Repulsive aspects of pairing correlation in nuclear fusion reaction

Shuichiro Ebata
Meme Media Laboratory, Hokkaido Univ.
Nuclear Reaction Data Centre, Hokkaido Univ.
(JCPRG)

Takashi Nakatsukasa
Center for Computational Sciences and Faculty of Pure and Applied Sciences, Univ. of Tsukuba
Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center
Simulate of heavy ion collision using TDHF

FIG. 2. Contour lines of the density integrated over the coordinate normal to the scattering plane for an $^{16}\text{O}+^{16}\text{O}$
collision at $E_{\text{lab}}=105$ MeV and incident angular momentum $L=13\hbar$. The times t are given in units of 10^{-23} sec.
Several mean-field theories

<table>
<thead>
<tr>
<th></th>
<th>For static</th>
<th>For dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Pairing</td>
<td>Hartree-Fock(HF)</td>
<td>Time-Dependent HF (TDHF, RPA)</td>
</tr>
<tr>
<td>With BCS Pairing</td>
<td>HF+BCS</td>
<td>TDHF+BCS</td>
</tr>
<tr>
<td>With Pairing</td>
<td>Hartree-Fock-Bogoliubov (HFB)</td>
<td>TDHFB (QRPA)</td>
</tr>
</tbody>
</table>

※ RPA: Random-Phase Approximation
※ QRPA: Quasi-particle RPA
What kind of pairing effect is expected in low-energy Heavy ion collision?

- **Fusion or Fission cross section**
- **Level crossing**
 - Energy Dissipation
 - Neck formation
 - Odd-even effects for spontaneous fission half-lives?
- **Pair transfer reaction**
 - Nuclear Josephson effect

Method S.E. et al.: PRC82 (2010) 034306

Statics: HF+BCS
Dynamics: Cb-TDHFB

\(ph \)-channel Int. : Skyrme (SkM*, SLy4d)

\(pp(hh) \)-channel : \(\delta \)-type (time-reversal)

\[\hat{\mathcal{V}}^\tau(r_1, \sigma_1; r_2, \sigma_2) = V_0^\tau \frac{1 - \hat{\sigma}_1 \cdot \hat{\sigma}_2}{4} \delta(r_1 - r_2) \]

: spin-singlet zero-range interaction

Points:
To solve Cb-TDHFB in 3D space enable us to study nuclear dynamics including deformation and pairing, self-consistently.

For the simulation of collision
Prepare the target and projectile nuclei with HF+BCS, put them with some \(b \) and distance, also add velocity to them, and their time will be evolved by Cb-TDHFB.

Cb-TDHFB Eqs.

\[i\hbar \frac{\partial}{\partial t} \phi_l(t) = \{ h(t) - \varepsilon_l(t) \} \phi_l(t) \quad : \text{Canonical basis (for } \tilde{l} \text{ also)} \]

\[i\hbar \frac{\partial}{\partial t} \rho_l(t) = \kappa_l(t) \Delta^*_l(t) - \Delta_l(t) \kappa^*_l(t) \quad : \text{Occupation Prob. (for } l > 0) \]

\[i\hbar \frac{\partial}{\partial t} \kappa_l(t) = \{ \varepsilon_l(t) + \varepsilon_{\tilde{l}}(t) \} \kappa_l(t) + \Delta_l(t) (2 \rho_l(t) - 1) \quad : \text{Pair Prob. (for } l > 0) \]
Example: Photo-absorption cross section of 172Yb

$\beta = 0.32$

$\Delta_n = 0.76$ [MeV]

$\Delta_p = 0.55$ [MeV]

$\Gamma = 1.0$ [MeV]

3D Cb-TDHFB

Cb-TDHFB can reproduce the photo-absorption cross section of 172Yb.

