Exotic molecular states in the α +^{6,8}He resonant scattering

M. Ito and N. Itagaki

RIKEN Nishina center, RI Physics Laboratory, RIKEN

Department of Physics, University of Tokyo

Nuclear clustering in N-rich nuclei

<u>1. α-clustering in stable nuclear systems</u>

⁸Be =
$$2\alpha$$
, ¹²C = 3α , ¹⁶O = α + ¹²C, ²⁰Ne = α + ¹⁶O

2. Clustering in N-rich systems : Clusters + XN

Example : Be isotopes = 2α +XN

Ω

α

Molecular Orbital model : N. Itagaki et al., PRC61,62 (2000)

Studies on neutron-rich systems in 3-dimensional space

(N,Z): Two Dimension

Linear Combination of Atomic Orbital (LCAO)

$$(\sigma^+)^2 = (P_z(L) - P_z(R))^2$$

 $= P_z(L) \cdot P_z(L) + P_z(R) \cdot P_z(R) - 2P_z(L) \cdot P_z(R)$ ⁶He + α α + ⁶He ⁵He + ⁵He

Total wave function

Formulation

$$\Psi = \sum_{\beta,S} \underline{C(\beta,S)} P_{\mathsf{m}}(\mathsf{a}) \cdot P_{\mathsf{n}}(\mathsf{b})$$

Variational PRM

 $(\mathbf{m},\mathbf{n})=\mathbf{x},\mathbf{y},\mathbf{z}$ $(\mathbf{a},\mathbf{b})=\mathbf{L},\mathbf{R}$

Parity doublet formation in adiabatic energy surfaces

P-Doublet :
$$\Psi^{(\pm)} = \left\{ \begin{array}{c} & & & \\ & & & \\ \end{array} \right\}$$

$$J^{\pi} = 0^{+} (\text{Long range coupling})$$

$$J^{\pi} = 1^{-} (\text{Avoided Crossing})$$

$$J^{\pi} = 1^{-} (\text{Avoided Crossing})$$

$$J^{\pi} = 1^{-} (\text{Avoided Crossing})$$

$$(- \text{ parity})$$

$$(- \text{ parity$$

Coupled channels in α +⁶He elastic scattering (J^{π} =0⁺)

Coupled channels in α +⁶He elastic scattering (J^{π} =1⁻)

Non-adiabatic transition strongly occurs.

(B. Imanisi et al., Phys. Rep. 155)

Enhancements in α +⁶He inelastic scattering

 $J^{\pi} = 0^+$ Resonance Poles

 $J^{\pi} = 1^{-}$ L-Z level crossing

Comparison between α +⁶He and α +⁸He scattering

¹⁰Be(0⁺) : Res. in Inel. Scatt.

 $^{12}Be(0^+)$: Res. in Transfer ch.

- 1. Studies on N-rich systems in (N,Z,E) space is very interesting.
- 2. Unified description of structures and reaction becomes quite important.
- 3. We show some enhancements in the α +⁶He and α +⁸He scattering.

Results of ¹⁰Be

- 1. Molecular and atomic states coexist in this system.
- 2. Reaction process is different between the positive parity and the negative one.
- 3. L-Z transition is predicted in connection to the Parity doublet.

Results of ¹²Be

- 1. Resonances will be observed in two neutron transfers.
- 2. Exotic structures are excited. (I will report at YITP post symposium.)

Coupled channels with the adiabatic states

Resonances in α + ⁸He \Rightarrow ^xHe + ^yHe

Unified studies in neutron-rich system

$$u^{rel}(\alpha, R, S) \varphi^{in}(\alpha, \xi_{\alpha})$$

$$\Phi^{AD}(i,S) = \sum_{\beta} C_{\beta}(i) u^{rel}(\beta, R_{\beta}, S) \varphi^{in}(\beta, \xi_{\beta})$$
$$u^{rel}(\beta, R_{\beta}, S) \propto \exp\left[-\nu(R_{\beta} - S)^{2}\right]$$
$$u^{rel}(\alpha, R_{\alpha}, S) \propto \exp\left[-\nu(R_{\alpha} - S)^{2}\right] \quad (R \leq R_{c})$$
$$u^{(-)}_{L\alpha}(R_{\alpha}) - \varepsilon u^{(+)}_{L\alpha}(R_{\alpha}) \quad (R \geq R_{c})$$

$$\Psi = \sum_{i,S} f(i,S) \Phi^{AD}(i,S)$$
$$(H-E)\Psi = 0$$

Generalized Two-center cluster model (GTCM) : PLB588

Generalized Two-center cluster model (GTCM) : PLB588

