Unbound states of neutron-rich oxygen isotopes: Investigation into the N=16 shell gap

Motivation to Study ²⁵O

Why is the oxygen drip line at ²⁴O?

• ²⁶O unbound to neutron decay • ²⁸O should be tightly bound if the traditional magic numbers exist (Z = 8, N = 20), but found to be unbound

Shell evolution for neutron-rich nuclei

- Evidence for a new magic number at N = 16
 - •²⁴O is now doubly magic (Z = 8, N = 16)
- Must understand the location of the $vOd_{3/2}$ single-particle orbit

Shell Gap Evolution for Large T_z

S_n (MeV)

One Neutron Separation Energies

Sn = -M(A,Z) + M(A-1,Z) + n

• Low Isospin N = 8 and 20 Gaps

• High Isospin Evidence of a New Gap at N =16

Calem Hoffman_DREB2007_May 31, 2007

Taken from: A. Ozawa *et al.*, Phys. Rev. Lett. 84, 5493 (2000).

Evolution of Effective Single Particle Energies

Evolution of Effective Single Particle Energies

Taken from: Otsuka *et al.*, Eur. Phys. J. A **15** 151-155 (2002)

250 Measurement

$^{25}\mathrm{O}$ good nucleus to study the size of the $2\mathrm{s}_{1/2}$ - $1\mathrm{d}_{3/2}$ shell gap

• One neutron in the $d_{3/2}$ just beyond the N = 16 gap (N = 17)

• Neutron unbound so cannot study with standard mass-measurement techniques ($\tau \sim 10^{-21} s$)

•Must use neutron spectroscopy

24

d_{3/2}

 $s_{1/2}$

 0^{+}

²⁵O: Experimental Method

- One proton knockout from a radioactive ²⁶F beam
- ²⁵O immediately neutron decays
- ²⁴O fragment selected by sweeper magnet and measured in focal plane
- Neutron detected by MoNA
- Invariant mass method used to determine ²⁵O decay

Production of ²⁶F Beam at NSCL

Experimental Setup

MSU/FSU Sweeper Magnet

- Large gap dipole magnet
 - 14 cm vertical
- 4 Tm maximum central track rigidity
- ~ 16% total momentum acceptance
- Bend angle of 43^0

Constructed at the National High Magnetic Field Laboratory (NHMFL) at Florida State University.

The Modular Neutron Array (MoNA)

ToF Neutron Detector

- 10 X 10 X 200 cm Bar of Plastic Scintillator
- 9 Layers of 16 Stacked Bars
- Time Resolution < 1 ns
- Position Resolution ~ 10 cm
- Detection Efficiency ~ 70 % for 85 MeV/A Neutrons

Distinguishing ²⁶F Secondary Beam

• Flight Time from A1900 to Target

• Clean Separation of ²⁶F from ²⁹Na

²⁶F Rate:
~ 0.8 pps/pnA

Element Identification

• Energy loss of a charged particle through a material:

 $dE/dX \sim mZ^2 / E$

- Use energy measurements:
 - Ion Chamber
 - Thin Plastic Scintillator
 - Thick Plastic Scintillator

Total Energy (MeV)

Isotopic Separation (Z = 8)

- Constant $B\rho \sim v*(A/Z)$ - TKE ~ 1/A
- Adjusted tof ~ A
 - Time-of-flight between target and plastic scint.
 - Adjusted for flight path
 - FP dispersive angle, position
 - Target positions

Neutron Energies and Positions

Neutron Energies and Positions

²⁵O Decay Spectrum

Results

- 820(20) keV for removal of 0d_{3/2} neutron
 - $-S_n = -820(20) \text{ keV}$
 - ESPE for $0d_{3/2}$
- $\Gamma = 90(30)$ keV consistent with $\Gamma_{s.p}$ ~ 90 keV for l = 2 neutron w/ spectroscopic factor of 0.92

 $-\tau \sim 7 \times 10^{-21} \text{ sec}$

Calem Hoffman DREB2007 May 31, 2007

 $3/2^{+}$

l = 2

()+

25

24

 $0d_{3/2}$.

 $0d_{3/2}$

1s_{1/2}

Theory comparison

^a B. Alex Brown website: http://www.nscl.msu.edu/~brown

Discussion / Future Work

• USD-USD05 differ by an ~ 0.5 MeV increase in the $0d_{3/2}$ ESPE (N = 16 gap)

Although USD05 predicts unbound ²⁶O, it over predicts the size of the N = 16 gap for ²⁵O !! MCSM Predictions?

- Reduction of the N = 20 gap, lowered fp shells
- Reduction of N,Z = 8 gap for O,F neutron-rich isotopes

Summary

Knock-out reactions useful for studying unbound neutron-rich nuclei

- Produced ²⁵O via 1p removal from ²⁶F beam
- Using MoNA-Sweeper setup at NSCL/MSU reconstructed decay
- Resonance measured at 820(20) keV
- Agreement is better with old USD

Acknowledgments

Florida State: <u>S. L. Tabor</u>, G. V. Rogachev and A. Volya

MoNA Collaboration: <u>M. Thoennessen^a</u>, D. Bazin^a, T. Baumann^a, P. Deyoung^b, N. Frank^c, J. Hinnefeld^d, W. A. Peters^a, A. Schiller^a, and H. Scheit^a

- ^aNSCL / Michigan State University
- ^b Hope College
- ^c Concordia College
- ^d Indiana University at South Bend