Mechanisms in knockout reactions

D. Bazin
National Superconducting Cyclotron Laboratory
Michigan State University
Motivation

- Knockout reactions have become a common tool to study the structure of nuclei far from stability
- Determination of spectroscopic factors relies on reaction theory to calculate single-particle cross sections
- It is essential to test the validity and accuracy of the reaction theory
Knockout reactions on fast beams

- Removal of one or two nucleons via nuclear interaction with a low-Z target (typically 9Be or 12C)
 - Direct (one-step) reaction
 - Measure probability of finding A-1 or A-2 residual nucleus in a given state
 - Composition of initial nucleus wave function
 - Spectroscopy of residual nucleus
Knockout reactions on fast beams

- **Removal of one or two nucleons via nuclear interaction with a low-Z target (typically 9Be or 12C)**
 - Direct (one-step) reaction
 - Measure probability of finding A-1 or A-2 residual nucleus in a given state
 - Composition of initial nucleus wave function
 - Spectroscopy of residual nucleus

- **High sensitivity well adapted to radioactive beams**
 - Residual nucleus forward focused because of inverse kinematics
 - Final state of residual nucleus identified via γ-ray detection
 - Thick targets give high luminosity
Determination of spectroscopic factors

- Theoretical cross section between initial and final states directly related to spectroscopic factors

\[\sigma_{if} = \sum_{|J_f - J_i| \leq j \leq J_f + J_i} S_{jf}^i \sigma_{sp} \]

- Experimental determination of cross sections
 - Angular momentum of removed nucleon(s) deduced from parallel momentum distribution of residual nucleus
 - Final state of residual nucleus deduced from its \(\gamma \)-decay in flight
 - Spectroscopic factors can be determined from the experimental cross sections and the calculated single-particle cross sections

Reaction mechanisms

- Experimentally only the residual nucleus is detected
 - Nothing is known on the whereabouts of the removed nucleon(s)
 - Theory calculates cross sections for two separate reaction mechanisms
Reaction mechanisms

- Experimentally only the residual nucleus is detected
 - Nothing is known on the whereabouts of the removed nucleon(s)
 - Theory calculates cross sections for two separate reaction mechanisms

- Elastic breakup also called Diffraction:
 - the removed nucleon(s) are elastically scattered in the nuclear field of the target
 - the target stays in its ground state
 - the removed nucleon(s) escape with a velocity close to the beam velocity
Reaction mechanisms

- **Experimentally only the residual nucleus is detected**
 - Nothing is known on the whereabouts of the removed nucleon(s)
 - Theory calculates cross sections for two separate reaction mechanisms

- **Elastic breakup also called Diffraction:**
 - the removed nucleon(s) are elastically scattered in the nuclear field of the target
 - the target stays in its ground state
 - the removed nucleon(s) escape with a velocity close to the beam velocity

- **Inelastic breakup also called Stripping:**
 - the removed nucleon(s) interact inelastically with the target
 - the target is excited or broken up
 - the removed nucleon(s) can escape with much lower velocity and/or as different particle
Single-particle cross sections

\[\sigma_{\text{str}} = \frac{1}{2j + 1} \int d\vec{b} \sum_m \langle \psi_{jm} | (1 - |S_n|^2) | S_c |^2 | \psi_{jm} \rangle \]

\[\sigma_{\text{dif}} = \frac{1}{2j + 1} \int d\vec{b} \left[\sum_m |\langle \psi_{jm} | (1 - S_n S_c) | \psi_{jm} \rangle|^2 \right] \]

- **Eikonal theory**
 - \(S_n \) and \(S_c \) \(S \)-matrices for the scattering of the nucleon and the core (residual nucleus) respectively
 - Calculated using Glauber theory, HF densities and effective NN interaction

Proposed experiment

- **Experiment aimed to measure stripping and diffraction parts of the cross section separately**
 - Detect removed nucleon with maximum solid angle to differentiate diffraction
 - One-proton knockout: easier to detect proton than neutron
 - Choose two cases with different binding energies and only one or two final states

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Final state</th>
<th>S_p (MeV)</th>
<th>σ_{str} (mb)</th>
<th>σ_{diff} (mb)</th>
<th>S_{SM}</th>
<th>σ_{tot} (mb)</th>
<th>$%_{diff/str}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9C (3/2-)</td>
<td>8B (2+)</td>
<td>1.300</td>
<td>46.0</td>
<td>15.7</td>
<td>0.94</td>
<td>58</td>
<td>25.4</td>
</tr>
<tr>
<td>8B (2+)</td>
<td>7Be (3/2-)</td>
<td>0.137</td>
<td>61.5</td>
<td>30.5</td>
<td>1.036</td>
<td>111.8</td>
<td>32.7</td>
</tr>
<tr>
<td>8B (2+)</td>
<td>7Be (1/2-)</td>
<td>0.566</td>
<td>52.7</td>
<td>22.5</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental setup

- Cocktail beam containing ^9C and ^8B produced from ^{16}O primary beam at 150 MeV/u in A1900 fragment separator
Experimental setup

