4C EOS and Heavy Nuclei, **ARIS2014** 2014.6.6 (Fri.) @ Univ. of Tokyo

Repulsive aspects of pairing correlation in nuclear fusion reaction

Shuichiro Ebata Meme Media Laboratory, Hokkaido Univ. Nuclear Reaction Data Centre, Hokkaido Univ. (JCPRG)

Takashi Nakatsukasa

Center for Computational Sciences and Faculty of Pure and Applied Sciences, Univ. of Tsukuba Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center

Simulation of heavy ion collision using TDHF

H.Flocard, S.E.Koonin and M.S.Weiss Phys. Rev. C17 (1978) 1682

FIG. 2. Contour lines of the density integrated over the coordinate normal to the scattering plane for an ${}^{16}O + {}^{16}O$ collision at $E_{1ab} = 105$ MeV and incident angular momentum $L = 13\hbar$. The times t are given in units of 10^{-22} sec.

```
ARIS2014, 14.6.6
S.Ebata
```

Several mean-field theories

	For static	For dynamics
No Pairing	Hartree-Fock(HF)	Time-Dependent HF (TDHF, RPA)
<mark>With</mark> BCS Pairing	HF+BCS	TDHF+BCS
		Cb-TDHFB

※ RPA: Random-Phase Approximation※ QRPA: Quasi-particle RPA

What kind of pairing effect is expected in low-energy Heavy ion collision ?

Fusion or Fission cross section

Level crossing

- Energy Dissipation
- Neck formation
- Odd-even effects for spontaneous fission half-lives ?

Pair transfer reaction

Nuclear Josephson effect

Method S.E. *et al.*: PRC82 (2010) 034306 Statics: HF+BCS **Dynamics: Cb-TDHFB** *ph*-channel Int. : Skyrme (SkM*, SLy4d) pp(hh)-channel : δ -type (time-reversal)

$$\hat{\mathcal{V}}^{\tau}(r_1, \sigma_1; r_2, \sigma_2) = V_0^{\tau} \frac{1 - \hat{\sigma}_1 \cdot \hat{\sigma}_2}{4} \delta(r_1 - r_2)$$

: spin-singlet zero-range interaction

Points:

To solve Cb-TDHFB in **3D space** enable us to study nuclear dynamics including *deformation* and *pairing*, self-consistently.

For the simulation of collision

Prepare the target and projectile nuclei with HF+BCS, put them with some *b* and distance, also add velocity to them, and their time will be evolved by Cb-TDHFB.

- Cb-TDHFB Eqs. $i\hbar \frac{\partial}{\partial t} \phi_l(t) = \{h(t) - \varepsilon_l(t)\} \phi_l(t)$: Canonical basis (for *l* also) $i\hbar\frac{\partial}{\partial t} \rho_l(t) = \kappa_l(t)\Delta_l^*(t) - \Delta_l(t)\kappa_l^*(t)$

: Occupation Prob. (for l > 0)

 $i\hbar \frac{\partial}{\partial t} \kappa_l(t) = \left\{ \varepsilon_l(t) + \varepsilon_{\bar{l}}(t) \right\} \kappa_l(t) + \Delta_l(t) \left(2\rho_l(t) - 1 \right) \quad : \text{Pair Prob. (for } l > 0)$

Example : Photo-absorption cross section of ¹⁷²Yb

Setup for collision

Incident Energy : 18 - 20 [MeV] ($E_{cm} = 9.0 - 10$ [MeV], $V_{Coul.} \sim 9$ MeV)

Impact parameter : 2.8 - 3.1 [fm]

Effective Interaction : Skyrme force (SkM*), Contact pairing

Projectile :²²**O**, **Target :**²²**O** (HF g.s. has also spherical shape)

of canonical-basis for HF+BCS g.s. ; (*N*, *Z*) = (32 (16+16) , 16 (8+8)) Average of gap energy ; $\bar{\Delta}_n = 2.066 \text{ [MeV]}$ $V_0^n = -412.5 \text{ [MeV]}$

Calculation space (3D meshed box):

Length of box for (*x*, *y*, *z*) is **36, 20, 40**[fm] meshed by **1.0** [fm]

Simulation of ²²O + ²²O collision with b = 3.0 [fm] and $E_{cm}=10$ [MeV]

Time-evolution of Neutron density distribution

Simulation of ²²O + ²²O collision with b = 3.0 [fm] and $E_{cm}=10$ [MeV]

Time-evolution of Neutron density distribution

From

simulation of ²²O + ²²O collision with b = 2.8 - 3.1 [fm] and $E_{cm} = 10$ [MeV], 2.8 fm $< b_f^{\rm B} < 2.9$ fm $< b_f^{\rm Bw} < 3.0$ fm $< b_f^{\rm H} < 3.1$ fm

Pairing correlation does not increase the fusion cross section (in this work).

