

Deformation of the N=Z nucleus ⁷²Kr via beta decay

José Antonio Briz Monago^{1,2}

¹ Instituto de Estructura de la Materia, CSIC,

² Subatech Laboratory, CNRS/IN2P3, University of Nantes, Ecole des Mines de Nantes

for the IS370 collaboration

・ロト ・日ト ・ヨト ・ヨト

"Advances in Radioactive Isotope Science Conference 2014" ITO International Research Center, Tokyo, Japan 1-6 June 2014

Only 70 **Br and** 72 **Kr predicted oblate** deformed in the N=Z line from A=40 up to A=100.

P. Möller et al., At. Data and Nucl. Data Tables 59, 185 (1995)

Predictions of **shape coexistence** in ⁷²Kr: *"the poster child of nuclear shape isomers"*

ARIS 2014 Conference, Tokyo (Japan) June 2014

Total Absorption Spectroscopy stu

٠

Results

Conclusions

Motivation: Why ${}^{72}_{36}$ Kr₃₆?

- ⁷²Kr ground state predicted oblate deformed [Naz85,Mol95].
- High spin states interpreted as a prolate band [DeA97]
- First excited 0⁺ state: shape isomer head of the prolate band [Bou03]. Mixing λ=0.1 with the 0⁺ oblate gs (two-level calculation).

$$\begin{split} \mathsf{B}(\mathsf{E2};\!0^+_1 \to 2^+_1) &= 4997(647) \ \mathsf{e}^2\mathsf{fm}^4 \ [\mathsf{Gad05}] \to |\beta_2| = & \mathbf{0.330(21)}. \\ \searrow \\ \mathsf{B}(\mathsf{E2};\!2^+_1 \to 0^+_1) &= 999(129) \ \mathsf{e}^2\mathsf{fm}^4 \end{split}$$

- IS478 experiment (spokeperson B.S. Nara Singh, Univ. York) at ISOLDE (CERN) of ⁷²Kr Coulex whose preliminary results indicate 2⁺₁ state is prolate deformed.
- Recent results already shown today in H. Iwasaki talk [Iwa14]:
 $$\begin{split} B(E2,4^+_1 \rightarrow 2^+_1) &= 2720(550) \ e^2 fm^4 \rightarrow 2^+_1 \ \mbox{Prolate}; \\ B(E2,2^+_1 \rightarrow 0^+_1) &= 810(150) \ e^2 fm^4 \rightarrow \mbox{Small overlap between } 0^+ \ \mbox{and } 2^+ \ \mbox{w.f.} \\ \frac{B(E2,4^+_1 \rightarrow 2^+_1)}{B(E2,2^+_1 \rightarrow 0^+_1)} &= 3.4; 1.43 \ \mbox{(rotor) and } 2.0 \ \mbox{(vibrator)}. \end{split}$$

However, no evidence on the sign of the ground state deformation (prolate or oblate).

[Naz85] W. Nazarewicz et al., Nucl. Phys. A435, 397 (1985)
[Mol95] P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995)
[DeA97] G. de Angelis et al., Phys. Lett. B 415, 217 (1997)

[Bou03] E. Bouchez *et al.*, Phys. Rev. Lett. **90**, 082502 (2003)
[Gad05] A. Gade *et al.*, Phys. Rev. Lett. **95**, 022502 (2005)
[Iwa14] H. Iwasaki *et al.*, Phys. Rev. Lett. **112**, 142502 (2014).

Determination of nuclear shape via B(GT) distributions

GT strength distributions found to depend sensitively on the nuclear shape (quadrupole deformation) for 80 Zr, 76 Sr and 72 Kr [Ham95].

Mean field calculations [Sar99] and [Sar01] predict different B(GT) distributions for different deformations of the ground state of the parent nucleus.