- Cocktail beam containing ^9C and ^8B produced from ^{16}O primary beam at 150 MeV/u in A1900 fragment separator
- Large acceptance S800 spectrograph to collect, identify and characterize residual nucleus
Experimental setup

- Cocktail beam containing ^9C and ^8B produced from ^{16}O primary beam at 150 MeV/u in A1900 fragment separator
- Large acceptance S800 spectrograph to collect, identify and characterize residual nucleus
- HiRA detector array located around the reaction target to detect high velocity protons emitted during the reaction
Experimental setup

- Cocktail beam containing 9C and 8B produced from 16O primary beam at 150 MeV/u in A1900 fragment separator
- Large acceptance S800 spectrograph to collect, identify and characterize residual nucleus
- HiRA detector array located around the reaction target to detect high velocity protons emitted during the reaction
- Data acquisition triggers set on S800 + HiRA coincidences as well as S800 singles
Experimental setup

- Cocktail beam containing ^9C and ^8B produced from ^{16}O primary beam at 150 MeV/u in A1900 fragment separator
- Large acceptance S800 spectrograph to collect, identify and characterize residual nucleus
- HiRA detector array located around the reaction target to detect high velocity protons emitted during the reaction
- Data acquisition triggers set on S800 + HiRA coincidences as well as S800 singles
- Angles and energies of both residual nucleus and proton measured: full kinematics
S800 Spectrograph

Focal plane detectors
Particle identification
Scattering angle and energy
of residual nucleus

Scattering chamber
188 mg/cm² ⁹Be target
HiRA detector array

Incoming ⁹C cocktail beam

Acceptances
• 5% momentum
• 20 mrad solid angle
 (± 3.5° × ± 5°)
HiRA detector array

- 10 telescopes covering scattering angles between 10° and 60°
- Each telescope composed of 32×32 DSSD Silicon detectors, followed by 4 CsI crystals
- Digital electronics located inside the scattering chamber
Proton detection angular coverage

- Efficiency determined from Monte-Carlo simulation using a lookup table to take missing or bad channels into account.
Particle identification in HiRA

- Events in coincidence with a 8B residual nucleus observed in the S800 focal plane
- Standard E-ΔE plot
Residual nucleus momentum distributions

- **Inclusive distributions compared to eikonal calculation**
 - Several settings necessary to cover whole distribution
 - Eikonal calculation reproduces data very well except for low momentum tail

![Graph showing inclusive and eikonal distributions for different isotopes and momentum settings.](image)
Proton - residual nucleus coincidences

- **Evidence for elastic breakup reaction mechanism**
 - Diagonal “band” corresponds to elastic process where energy is conserved
 - For other events proton interacts inelastically with target
Energy sum spectra

- **Hint of experimental distinction between diffraction and stripping reaction mechanisms**

- **Width of sharp peak due to target thickness and momentum width of incoming radioactive beam (1% \(\Delta P/P \))**
Deuteron - residual nucleus coincidences

- *Must come from stripping events*
 - Additional neutron in deuteron comes from \((p,d)\) on \(^9\)Be target
 - Diagonal “band” previously observed in proton coincidences has disappeared

Diagram:

- \(^8\)B+d coincidences from \(^9\)C
- \(^7\)Be+d coincidences from \(^8\)B
Energy sum spectra

- Sharp peak corresponding to diffraction reaction mechanism is absent in residual nucleus + deuteron coincidences
Contributions from each reaction mechanism

- Take all particles in coincidence (not just protons)
- Assume sharp peak corresponds to diffraction
- Double Gaussian fit
Comparison to eikonal theory

- Eikonal prediction follows data both in trend and absolute value
 - Assumed angular distributions for stripping and diffraction are similar
 - Agrees with previous work by Enders et al., although error bars very large due to transmission method used

Comparison with Continuum Discretized Coupled Channel (CDCC) calculations in progress

- Study characteristics of diffraction reaction mechanism

Conclusions and prospects
Conclusions and prospects

- **First full kinematics experiment on proton knockout**
 - Experimental evidence for two separate reaction mechanisms, stripping and diffraction as assumed in the eikonal reaction theory
 - Observed proportion between diffraction and stripping very well reproduced by eikonal calculation
 - Interpretation of observed features require careful comparison with more refined theory such as CDCC calculations for diffraction
Conclusions and prospects

- **First full kinematics experiment on proton knockout**
 - Experimental evidence for two separate reaction mechanisms, stripping and diffraction as assumed in the eikonal reaction theory
 - Observed proportion between diffraction and stripping very well reproduced by eikonal calculation
 - Interpretation of observed features require careful comparison with more refined theory such as CDCC calculations for diffraction

- **Next step: test of two-proton knockout reaction theory**
 - Diffraction/Stripping combined channel can account for up to ~ 50% of cross section
 - Use same experimental setup: S800 + HiRA
 - Study well known case of two-proton knockout on 28Mg to populate final states in 26Ne for which branching ratios were already measured
Credits

- **S800 team**
 - D. Bazin, A. Gade, A. Obertelli, R. Terry, S. Mcdaniels

- **HiRA group**