

Mechanisms in knockout reactions

D. Bazin National Superconducting Cyclotron Laboratory Michigan State University

Motivation

- Knockout reactions have become a common tool to study the structure of nuclei far from stability
- Determination of spectroscopic factors relies on reaction theory to calculate single-particle cross sections
- It is essential to test the validity and accuracy of the reaction theory

Knockout reactions on fast beams

- Removal of one or two nucleons via nuclear interaction with a low-Z target (typically ⁹Be or ¹²C)
 - Direct (one-step) reaction
 - Measure probability of finding A-1 or A-2 residual nucleus in a given state
 - Composition of initial nucleus wave function
 - Spectroscopy of residual nucleus

Knockout reactions on fast beams

- Removal of one or two nucleons via nuclear interaction with a low-Z target (typically ${}^{9}Be$ or ${}^{12}C$)
 - Direct (one-step) reaction
 - Measure probability of finding A-1 or A-2 residual nucleus in a given state
 - Composition of initial nucleus wave function
 - Spectroscopy of residual nucleus
- High sensitivity well adapted to radioactive beams
 - Residual nucleus forward focused because of inverse kinematics
 - Final state of residual nucleus identified via γ -ray detection
 - Thick targets give high luminosity

Determination of spectroscopic factors

• Theoretical cross section between initial and final states directly related to spectroscopic factors

$$\sigma^{if} = \sum_{\substack{|J_f - J_i| \le j \le J_f + J_i}} S_j^{if} \sigma_{sp}$$

- Experimental determination of cross sections
 - Angular momentum of removed nucleon(s) deduced from parallel momentum distribution of residual nucleus
 - Final state of residual nucleus deduced from its γ -decay in flight
 - Spectroscopic factors can be determined from the experimental cross sections and the calculated single-particle cross sections

P. G. Hansen and J. A. Tostevin, Ann. Rev. Nucl. Part. Sci. 53, 219 (2003)

Reaction mechanisms

• Experimentally only the residual nucleus is detected

- Nothing is known on the whereabouts of the removed nucleon(s)
- Theory calculates cross sections for two separate reaction mechanisms

Reaction mechanisms

- Experimentally only the residual nucleus is detected
 - Nothing is known on the whereabouts of the removed nucleon(s)
 - Theory calculates cross sections for two separate reaction mechanisms
- Elastic breakup also called Diffraction:
 - the removed nucleon(s) are elastically scattered in the nuclear field of the target
 - the target stays in its ground state
 - the removed nucleon(s) escape with a velocity close to the beam velocity

Reaction mechanisms

- Experimentally only the residual nucleus is detected
 - Nothing is known on the whereabouts of the removed nucleon(s)
 - Theory calculates cross sections for two separate reaction mechanisms
- Elastic breakup also called Diffraction:
 - the removed nucleon(s) are elastically scattered in the nuclear field of the target
 - the target stays in its ground state
 - the removed nucleon(s) escape with a velocity close to the beam velocity
- Inelastic breakup also called Stripping:
 - the removed nucleon(s) interact inelastically with the target
 - the target is excited or broken up
 - the removed nucleon(s) can escape with much lower velocity and/or as different particle

Single-particle cross sections

$$\begin{split} \sigma_{str} &= \frac{1}{2j+1} \int d\overrightarrow{b} \sum_{m} \langle \psi_{jm} | (1-|S_n|^2) | S_c |^2 | \psi_{jm} \rangle \\ \sigma_{dif} &= \frac{1}{2j+1} \int d\overrightarrow{b} [\sum_{m} \langle \psi_{jm} | | 1-S_n S_c |^2 | \psi_{jm} \rangle - \sum_{m,m'} | \langle \psi_{jm'} | (1-S_n S_c) | \psi_{jm} \rangle |^2] \end{split}$$

• Eikonal theory

- S_n and S_c S-matrices for the scattering of the nucleon and the core (residual nucleus) respectively
- Calculated using Glauber theory, HF densities and effective NN interaction
- J. A. Tostevin, Nucl. Phys. A682, 320c (2001)

Proposed experiment

- Experiment aimed to measure stripping and diffraction parts of the cross section separately
 - Detect removed nucleon with maximum solid angle to differentiate diffraction
 - One-proton knockout: easier to detect proton than neutron
 - Choose two cases with different binding energies and only one or two final states

Initial state	Final state	$S_p (MeV)$	$\sigma_{str} (mb)$	$\sigma_{diff}(mb)$	S _{SM}	$\sigma_{tot} (mb)$	M _{diff} /str
⁹ C (3/2 ⁻)	⁸ B (2+)	1.300	46.0	15.7	0.94	58	25.4
⁸ B (2+)	⁷ Be (3/2-)	0.137	61.5	30.5	1.036	111 0	20.7
⁸ B (2+)	⁷ Be (1/2-)	0.566	52.7	22.5	0.22	111.8	52.7

• Cocktail beam containing ⁹C and ⁸B produced from ¹⁶O primary beam at 150 MeV/u in A1900 fragment separator

- Cocktail beam containing ⁹C and ⁸B produced from ¹⁶O primary beam at 150 MeV/u in A1900 fragment separator
- Large acceptance S800 spectrograph to collect, identify and characterize residual nucleus