- Heavy nucleus
- Deformed nucleus
- Including pairing

Total cal. cost: **300 CPU hours**
(with a Single processor; Intel Core i7 3.0 GHz)

Box size: $R = 15$ [fm], mesh = 1 [fm] (3D-Spherical)

Canonical-basis space (HF+BCS g.s.): 146 states for neutron, 98 states for proton

Experimental data:

Dipole mode

$$\hat{F}^N = - (Ze/A)(\hat{z} + \hat{x} + \hat{y})$$

$$\hat{F}^P = (Ne/A)(\hat{z} + \hat{x} + \hat{y})$$
Setup for collision

Incident Energy: 18 - 20 [MeV] \((E_{\text{cm}} = 9.0 \text{ -- } 10 \text{ [MeV]}, V_{\text{Coul.}} \sim 9 \text{ MeV}) \)

Impact parameter: 2.8 - 3.1 [fm]

Effective Interaction: Skyrme force (SkM*), Contact pairing

Projectile: \(^{22}\text{O}\), Target: \(^{22}\text{O}\) (HF g.s. has also spherical shape)

\# of canonical-basis for HF+BCS g.s. ; \((N, Z) = (32 \text{ (16+16)}, 16 \text{ (8+8)}) \)

Average of gap energy; \(\bar{\Delta}_n = 2.066 \text{ [MeV]} \) \(V_0^n = -412.5 \text{ [MeV]} \)

Calculation space (3D meshed box):

Length of box for \((x, y, z)\) is \(36, 20, 40\text{[fm]} \) meshed by \(1.0 \text{ [fm]} \)
Simulation of 22O + 22O collision with $b = 3.0$ [fm] and $E_{cm}=10$ [MeV]

Time-evolution of Neutron density distribution
Simulation of $^{22}\text{O} + ^{22}\text{O}$ collision with $b = 3.0$ [fm] and $E_{\text{cm}} = 10$ [MeV]

Time-evolution of Neutron density distribution

\[\sigma_F = 2\pi \int_0^{b_f} db \ b \quad \sigma_F^{\text{BCS}} < \sigma_F^{\text{HF}} \]
From simulation of $^{22}\text{O} + ^{22}\text{O}$ collision with $b = 2.8 – 3.1 \text{ [fm]}$ and $E_{\text{cm}} = 10 \text{ [MeV]}$,

$$2.8 \text{ fm} < b^B_f < 2.9 \text{ fm} < b^{Bw}_f < 3.0 \text{ fm} < b^H_f < 3.1 \text{ fm}$$

Pairing correlation does not increase the fusion cross section (in this work).

Up to now

- **Same nuclei collision** with the incident energy around Coulomb barrier → Pairing correlation *can have repulsive aspects* in fusion reaction.
 - $\sigma_H \sim 283 \text{ mb} \rightarrow \sigma_B \sim 246 \text{ mb}$ be small about 15% → The repulsive effects *depends on* the strength of pairing.

From now on

- **In a little bit heavier system?** ← To increase pair number
- **Case of different nuclei collision?** ← Large difference of chemical potential will accelerate Pair transfer.
- **Is the pairing effects visible in much heavier system?**
In a little bit heavier system

Point: increase of pair number

Projectile: ^{52}Ca, Target: ^{52}Ca
In both methods, the g.s. is spherical shape.

$E_{cm} = 51.5$ MeV ($V_{\text{Coul.}} \sim 49$ MeV)
Impact parameter: 2.2 - 2.6 [fm]

Effective Interaction: SkM*, Contact pairing

$V_0^n = -438.1$ MeV
To reproduce Δ_n of ^{52}Ca

\[
2.4 \text{ fm} < b_f^B < 2.45 \text{ fm} < b_f^H < 2.5 \text{ fm}
\]

$\rightarrow \sigma_H \sim 189 \text{ mb} \rightarrow \sigma_B \sim 181 \text{ mb} \text{ be small about 5\%}$
In a little bit heavier system Point: increase of pair number

Projectile : ^{52}Ca, Target : ^{52}Ca In both methods, the g.s. is spherical shape.