Up to now

- ◆ Same nuclei collision with the incident energy around Coulomb barrier
 → Pairing correlation *can have repulsive aspects* in fusion reaction.
 - $\sigma_{\rm H} \sim 283 \text{ mb} \rightarrow \sigma_{\scriptscriptstyle B} \sim 246 \text{ mb}$ be small about 15%
 - \rightarrow The repulsive effects **depends on** the strength of pairing.

From now on

- ◆ In a little bit heavier system? ← To increase pair number
- ◆ Case of different nuclei collision? ← Large difference of chemical potential will accelerate Pair transfer.
- Is the pairing effects visible in much heavier system?

In a little bit heavier system

Point: increase of pair number

Projectile : ⁵²Ca, Target : ⁵²Ca In both methods, the g.s. is spherical shape. $E_{\rm cm} = 51.5 \text{ MeV} (V_{\rm Coul.} \sim 49 \text{ MeV})$ Impact parameter : 2.2 - 2.6 [fm] Effective Interaction : SkM*, Contact pairing $V_0^n = -438.1 \text{ MeV} \checkmark$ To reproduce Δ_n of ⁵²Ca

 $2.4 \text{ fm} < b_f^{\text{B}} < 2.45 \text{ fm} < b_f^{\text{H}} < 2.5 \text{ fm}$

 $ightarrow \sigma_{\!\scriptscriptstyle
m H} \sim 189~{
m mb}
ightarrow \sigma_{\!\scriptscriptstyle
m B} \sim 181~{
m mb}~{
m be}~{
m small}$ about 5%

In a little bit heavier system

Point: increase of pair number

Projectile : ⁵²Ca, Target : ⁵²Ca In both methods, the g.s. is spherical shape. $E_{\rm cm} = 51.5 \text{ MeV} (V_{\rm Coul.} \sim 49 \text{ MeV})$ Impact parameter : 2.2 - 2.6 [fm] Effective Interaction : SkM*, Contact pairing $V_0^n = -438.1 \text{ MeV} \checkmark$ To reproduce Δ_n of ⁵²Ca

Case of different nuclei collision

Point: Difference of chemical potential

Projectile : ²²O, Target : ⁵²Ca In both methods, the g.s. is spherical shape. $E_{cm} = 25 \text{ MeV} (V_{Coul.} \sim 20.8 \text{ MeV})$ Impact parameter : 3.0 - 4.5 [fm] Effective Interaction : SkM*, Contact pairing $V_0^n = -425.3 \text{ MeV} - Average of strength in ^{22}O and ^{52}Ca$

Case of different nuclei collision

Point: Difference of chemical potential

Projectile : ²²O, Target : ⁵²Ca In both methods, the g.s. is spherical shape. $E_{cm} = 25 \text{ MeV} (V_{Coul.} \sim 20.8 \text{ MeV})$ Impact parameter : 3.0 - 4.5 [fm] Effective Interaction : SkM*, Contact pairing $V_0^n = -425.3 \text{ MeV} - Average of strength in ^{22}O and ^{52}Ca$

Is the pairing effect visible in much heavier system?

Projectile : ⁹⁶Zr, Target : ¹²⁴Sn HF+BCS : Both ground states are spherical shape. $E_{\rm cm} = 228 \text{ MeV} (V_{\rm coul} = 216, 225 \text{ MeV})$ HF : ⁹⁶Zr ; spherical, ¹²⁴Sn ; oblate shape. Effective Interaction : SLy4d, Contact pairing $V_0^n = -412.5 \text{ MeV}$ \blacktriangleleft Very strong in order to check the effect

 $V_0^p \equiv 0.0 \text{ MeV}$ - Neglect proton pairing

Is the pairing effect visible in much heavier system ?

Is the pairing effect visible in much heavier system ?

Summary & Perspective

Simulation of the collision phenomena with Cb-TDHFB

- We apply Cb-TDHFB to large amplitude collective phenomena such as collision, with a contact pairing functional.
- $^{22}O+^{22}O$: Pairing effects in fusion reaction, have a *repulsive* aspects.
- ⁵²Ca+⁵²Ca : The repulsive aspect appears also, but its contribution becomes small.
- \sim ²²O+⁵²Ca : The similar aspects can be seen.
- $^{96}Zr + ^{124}Sn$: The pairing effects gets the time from a contact to scission to be *short*.

Perspective

To analyze the detail of internal behavior

More accurate calculation

Behavior of single-particle levels in real-time cal.

Energy distribution, Level crossing

60 Thank you for 1. Neatron 1. Jour attention Particle number projection for the multi-particle transfer in real-time 15

 Nucleon transfer (Pair transfer), Nuclear Josephson effects Particle number 16