this register is cleared.

2.1.8  Output Configuration 0–3  
F(5)A(0–3) F(21)A(0–3) / Base+%50–56 D16RW  

Configure NIM output channels. You can select the output channel as Ungated (Generated) Trigger, Gated (Accepted) Trigger, VETO, and output register. From rev1.4, AND/OR logic 0–3 can be output. Usually, you should on only 1 bit, if multiple bits are on, output will be OR of these. As an output register case, Output Config. 0 will be Output Reg. 0, Output Config 1 will be Output Reg. 1. The default values are: Ch.0 = “0001”ACh.1 = “0001”ACh.2 = “0010”ACh.3 = “0100” (Ch.0 and 1 are as the Output Reg. Ch.2 is Ungated Trigger, Ch.3 is Gated Trigger.)
2.1.9 AND/OR Logic 0–3

F(6)A(0–3) F(22)A(0–3) / Base+%60–66 D16RW

Register AND/OR logic to define the trigger. By setting these AND/OR logic to Trigger Register, the configuration of the trigger generation is determined. 4th bit corresponds to AND(=1) / OR(=0). For example, “10011” means that register logical AND or Ch0 and Ch1. “01001” case, it is logical OR of Ch0 and Ch3. The default values are: lo0 = “00001” Ao1 = “00010” Ao2 = “00100” Ao3 = “01000”.

2.1.10 Trigger Configuration

F(6)A(4) F(22)A(4) / Base+%68 D16RW

Select AND/OR logic as the trigger source. This case, trigger will be OR of selected bits. The default value is “0001”.

2.1.11 Trigger Activation

F(6)A(5) F(22)A(5) / Base+%6a D16RW

The validation of trigger and VETO. (1=On, 0=Off) ’01’(=1) is used to check the trigger. ’11’(=3) is DAQ start case. ’00’(=0) or ’10’(=2) cases, ungated trigger isn’t generated. The default value is ’01’(=1).
2.1.12 Delay Logic Delay time
F(4)A(3) F(20)A(3) / Base+%46 D16RW

Set the delay time from the delay logic. 1 point corresponds to 20ns, and default value is 100 = 2000ns. The maximum value is 65536 \approx 1.3 \text{ ms}.

2.1.13 Delay Logic source
F(4)A(4) F(20)A(4) / Base+%48 D16RW

Choose AND/OR logic as the delay logic source. Source signal will be OR of selected bits. The default value is "0000" (disable).

2.1.14 Delay Logic clear
F(4)A(5) F(20)A(5) / Base+%4a D16RW

Choose AND/OR logic for the delay logic clear. Source signal will be OR of selected bits. The default value is "0000" (disable).

2.1.15 Clear Aux Scaler
F(9)A(4) / Base+%98 D16R

Clear 10KHz Aux scaler only. VME case, this register is read access.

2.1.16 Delay logic soft clear
F(9)A(5) / Base+%9a D16R

Software clear for delay logic function.
2.1.17 Disable Interrupt

Disable VME/CAMAC interrupt. VME case, this register is write access.

2.1.18 Enable Interrupt

Enable VME/CAMAC interrupt. VME case, this register is write access.

2.1.19 Version

Returns version code of this module. Following is VME DAQ Master Rev 1.6:

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMAC/VME</td>
<td>Module ID</td>
<td>Rev X.X</td>
<td>Rev X.X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
3 Appendix

3.1 Version Information

1.6 Delay logic function is added

1.5 AND/OR logic can output from NIM Output

1.4 Bug fix for Scaler3 readout

1.3 Aux Scaler is implemented.

1.2 Through input and latch input are implemented.

1.1 Interrupt function is fixed. The trigger source register is available. Clocks and through signals are available on the output configuration.

1.0 First version