$E_{\text{cm}} = 51.5$ MeV ($V_{\text{Coul.}} \sim 49$ MeV) Impact parameter : 2.2 - 2.6 [fm]

Effective Interaction : SkM*, Contact pairing

$V_0^n = -438.1$ MeV \leftarrow To reproduce Δ_n of ^{52}Ca

\[
2.4 \text{ fm} < b_f^B < 2.45 \text{ fm} < b_f^H < 2.5 \text{ fm} \\
\rightarrow \sigma_h \sim 189 \text{ mb} \rightarrow \sigma_B \sim 181 \text{ mb} \text{ be } \textit{small} \text{ about 5%}
\]
Case of different nuclei collision

Projectile: ^{22}O, Target: ^{52}Ca

In both methods, the g.s. is spherical shape.

$E_{cm} = 25$ MeV ($V_{\text{coul.}} \sim 20.8$ MeV)

Impact parameter: $3.0 - 4.5$ [fm]

Effective Interaction: SkM*, Contact pairing

$V_0^n = -425.3$ MeV \leftarrow Average of strength in ^{22}O and ^{52}Ca

Point: Difference of chemical potential

$\sigma_H \sim 528$ mb $\rightarrow \sigma_B \sim 503$ mb be small about 5%

ARIS2014, 14.6.6
S.Ebata
Case of different nuclei collision

Projectile: ^{22}O, Target: ^{52}Ca

$E_{\text{cm}} = 25 \text{ MeV} \ (V_{\text{Coul.}} \sim 20.8 \text{ MeV})$

Impact parameter: $3.0 - 4.5 \text{ [fm]}$

Effective Interaction: SkM*, Contact pairing

$V_0^n = -425.3 \text{ MeV}$

Average of strength in ^{22}O and ^{52}Ca

$4.0 \text{ fm} < b_f^B < 4.1 \text{ fm} < b_f^H < 4.25 \text{ fm}$

$\rightarrow \sigma_H \sim 528 \text{ mb} \rightarrow \sigma_B \sim 503 \text{ mb}$ be small about 5%

ARIS2014, 14.6.6

S.Ebata
Is the pairing effect visible in much heavier system?

Projectile : ^{96}Zr, **Target** : ^{124}Sn

$E_{cm} = 228$ MeV ($V_{\text{coul.}} = 216, 225$ MeV)

HF+BCS : Both ground states are spherical shape.

HF : ^{96}Zr ; spherical, ^{124}Sn ; oblate shape.

Effective Interaction : SLy4d, Contact pairing

$V_0^n = -412.5$ MeV \(\rightarrow\) *Very strong in order to check the effect*

$V_0^p \equiv 0.0$ MeV \(\rightarrow\) *Neglect proton pairing*

HF g.s. of ^{124}Sn has Oblate shape. $\beta = -0.1$

Coulomb barrier for $^{96}\text{Zr} + ^{124}\text{Sn}$ (F.D.)

Diagram

- ^{96}Zr
- ^{124}Sn
- $V_{FD} = 225$ MeV
- $V_{FD} = 216$ MeV

ARIS2014, 14.6.6
S.Ebata
Is the pairing effect visible in much heavier system?
Is the pairing effect visible in much heavier system?

Time up to scission

\[T_{z||Z}^{\text{Sci.}} \sim 850 \text{ fm/c} \]
\[T_{x,y||Z}^{\text{Sci.}} \sim 2070 \text{ fm/c} \]
\[T_{B}^{\text{Sci.}} \sim 1000 \text{ fm/c} \]
We apply Cb-TDHFB to large amplitude collective phenomena such as collision, with a contact pairing functional.

- $^{22}\text{O}+^{22}\text{O}$: Pairing effects in fusion reaction, have a repulsive aspect.
- $^{52}\text{Ca}+^{52}\text{Ca}$: The repulsive aspect appears also, but its contribution becomes small.
- $^{22}\text{O}+^{52}\text{Ca}$: The similar aspects can be seen.
- $^{96}\text{Zr}+^{124}\text{Sn}$: The pairing effects gets the time from a contact to scission to be short.

Perspective

To analyze the detail of internal behavior

- More accurate calculation
- Behavior of single-particle levels in real-time cal.
- Energy distribution, Level crossing
- Particle number projection for the multi-particle transfer in real-time cal.
- Nucleon transfer (Pair transfer), Nuclear Josephson effects