Direct reactions with exotic beams of neutron-rich nuclei near ¹³²Sn

Jolie A. Cizewski Department of Physics & Astronomy Rutgers University

Collaboration RIBENS/Center of Excellence

Rutgers University J.A.C., R. Hatarik, P.O'Malley, Steve Pain, T. Swan

ORNL D.W. Bardayan, J.C. Blackmon, F. Liang, C.D. Nesaraja, D. Shapira, M.S. Smith

Univ. Tennessee K.Y. Chae, <u>Kate L. Jones</u>, Z. Ma, B.H. Moazen

Tennessee Tech Ray Kozub, J.Shriner, D.Sissom

ORAU C. Matei

University of Surrey J.S. Thomas

Colorado School of Mines K. Chipps, L. Erikson, R.J. Livesay

Ohio University A. Adekola

Warsaw W. Krolas

Funded in part by the U.S. DOE Office of Science & NNSA/SSAA and the National Science Foundation.

Measuring (d,p) on Rare Isotopes near Shell Closures

Double shell closure Z=50, N=82

¹³²Sn(d,p)¹³³Sn, ¹³⁰Sn(d,p)¹³¹Sn and ¹³⁴Te(d,p)¹³⁵Te measurements completed

¹³²Sn(d,p) kinematics @ 4.7 A-MeV

ORRUBA: Oak Ridge Rutgers University Barrel Array

- Flexible design for measuring ejectiles from transfer reactions in inverse kinematics
- Resistive and non-resistive Si detectors (1000μm, 500μm and 65μm)
- ORRUBA gives ~80% ϕ coverage over the range 47° \rightarrow 132°
- 288 electronics channels (conventionally instrumented)

¹³²Sn(d,p) detectors

N=82 (d,p): What should one expect to see?

N=83 Systematics

Location of p_{1/2} state

 Tentatively observed via β-delayed neutron decay
P.Hoff et al PRL 77, 1020

 Not observed following prompt fission of ²⁴⁸Ca
W.Urban et al
Eur. Phys. J. A. **5** 239

DREB Jun 2007

¹³²Sn(d,p): "all" ORRUBA detectors

Single Particle Energies defined

Previously two (unhappy) alternatives:

- SPEs straight from experiment i.e. including the p_{1/2} at 1656 keV. OR
- Extract from states in other nuclei e.g. Z=54, 56 isotones
 Sakar and Sakar Phys. Rev. C64 014312 (2001).

NOW correct SPE's

- Calculations of masses, other nuclear properties
- Nuclear astrophysics

Revised N=83 systematics

¹³⁴Te(d,p) Kinematics

Single strip

¹³⁴Te(d,p): Q-value spectrum

¹³⁰Sn(d,p): What should one expect to see?

Work in progress and to come

- Analysis of all detectors, all experiments
- Angular distributions
 - To support p_{1/2} assignment of 1390-keV state in ¹³³Sn
 - For all states populated in ¹³³Sn, ¹³⁵Te, ¹³¹Sn
- Spectroscopic factors/ANC's
- Elastic scattering in forward angle detectors

Summary and Comments

- ¹³²Sn(d,p):
 - Confirm 3 previously measured states
 - Populate (p_{1/2}) state (for first time) at E_x=1390(40) keV
 - Better agreement with systematics and theory
- 134Te(d,p):
 - Candidate for f_{5/2} at ≈1.8 MeV
- ■¹³⁰Sn(d,p):
 - States above N=82 gap:
 - "Same" spectrum E_x>2.6 MeV as ¹³³Sn

Direct reactions with exotic beams of neutron-rich nuclei near ¹³²Sn

Work supported in part by the U.S. Department of Energy and National Science Foundation

DREB Jun 2007

