The Fifth International Workshop on **DIRECT REACTIONS WITH EXOTIC BEAMS (DREB2007)** 30 May – 2 June, 2007

Analysis of polarized proton-⁶He elastic scattering based on an improved di-neutron model

Y. Sakuragi ^{1,2}, T. Yamamoto,¹ T. Furumoto,¹

¹ Graduate School of Science, Osaka City University ² RIKEN Nishina Center, RIKEN

Contents:

- 1. Conventional "di-neutron (2n)" model for ⁶He
 - Something wrong!
 - What's wrong?
- 2. "Improved di-neturon model for ⁶He
 - A constraint upon "2n"- α wave function
- 3. Adiabatic-Recoil approximation (ARA)
 "2n" size-effects on the elastic scattering
 → via break-up effect / folding potential
- 4. Effect of "2n"-p interaction ignored in ARA

Problems of previous analyses

- Folding model : <u>no break-up effect</u> is included:
 - how important the breakup effect is?
 - → estimate it within the framework of *di-neutron* model
 BUT!
- <u>*"standard" di-neutron model*</u> on the market, which many authors have been using, <u>*may not be realistic*</u>
 - Size of the whole nucleus (⁶He) inevitably exceed the measured size.
 - → Need modification/improvement to the "di-neutron" model

Conventional "di-neutron" model for 6He

 α +(2n) relative wave function is assumed to be 2s state and is given by the **separation energy method (SEM)** with the use of a single **attractive** Woods-Saxon potentail with a standard geometry (e.g. $R=1.2 \times A^{1/3}$ fm, a=0.5 fm)

"2n" - α relative wave function

"2n" - α relative wave function

"2n"- α relative wave function

"2n" - α relative wave function

"2n"- α relative wave function

"2n"- α relative wave function

How <u>"2n" size in ⁶He</u> can be probed by scattering with proton?

Size of "2n" correlates with α -2n relative wave function

Adiabatic-Recoil approx. (R.C.Johnson et al., PRL79, 2771(1997))

$$\begin{bmatrix} T_{R} + T_{r} + V_{Ab}(r) + V_{Cb}(R_{Cb}) + V_{CA}(R_{CA}) - E \end{bmatrix} \Psi(r, R) = 0$$

$$\overleftarrow{\varepsilon}_{0} \qquad 0$$

$$\begin{bmatrix} T_{R} + V_{CA}(R_{CA}) - E_{0} \end{bmatrix} \Psi^{(AD)}(r, R) = 0,$$

$$(E_{0} = E - \varepsilon_{0})$$

R

R_{Cb}

 R_{CA}

1 b-A relative motion is slow enough compared with C-(b+A) one (Adiabatic approx,)

$$= \sum [T_r + V_{Ab}(r)] \Psi(r, R) \cong \varepsilon_0 \Psi(r, R)$$

2 ignore b-C interaction if it is weak enough compared with A-C interaction:

$$\forall V_{CA}(R_{CA}) >> V_{Cb}(R_{Cb}) \approx 0$$

Apply this approximation to
$$(\alpha + "2n") + p$$
 system

$$\begin{bmatrix} T_{R} + V_{p\alpha}(R') - E_{0} \end{bmatrix} \Psi_{K}^{(AD)}(r, R) = 0$$

$$\Psi_{K}^{(AD)}(r, R) = \varphi_{0}(r) \cdot e^{i\mu k \cdot r} \cdot X_{K}(R')$$

$$\begin{bmatrix} T_{R'} + V_{p\alpha}(R') - E_{0} \end{bmatrix} XK(R') = 0$$

$$\begin{bmatrix} d\sigma \\ d\Omega \\ el \end{bmatrix} = \left| \int dr \int dR \varphi_{0}(r) e^{iKR} \{ V_{p\alpha}(R') + V_{p2n}(R_{p2n}) \} \Psi_{K}(r, R) \right|^{2}$$

$$\cong \left| \int dr |\varphi_{0}(r)|^{2} e^{i\mu q r} \right|^{2} \times \left| \int dR' e^{-iKR'} V_{p\alpha}(R') X_{K}(R') \right|^{2}$$

$$= \left| F(q) \right|^{2} \times \left(\frac{d\sigma}{d\Omega} \right)_{pt}$$
R.C.Johnson et al.,
PRL79, 2771(1997)

Adiabatic-Recoil approximation

(R.C.Johnson et al., PRL<u>79</u>, 2771(1997))

$$\left(\frac{d\sigma}{d\Omega}\right)_{p-^{6}\text{He}} = |F(q)|^{2} \times \left(\frac{d\sigma}{d\Omega}\right)_{\text{point}}$$

Form factor
$$F(q) = \int e^{i\mu qr} \varphi_{2n-\alpha}(r)^{2} dr^{3},$$
$$(\mu = m_{2n}/m_{^{6}\text{He}} = 1/3)$$

⁶He $\rightarrow \alpha$ + "2n" break-up effect

We compare ;

- a) Adiabatic-Recoil approx.(ARA) cal.
 - \rightarrow with break-up effect
- b) Folding-model calculation
 - (without V_{p-2n})
 - \rightarrow no break-up effect

Effect of p-"2n" interaction \rightarrow folding-model (no break-up effect)

Summary

- We have proposed a realistic "di-neutron" model for ⁶He,
 - which well simulates the <u>three-body nature</u> of ⁶He and
 - reproduces both ⁶He size and binding energy simultaneously by introducing a <u>surface barrier</u> to $2n-\alpha$ potential.
- ${}^{6}\text{He} \rightarrow \alpha + "2n"$ break-up effect is estimated by the use of adiabatic-recoil approximation (ARA)
 - the break-up effect is important at middle and backward angles of the elastic scattering by proton
 - ARA calculation gives vector analyzing power consistent to the observed ones within error bars.
- The "2n"-proton interaction, V_{p-2n} , neglected in the ARA calculation, has non-negligible effect
 - mainly due to small mass of the α -particle core