[Ham95] I. Hamamoto et al., Z. Phys. A353, 145 (1995)
[Sarr99] P. Sarriguren et al., Nucl. Phys. A658, 13 (1999)
[Sarr01] P. Sarriguren et al., Nucl. Phys. A691 631 (2001)

不同 トイモトイモト

Total Absorption Spectroscopy stud

Results

Conclusions

Determination of the beta feeding distribution

C.L. Duke *et al.*, Nuclear Physics **A151**, 609 (1970) B. Rubio *et al.*, J. Phys. G 31, S1477 (2005)

- High density of levels for high excitation energies causing very fragmented feeding distribution and de-excitation pattern
- Low photopeak efficiency for high energy gammas with HPGe detectors
- Apparent strength is located at lower energies
- As a result: overestimated strength at low excitation energies and underestimated for high excitation energies

Pandemonium effect

J.C. Hardy *et al.*, Phys. Lett. 71B, 307 (1977)

イロト イポト イヨト イヨト

Besults

Determination of the beta feeding distribution

- High density of levels for high excitation energies causing very fragmented feeding distribution and de-excitation pattern
- Low photopeak efficiency for high energy gammas with HPGe detectors
- Apparent strength is located at lower energies
- As a result: overestimated strength at low excitation energies and underestimated for high excitation energies

Pandemonium effect

J.C. Hardy et al., Phys. Lett. 71B, 307 (1977)

< ロト < 同ト < ヨト < ヨト

Total Absorption Spectroscopy stud

Results

Determination of the beta feeding distribution

- High density of levels for high excitation energies causing very fragmented feeding distribution and de-excitation pattern
- Low photopeak efficiency for high energy gammas with HPGe detectors
- Apparent strength is located at lower energies
- As a result: overestimated strength at low excitation energies and underestimated for high excitation energies

Pandemonium effect

J.C. Hardy et al., Phys. Lett. 71B, 307 (1977)

ヘロト ヘ帰 ト ヘ ヨ ト ヘ ヨ ト

Motivation	Total Absorption Spectroscopy study	Results	Conclusions
0000	•0	000000	

TAS experimental setup

Motivation	Total Absorption Spectroscopy study	Results	Conclusions
0000	0	000000	
TAS data analysis			

• Experimental data (d) is the result of the convolution of Response function (R) of TAS detector and the feeding at a certain level (f):

$$d(i) = \sum_{j} R(i,j) \otimes f(j) + contam.$$

• Solve the Inverse problem with the Expectation-Maximization Algorithm [Dem77]:

$$f^{s}(j) = \frac{1}{\sum_{i} R(i,j)} \sum_{i} \frac{R(i,j)f^{s-1}(j)d(i)}{\sum_{j} R(i,j)f^{s-1}(j) + contam.}$$

f⁰ is chosen as an uniform feeding distribution.

The application of this algorithm to the TAS problem is explained in detail in [Tai07] Relative gamma transition intensities measured with the HPGe detector are included in d(i).

Through this methodology we try to reproduce both:

- the TAS experimental spectrum and
- the relative gamma transition intensities.

[Dem77] A. P. Dempster *et al.* J. R. Statist. Soc. B 39 (1977) 1 [Tai07] J. L. Taín, D. Cano-Ott Nucl. Inst. and Meth. A 571, (2007) 719 and 728

• **RESPONSE MATRIX (R)** is obtained from Monte Carlo simulations (GEANT4) and decay scheme information (High Resolution information available+Statistical Models).

Total Absorption Spectroscopy stud

Results

Beta gated analysis: Check of goodness

Check of results:

Reproduction of experimental TAS spectrum:

 $\mathbf{d(i)} = \sum_{j} R(i,j) \otimes f(j) + contam.$

Reproduction of gamma transition intensities measured with HPGe detector (10 most intense lines reaching the ground state).

マロト イラト イラト

Motivation	Total Absorption Spectroscopy study	Results	Conclusions
0000	00	00000	

Result from first set of data

Result from the analysis of only a set of data, not full statistics.

