

The first observation of the exotic beta-delayed gamma-proton decay in the *fp* shell The Beta Decay of the $T_z = -2$, ⁵⁶Zn Nucleus

(Phys. Rev. Lett accepted)

S.E.A. Orrigo, B. Rubio, Y. Fujita, B. Blank, W. Gelletly et al (Valencia-Osaka-Bordeaux-Surrey-Istanbul-GANIL-Santiago de Chile-Gent-Argonne) For the GANIL E556a colaboration

If isospin symmetry exists, mirror nuclei should populate the same states with the same probability, in the daughter nucleus, in the two mirror processes

 $B(GT) = \left| \frac{1}{\sqrt{2}} \left\langle \psi_f \right| \sum_{\mu} \sum_{k} \sigma_k^{\mu} \tau_k^{\pm} | \psi_i \rangle \right|^2$ $B(F) = \left| \frac{1}{\sqrt{2}} \left\langle \psi_f \right| \tau^{\pm} | \psi_i \rangle \right|^2$

 $B(GT,F)^{\beta} \propto -$

Experimentally Charge Exchange

Theoretically

 $B(GT,F)^{CE} \propto \frac{d\sigma}{d\Omega} (0^{\circ})$

Experimentally Beta-decay

Parent

Beta feeding to states in the daughter nucleus

Parent beta half life

 $\frac{I_{\beta}(E)}{f(Q_{\beta} - E, Z)T_{1/2}}$

⁵⁸Ni²⁶⁺ (74.5 AMeV) + ^{nat}Ni @ GANIL 2010

As expected, the statistics is limited:

In 3 days:

Total ⁵⁶Zn implantations = 8861

0.033 imp/s

Expected beta decay of 56Zn

Because the Sp is only 560 keV we expect most of the decay to proceed by proton emission

Half-life analysis for ${}^{56}Zn (T_z = -2)$ using beta delayed protons

Literature: T_{1/2} = 30 ± 1.7 ms (*C. Dossat et al., NPA 792(2007)18*)

Comparison of mirror transitions for A = 56

Constructing the ⁵⁶Zn decay scheme...

Indeed we observed the gamma transition deexciting the IAS

A γ ray at 1834.5 ± 1.0 keV is observed in the ⁵⁶Zncorrelated γ -spectrum corresponding to the de-excitation of the IAS ✓ In agreement with the β-implant time correlation value: $T_{1/2}$ = (32.9 ± 0.8) ms

This is the first observation of Beta-delayed gamma-proton decay in the fp shell

T = 2

 $T_{z} = -1$

Proton-gamma coincidences

⁵⁶Zn decay scheme, another surprise

But this is NOT the end of the story!!!

And now we can comapre with the Charge Exchange reaction in the mirrow

We were puzzled for some time

Summary

"Mírror symmetry Is beautíful"

I have presented the study of the beta decay of the Tz=-2 nucleus 56Zn carried out at GANIL-LISE

We have measured the beta, the protons and the gammas after the decay,

We have observed evidence of the fragmentation of the isobaric analogue state

We have now a good understanding of this decay which could have never been possible without the information from the mirror nucleus 56Fe, in particular the CE experiment at Osaka.

Nuclear structure seams to be ultimately the responsible of the proton-gamma competition observed.

We have observed, for the first time the beta-delayed gamma-proton Decay in the *fp* shell in three branches, this exotic decay affects the conventional way of obtaining the B(F) and B(GT) in exotic proton rich nuclei.

Future studies (hopefully soon) at RIKEN

The Collaboration

Physical review Letters, in print

Observation of the β -delayed γ -proton decay of ⁵⁶Zn and its impact on the Gamow Teller strength evaluation

S. E. A. Orrigo,^{1,*} B. Rubio,¹ Y. Fujita,^{2,3} B. Blank,⁴ W. Gelletly,⁵ J. Agramunt,¹ A. Algora,^{1,6} P. Ascher,⁴ B. Bilgier,⁷ L. Cáceres,⁸ R. B. Cakirli,⁷ H. Fujita,³ E. Ganioğlu,⁷ M. Gerbaux,⁴
J. Giovinazzo,⁴ S. Grévy,⁴ O. Kamalou,⁸ H. C. Kozer,⁷ L. Kucuk,⁷ T. Kurtukian-Nieto,⁴ F. Molina,^{1,9}
L. Popescu,¹⁰ A. M. Rogers,¹¹ G. Susoy,⁷ C. Stodel,⁸ T. Suzuki,³ A. Tamii,³ and J. C. Thomas⁸
¹Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
²Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
³Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
⁴Centre d'Etudes Nucléaires de Bordeaux Gradignan, CNRS/IN2P3 - Université Bordeaux 1, 33175 Gradignan Cedex, France
⁵Department of Physics, Istanbul University, Istanbul, 34134, Turkey
⁶Inst. of Nuclear Research of the Hung. Acad. of Sciences, Debrecen, H-4026, Hungary
⁷Department of Physics, Istanbul University, Istanbul, 34134, Turkey
⁸Grand Accélérateur National d'Ions Lourds, BP 55027, F-14076 Caen, France
⁹Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile
¹⁰SCK.CEN, Boeretang 200, 2400 Mol, Belgium
¹¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

