Analyzing Power Measurement for Proton Elastic Scattering on ⁶He

> 2007/5/30, DREB2007 Satoshi Sakaguchi Center for Nuclear Study, Univ. of Tokyo

Collaborators

<u>CNS, Univ. of Tokyo</u> T. Uesaka, T. Kawabata, K. Suda, Y. Maeda, Y. Sasamoto

<u>Univ. of Tokyo</u> H. Sakai, K. Yako, H. Kuboki, M. Sasano, Y. Takahashi, H. Iwasaki, Y. Ichikawa, D. Suzuki, T. Nakao

<u>Toho Univ.</u> T. Kawahara

<u>Saitama Univ.</u> K. Itoh

<u>RIKEN</u>

K. Sekiguchi, N. Aoi, M. Yamaguchi, N. Sakamoto

<u>Tokyo Institute of Technology</u> Y. Satou, Y. Hashimoto, M. Shinohara

<u>CYRIC, Tohoku Univ.</u> T. Wakui, H. Okamura, M. Itoh, R. Matsuo, M. Ichikawa

RCNP, Osaka Univ.

A. Tamii

Polarized Proton + RI-Beam

Direct reactions with polarized protons

- □ Proton induced direct reactions Simple reaction → Radii, Matter distribution, ...
- □ + "Spin Polarization"
 - (p,p'), (p,n)
 - spin-isospin response
 - (p,d), (d,p), (p,pN) J^{π} of single particle/hole states
 - (p,p), (d,d) spin-orbit potential

Polarized proton: one of most powerful probes

⇔ No study of <u>unstable nuclei</u> with polarized proton

To explore new aspects of unstable nuclei via polarization observables.

CNS Polarized Proton Target

- Strong point
 - Operation in modest conditions
 - Low magnetic field: 0.1 T
 - High temperature: 100 K

Target material

Single crystal of naphthalene + pentacene

- Polarizing method
 - □ Laser excitation

⇔ Conventional pol. p target (2.5 T, 0.5 K)

Unique pol. p target for RI-beam exp. !

1 mm^t 14 mm¢

A. Henstra et al.,
Phys. Lett. A 134 (1988) 134.
T. Wakui et al.,
NIM A 526 (2004) 182.

→ Electron pol. in aromatic molecules

Study of unstable nuclei with polarized proton

Spin-orbit Potential in *n*-rich Nuclei

Spin-orbit interaction in unstable nuclei

Introduction of spin-orbit int. by Mayer & Jensen

 \rightarrow shell structure, magic number

Spin-orbit potential

Localized on nuclear surface

$$V_{LS}\sim rac{1}{r}rac{d}{dr}
ho$$

□ Neutron skin/halo nuclei:

Different surface of proton/neutron

→ How does spin-orbit potential behave
 in neutron skin/halo nuclei ?

Proton Elastic Scattering on He Isotopes

A_y calculation

• p+^{6,8}He: S.P.Weppner et al.,

Phys. Rev. C 61 (2000) 044601.

• p+⁸He: R.Crespo et al.,

Phys. Rev. C 51 (1995) 3283.

Effects of excess neutrons on analyzing power

Experiment

Facility, Beam

RIKEN, RIPS

⁶He beam (71 MeV/u)

- Intensity : 250 kcps
- $\Delta x : 10 \text{ mm}\phi$
 - $\Delta \theta$: **20 mrad**

Target

Solid polarized proton target

14mm ϕ , 1mm^t (4.3 × 10²¹/cm²)

Average polarization: 13.8%

Detector

- **Forward: Scattered ⁶He**
- □ Backward: Recoil proton
- \rightarrow Scattering angle, ΔE , E

Experimental data

Differential cross section

- **Compared with ⁶Li, ⁴He**
- □ ⁶He ~ ⁶Li → similar radii

(): A. Korsheninnikov NPA 616 (1997) 45.

Analyzing power

Interesting behavior much different from stable nuclei

Microscopic Calculation

- Optical potential

 Phenomenological OP
 Microscopic OP
 Microscopic OP
 G-matrix folding calculation
 Folding calculation of
 Effective NN interaction: Melbourne-G, CEG, JLM, NM I, ...
 - Density distribution:
 - Successful in stable nuclei
- Analyzing power in p+⁶He
 Large discrepancy in pol. observable Something is missed...

Cluster-folding Calculation

- Current "6-body" folding calc.
 □ p-p int. / p-n int.
 □ 2p/4n density in ⁶He Fails to reproduce A_y in p+α
- α+2n cluster folding calc.
 p-α int. / p-n int.
 α/2n density in ⁶He

- □ Negative values: reproduced.
 - → p+α is an important starting point to understand p+⁶He
- □ Phase: should move to forward
 → Is LS potential extended?

Phen. Optical Model Analysis

Phenomenological optical potential

□ Woods-Saxon type: depth, radius, diffuseness

$$f(r; r_0, a_0) = \left[1 + \exp\left(\frac{r - r_0 A^{1/3}}{a_0}\right)\right]^{-1}$$

$$U(r) = V_{Coul}(r) + V_R f(r; r_R, a_R) + iW_{wv} f(r; r_{wv}, a_{wv})$$
$$-4a_{ws} W_{ws} i \frac{d}{dr} f(r; r_{ws}, a_{ws})$$
$$+ V_{ls} \left(\frac{\hbar}{m_{\pi}c}\right)^2 \frac{1}{r} \frac{d}{dr} f(r; r_{ls}, a_{ls}) (\overrightarrow{\sigma} \cdot \overrightarrow{L})$$

Spin-orbit potential

Phen. Optical Model Pot.

Fitting results

	Depth (MeV)	Radius (fm)	Diffus. (fm)
Real	24.6	1.21	0.74
Imaginary	7.9	1.26	0.58
Spin-orbit	2.3	1.44	0.88

 \Leftrightarrow Typical values:

 $r_{ls} \sim 1.2 \text{ fm}, a_{ls} \sim 0.6 \text{ fm}$

Phen. Optical Model Pot.

Fitting results

	Depth (MeV)	Radius (fm)	Diffus. (fm)
Real	24.6	1.21	0.74
Imaginary	7.9	1.26	0.58
Spin-orbit	2.3	1.44	0.88

⇔ Typical values:

 $r_{ls} \sim 1.2 \text{ fm}, a_{ls} \sim 0.6 \text{ fm}$

 Comparison with microscopic OP NN int.: CEG, Density: GEM

Analysis indicates LS pot. in ⁶He has a "long tail".

Summary

- Spin-orbit potential in neutron skin/halo nuclei Analyzing power measurement for **p**+⁶He @71MeV/u
- Comparison with G-matrix folding calculation
 A_y data cannot be reproduced
 Cluster folding calculation: p+α is a good point to start
- Phenomenological optical model analysis Long-tail shape of spin-orbit potential in ⁶He is indicated. r_{ls}, a_{ls} ~ 1.44, 0.88 fm ⇔ 1.1, 0.6 fm (typical values)
- Proton elastic scattering on ⁸He First polarization data was obtained!