- Cocktail beam containing ⁹C and ⁸B produced from ¹⁶O primary beam at 150 MeV/u in A1900 fragment separator
- Large acceptance S800 spectrograph to collect, identify and characterize residual nucleus
- HiRA detector array located around the reaction target to detect high velocity protons emitted during the reaction

- Cocktail beam containing ⁹C and ⁸B produced from ¹⁶O primary beam at 150 MeV/u in A1900 fragment separator
- Large acceptance S800 spectrograph to collect, identify and characterize residual nucleus
- HiRA detector array located around the reaction target to detect high velocity protons emitted during the reaction
- Data acquisition triggers set on S800 + HiRA coincidences as well as S800 singles

- Cocktail beam containing ⁹C and ⁸B produced from ¹⁶O primary beam at 150 MeV/u in A1900 fragment separator
- Large acceptance S800 spectrograph to collect, identify and characterize residual nucleus
- HiRA detector array located around the reaction target to detect high velocity protons emitted during the reaction
- Data acquisition triggers set on S800 + HiRA coincidences as well as S800 singles
- Angles and energies of both residual nucleus and proton measured: full kinematics

S800 Spectrograph

Incoming ⁹C cocktail beam

Acceptances

- 5% momentum
- 20 msr solid angle $(\pm 3.5^{\circ} \times \pm 5^{\circ})$

Focal plane detectors Particle identification Scattering angle and energy of residual nucleus

Scattering chamber

188 mg/cm² ⁹Be target HiRA detector array

HiRA detector array

- 10 telescopes covering scattering angles between 10° and 60°
- Each telescope composed of 32×32 DSSD Silicon detectors, followed by 4 CsI crystals
- Digital electronics located inside the scattering chamber

Proton detection angular coverage

• Efficiency determined from Monte-Carlo simulation using a lookup table to take missing or bad channels into account

D. Bazin, DREB2007, Tokyo, June 2007

Particle identification in HiRA

- Events in coincidence with a ⁸B residual nucleus observed in the S800 focal plane
- Standard E- ΔE plot

D. Bazin, DREB2007, Tokyo, June 2007

Residual nucleus momentum distributions

• Inclusive distributions compared to eikonal calculation

- Several settings necessary to cover whole distribution
- Eikonal calculation reproduces data very well except for low momentum tail

D. Bazin, DREB2007, Tokyo, June 2007

Proton - residual nucleus coincidences

- Evidence for elastic breakup reaction mechanism
 - Diagonal "band" corresponds to elastic process where energy is conserved
 - For other events proton interacts inelastically with target

Energy sum spectra

- Hint of experimental distinction between diffraction and stripping reaction mechanisms
- Width of sharp peak due to target thickness and momentum width of incoming radioactive beam (1% $\Delta P/P$)

Deuteron - residual nucleus coincidences

- Must come from stripping events
 - Additional neutron in deuteron comes from (p,d) on ⁹Be target
 - Diagonal "band" previously observed in proton coincidences has dissapeared

D. Bazin, DREB2007, Tokyo, June 2007

Energy sum spectra

• Sharp peak corresponding to diffraction reaction mechanism is absent in residual nucleus + deuteron coincidences

Contributions from each reaction mechanism

- Take all particles in coincidence (not just protons)
- Assume sharp peak corresponds to diffraction
- Double Gaussian fit

D. Bazin, DREB2007, Tokyo, June 2007

Comparison to eikonal theory

- Eikonal prediction follows data both in trend and absolute value
 - Assumed angular distributions for stripping and diffraction are similar
 - Agrees with previous work by Enders et al., although error bars very large due to transmission method used
- Comparison with Continuum Discretized Coupled Channel (CDCC) calculations in progress
 - Study characteristics of diffraction reaction mechanism

J. Enders et al., Phys. Rev. C 67, 064301 (2003)

Conclusions and prospects

www.as	the state is tory wash's min-secure to 14	trais in the Low and that he are any by by	There & Alter the Alter	a suite on a suit a suite	*
	and the second se				<u> </u>

Conclusions and prospects

- First full kinematics experiment on proton knockout
 - Experimental evidence for two separate reaction mechanisms, stripping and diffraction as assumed in the eikonal reaction theory
 - Observed proportion between diffraction and stripping very well reproduced by eikonal calculation
 - Interpretation of observed features require careful comparison with more refined theory such as CDCC calculations for diffraction

Conclusions and prospects

- First full kinematics experiment on proton knockout
 - Experimental evidence for two separate reaction mechanisms, stripping and diffraction as assumed in the eikonal reaction theory
 - Observed proportion between diffraction and stripping very well reproduced by eikonal calculation
 - Interpretation of observed features require careful comparison with more refined theory such as CDCC calculations for diffraction
- Next step: test of two-proton knockout reaction theory
 - Diffraction/Stripping combined channel can account for up to ~ 50% of cross section
 - Use same experimental setup : S800 + HiRA
 - Study well known case of two-proton knockout on ²⁸Mg to populate final states in ²⁶Ne for which branching ratios were already measured

Credits

- S800 team
 - D. Bazin, A. Gade, A. Obertelli, R. Terry, S. Mcdaniels
- HiRA group
 - B. Lynch, B. Tsang, M. Famiano, L. Sobotka, S. Hudan, V. Henzl, D. Henzlova, M. Wallace, A. Rogers, A. Sanetullaev, S. Lobastov, R. Krishnasamy, M. Kilburn, J. Clifford, J. Lee