Evidence of "Pandemonium effect"

[Piq] I. Piqueras et al., Eur. Phys. J. A 16, 313-329 (2003)

Total Absorption Spectroscopy stu

Results

Comparison with theoretical predictions (QRPA)

QRPA approach using the SLy4 Skyrme-type force for the oblate and prolate minima in the ⁷²Kr potential energy surface. An standard quenching factor of 0.77 is used [Sar09].

[Sar09] P. Sarriguren, Phys. Rev. C 79, 044315 (2009)

Total Absorption Spectroscopy stu

Results

Comparison with theoretical predictions (QRPA)

QRPA approach using the SLy4 Skyrme-type force for the oblate and prolate minima in the ⁷²Kr potential energy surface. An standard quenching factor of 0.77 is used [Sar09].

[Sar09] P. Sarriguren, Phys. Rev. C 79, 044315 (2009)

Total Absorption Spectroscopy stu

Results

Conclusions

Comparison with theoretical predictions (QRPA)

QRPA approach using the SLy4 Skyrme-type force for the oblate and prolate minima in the ⁷²Kr potential energy surface. An standard quenching factor of 0.77 is used [Sar09].

Preliminary results suggest:

First experimental evidence of the negative sign of quadrupole moment of ⁷²Kr gs $\rightarrow \beta_2 < 0$. First time an oblate deformed gs has been inferred from the B(GT) distribution of its β decay.

Oblate minimum corresponds to $\beta_2 \approx -0.176$ (th.) [Sar09] P. Sarriguren, Phys. Rev. C **79**, 044315 (2009)

Total Absorption Spectroscopy stu

Results

Comparison with theoretical predictions (QRPA)

Preliminary results are compatible with 10 % mixing¹ [Bou03] with the prolate 0⁺ excited state but no improvement is observed.

[Sar09] P. Sarriguren, Phys. Rev. C **79**, 044315 (2009) [Bou03] E. Bouchez et al., Phys. Rev. Lett. **90**, 082502 (2003)

¹The distribution for 10 % mixing ratio is a rough estimation to guide the eye (0.1 times the value of B(GT) for prolate minimum plus 0.9 times the value for the oblate minimum) and not strictly an appropriate calculation.

Motivation	Total Absorption Spectroscopy study	Results	Conclusions
0000	00	000000	
Conclusions			

The preliminary results from our study suggest a dominantly oblate deformation of the ⁷²Kr in the ground state.

- Preliminary, we conclude that it is the first time an oblate deformed gs has been inferred from the B(GT) distribution of its β decay. First experimental evidence of the sign of the deformation (and the intrinsic quadrupole moment) of the ⁷²Kr ground state.
- The preliminary experimental B(GT) distribution does not exclude a certain prolate mixing for the dominantly oblate ground state but it does not improve the experiment-theory agreement.

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation	Total Absorption Spectroscopy study	Results	Conclusions
0000	00	000000	
Acknowledgements			

Thanks to the IS370 collaboration:

J. A. Briz¹, M. J. G. Borge¹, O. Tengblad¹,

A. Algora², E. Nácher^{1,2}, B. Rubio², J.L. Taín²

S.Courtin³, Ph. Dessagne³, F. Maréchal³, Ch. Miehé³,

E. Poirier³, L.M. Fraile⁴, W. Gelletly⁵ and the ISOLDE (CERN) team⁶

¹ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
² Instituto de Fisica Corpuscular, CSIC-Univ. Valencia, E-46071 Valencia, Spain
³ Institut de Recherches Subatomiques, IN2P3-CNRS, F-67037 Strasbourg CEDEX 2, France
⁴ Universidad Complutense, E-28040 Madrid, Spain
⁵ University of Surrey, Guildford, GU2 7XH, Surrey, UK
⁶ ISOLDE, CERN, CH-1211 Geneva 23, Switzerland.

イロト イロト イモト イモト